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1 Before you start

This write-up provides some additional background on material that cannot found in sufficient detail in the
[1] B/G (Beck/Geoghegan) text book or the additional documents I published on the home page of the Math
330 course.

How you know what to focus on:

Scrutinize the table of contents, including the headings for the subchapters:

When you read “Study this”, you should understand the material in depth, comparable to the Beck Geoghegan
book.

When you read “Understahd this”, you should know the definitions, propositions and theorems without
worrying about proofs. Chances are that the material will be referred to from essential sections of this write-
up and needed for their understanding.

When you read “Skip this”, you need not worry about the content.

All directives apply to the entire subtree and a lower level directive overrides the “parent directives”. Example:
the “Understand this!” directive of subsection 7.2.4: Continuity of Polynomials overrides the “Study this!”
directive of subsection 7.2 on Continuity.

Accordingly, when you do not see any comment, back up in the table of contents until you find one.

The material consists of two very distinct portions.

A. Material directly related to Math 330:
Topic

1. All of ch.4, p.22: “Sets and Functions, direct and indirect images”
2. Ch.5.2, p.34: “Maxima, suprema, limsup ...”
3. Almost all of Ch.7, p.59) on “Convergence and Continuity”. Major exception:

most of subsection 7.1.4 (“Digression: Abstract topological spaces”) on p.68
can be skipped.

4. Ch.8, p.97: “Compactness”. Much of this chapter will be relevant starting
Monday, April 27, possibly earlier.

B. Material to help you understand topics taught in the course.
This includes everyting not listed in A above. This material is optional and was provided to you under the
theory that, particularly in Math, more words take a lot less time to understand than a skeletal write-up like
the one given in the course text.

Accordingly, almost all of the material provided in this document comes with quite detailed proofs. Those
proofs are there for you to study. Some of those proofs, notably those in prop. 4.2, make use of “ ⇐⇒ ” to
show that two sets are equal.

As I said many times in class, you should abstain from using “ ⇐⇒ ” between statements in your proofs as
you very likely lack the experience to do so without error.

Almost all of the material in A (directly related to the course) was written from scratch with the exception of
chapter 7. The remainder was pulled in from a document that was written more than five years ago. I have
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made some alterations in the attempt to make the entire document more homogeneous but there will be some
inconsistencies. Your help in pointing out to me the most notable trouble spots would be deeply appreciated.

Some of those alterations that may not have been done with 100% consistency are:

a. countable and countably infinite v.s. denumbrable and countable:
We use the B/G definitions: A set A is countable if it is either finite or infinite, but sequentiable (the elements
ofA can be indexed a1, a2, a3, . . . ) and “countably infinite” means countable but not finite. Originally I used
the term “countable” for what we now call “countably infinite” whereas the term “denumbrable” was used
to indicate that A is either finite or countably infinite.

b. Inclusion of sets B ⊆ A:
The great majority of all books that I have read use B ⊂ A to indicate that each element of B also belongs to
A whereas the notation B ( A is used to indicate that, in addition, there is at least one a ∈ A that does not
belong to B. I have converted this to match the B/g notation we also use in the course: B ⊆ A rather than
B ⊂ A means that each element of B also belongs to A. B ⊂ A means that, in addition, there is at least one
a ∈ A that does not belong to B. I also write B ( A if i want to emphasize that we deal with strict inclusion
that excludes equality of A and B.

c. NeighborhoodsBε(x) of “radius” ε around x These sets were originally denotedNε(x) and if you see either
this expression or Nδ(x) then you have found one that I have overlooked.

There is also a difference in style: the original document is written in a much more colloquial style as it was
addressed to high school students who had expressed a special interest in studying math.

This is a “living document”: material will be added as I find the time to do so. Be sure to check the latest PDF
frequently. You certainly should do so when an announcement was made that this document contains new
additions and/or corrections.

2 Notation and preliminaries (Read this!)

This introductory chapter on the notation used has been provided because future additions to this document
may use notation which has not been covered in class.

Notation 2.1. a) If two subsets A and B of a space Ω are disjoint, i.e., A∩B = ∅, then we often write
A
⊎
B rather than A ∪B or A+B. Both {A and A{ denote the complement Ω \A of A.

b) R>0 or R+ denotes the interval ]0,+∞[, R=0 or R+ denotes the interval [0,+∞[,

c) The set N = {1, 2, 3, · · · } of all natural numbers excludes the number zero. We write N0 or Z+ or
Z=0 for N

⊎
{0}. Z=0 is the B/G notation. It is very unusual but also very intuitive.

Definition 2.1. Let (xn)n∈N be a sequence of real numbers. We call that sequence non-decreasing
or increasing if xn 5 xn+1 for all n ∈ N.

We call it strictly increasing if xn < xn+1 for all n ∈ N.

We call it non-increasing or decreasing if xn = xn+1 for all n.

We call it strictly decreasing if xn > xn+1 for all n ∈ N.
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3 Some Basics (Understand this!)

3.1 Numbers

Remark 3.1 (Classification of numbers). 1

We call numbers without decimal points such as 3,−29, 0, 3000000, 3 · 106,−1, . . . integers and we
write Z for the set 2 of all integers.

Numbers in the set N = {1, 2, 3, . . . } of all strictly positive integers are called natural numbers.

A number that is an integer or can be written as a fraction is called a rational number and we write
Q for the set of all rational numbers. Examples of rational numbers are

3
4 , −0.75, −1

3 , .3̄,
13
4 , −5, 2.999̄, −372

7 .

The bar on top of the rightmost part of a decimal such as “.3̄” means that this part should be
repeated over and over again, e.g., .3̄ = 0.33333333333 . . . and 1.234567 = 1.234567567567 . . . .

Note that a mathematician does not care whether a rational number is written as a fraction " numerator
denominator "

or as a decimal. The following all are representations of one third

(3.1) 0.3̄ = .3̄ = .3̄ = 0.33333333333 . . . =
1

3
=

2

6

and here are several equivalent ways of expressing the number minus four:

(3.2) − 4 = −4.000 = −3.9̄ = −12

3
= −400

100

We call the barred portion of the decimal digits the period of the number and we also talk about
periodic decimals.

You may have heard that there are numbers which cannot be expressed as integers or fractions or
numbers with a finite amount of decimals to the right of the decimal point. Examples for that are√

2 and π. Those “irrational numbers” (really, that what we call them) fill the gaps between the
rational numbers. In fact, there is a simple way (but not easy to prove) of characterizing irrational
numbers: Rational numbers are those that can be expressed with at most finitely many digits to the
right of the decimal point, including periodic decimals such as 1.66̄. You can find the underlying
theory and exact proofs in B/G ch.12. Irrational numbers must then be those with infinitely many
decimal digits without any continually repeating patterns.

Now we can finally give an informal definition of the most important kind of numbers: We call
any kind of number, either rational or irrational, a real number and we write R for the set of all

1 The classification of numbers in this section is not meant to be mathematically exact. For this consult, e.g., [1] B/G
(Beck/Geoghegan).

2 You will learn more about sets in the section ”3.2” on p.9. All you need to know here is that a set is a collection of
stuff called members or elements. The order in which you write the elements does not matter and if you list an element
two or more times then it only counts once. Example: A = {1, 2.6, the moon, London} is the set whose elements are
the numbers 1 and 2.6, the moon and the city of London. B = {1, 2.6, the moon, 2.6,London} is equal to the set A: The
second occurrence of 2.6 is simply ignored.

6



real numbers. It can be shown that there are a lot more irrational numbers than rational numbers,
even though Q is a dense subset in R in the following sense: No matter how small an interval
(a, b) = {x ∈ R : a < x < b} of real numbers you choose, it will contain infinitely many rational
numbers.

Definition 3.1 (Types of numbers). We summarize what was said sofar about the classification of
numbers:

N := {1, 2, 3, . . . } denotes the set of natural numbers.

Z := {0,±1,±2,±3, . . . } denotes the set of all integers.

Q := {n/d : n ∈ Z, d ∈ N} denotes the set of all rational numbers.

R := {all integers or decimal numbers with finitely or inifinitely many decimal digits} denotes the
set of all real numbers.

R \ Q(see3) = {all real numbers which cannot be written as fractions of integers} denotes the set of
all irrational numbers. There is no special symbol for irrational numbers. Example:

√
2 and π are

irrational.

Here are some customary abbreviations about often referenced sets of numbers:

N0 := Z+ := Z≥0 := {0, 1, 2, 3, . . . } denotes the set of non–negative integers.

R+ := R≥0 := {x ∈ R : x = 0} denotes the set of all non–negative real numbers.

R+ := R>0 := {x ∈ R : x > 0} denotes the set of all positive real numbers.

R? := R 6=0 := {x ∈ R : x 6= 0}

Assumption 3.1 (Square roots are always assumed non–negative). Remember that for any number
a it is true that

a · a = (−a)(−a) = a2 e.g., 22 = (−2)2 = 4

or that, expressed in form of square roots, for any number b = 0

(+
√
b)(+
√
b) = (−

√
b)(−
√
b) = b.

We shall always assume that “
√
b” is the positive value unless the opposite is explicitly stated.

Example:
√

9 = +3, not −3.

Proposition 3.1 (The Triangle Inequality for real numbers). The following inequality is used all the time
in mathematical analysis to show that the size of a certain expression is limited from above:

(3.3) Triangle Inequality : |a+ b| 555 |a|+ |b|

This inequality is true for any two real numbers a and b.

It is easy to prove this: just look separately at the three cases where both numbers are non-negative, both are
negative or where one of each is positive and negative. �

3 The set difference X \ Y (see 3.12 on p.14.) is the set of all elements which belong to X but not to Y .
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Proposition 3.2 (The Triangle Inequality for n real numbers). The above inequality also holds true for
more than two real numbers: Let n ∈ N such that n = 2. Let a1, a2, . . . , an ∈ N. Then

(3.4) |a1 + a2 + . . .+ an| 5 |a1|+ |a2|+ . . .+ |an|

The proof will be done by complete induction, which is defined first:

Definition 3.2 (Principle of proof by complete induction). Actually, "definition" is a misnomer. This
principle is a mathematical statement that follows from the structure of the natural numbers which
have a starting point to the "left" (a smallest element 1) and then progress in the well understood
sequence 4

2, 3, 4, . . . , k − 1, k, k + 1, . . .

This is the principle: Let us assume that we know that some statement can be proved to be true in
the following two situations:

A. Base case. The statement is true for some (small) k0; usually that means k0 = 0 or k0 = 1

B. Induction Step. We prove the following for all k ∈ N0 such that k = k0: if the property is true
for k (“Induction Assumption”) then it will also be true for k + 1

C. Conclusion: Then the property is true for any k ∈ N0 such that k = k0.

Either you have been explained this principle before and say "Oh, that – what’s the big deal?" or you will be
mighty confused. So let me explain how it works by walking you through the proof of the triangle inequality
for n real numbers (3.4).

Proof of the triangle inequality for n real numbers:

A. For k0 = 2, inequality 3.4 was already shown (see 3.3), so we found a k0 for which the property is true.

B. Let us assume that 3.4 is true for some k = 2. We now must prove the inequality for k + 1 numbers
a1, a2, . . . , ak, ak+1 ∈ N: We abbreviate

A := a1 + a2 + . . .+ ak; B := |a1|+ |a2|+ . . .+ |ak|

then our induction assumption for k numbers is that |A| 5 B. We know the triangle inequality is valid for
the two variables A and ak+1 and it follows that |A+ak+1| 5 |A|+ |ak+1|. Look at both of those inequalities
together and you have

(3.5) |A+ ak+1| 5 |A|+ |ak+1| 5 B + |ak+1|

In other words,

(3.6) |
(
a1 + a2 + . . .+ ak

)
+ ak+1| 5 B + |ak+1| =

(
|a1|+ |a2|+ . . .+ |ak|

)
+ |ak+1|

and this is (3.4) for k + 1 rather than k numbers: We have shown the validity of the triangle inequality for
k + 1 items under the assumption that it is valid for k items. It follows from the induction principle that the
inequality is valid for any k = k0 = 2. �

4 The first two chapters of [1] B/G (Beck/Geoghegan) use the “axiomatic” method to develop the mathematical struc-
ture of integers and natural numbers and give an exact proof of the induction principle.
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To summarize what we did in all of part B: We were able to show the validity of the triangle inequality for
k + 1 numbers under the assumption that it was valid for k numbers.

Remark 3.2 (Why complete induction works). But how can we from all of the above conclude
that the triangle inequality works for all n ∈ N such that n = k0 = 2? That’s much simpler to
demonstrate than what we just did.

Step 1: We know that it’s true for k0 = 2 because that was actually proved in A.

Step 2: But according to B, if it’s true for k0, it’s also true for the successor k0 + 1 = 3.

Step 3: But according to B, if it’s true for k0 + 1, it’s also true for the successor (k0 + 1) + 1 = 4.

Step 4: But according to B, if it’s true for k0 + 2, it’s also true for the successor (k0 + 2) + 1 = 5.

. . .

Step 53, 920: But according to B, if it’s true for k0+53, 918, it’s also true for the successor k0 + 1 = 53, 919.

. . .

And now you understand why it’s true for any natural number n = k0. �

3.2 First things about sets, Functions (Mappings) and Families

Ask a mathematician how her or his Math is different from the kind of Math you learn in high school, in fact,
from any kind of Math you find outside textbooks for mathematicians and theoretical physicists. One of the
answers you are likely to get is that Math is not so much about numbers but also about other objects, amongst
them sets and functions. Once you know about those, you can tackle sets of functions, set functions, sets of
set functions, . . .

3.2.1 Definition of sets

Definition 3.3 (Sets). You probably know what a set is: A set is a collection of stuff called members
or elements which satisfies the following rules: The order in which you write the elements does not
matter and if you list an element two or more times then it only counts once.

Example 3.1 (Oscillating sequence). So, the following collection of alphabetic letters is a set:

S1 = {a, e, i, o, u}

and so is this one:
S2 = {a, e, e, i, i, i, o, o, o, o, u, u, u, u, u}

Did you notice that those two sets are equal?

There will be a lot more to be said about sets but it is helpful to have an understanding of functions, also called
mappings, before we proceed.
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3.2.2 Definition of functions, injectivity, surjectivity and bijectivity

Look at the set R of all real numbers and the function y = f(x) = x2 + 1 which associates with every real
number x (the “argument” or “independent variable”) another real number y = x2 +1 (the “function value”
or “dependent variable”):

f(0) = 1, f(2) = 5, f(−2) = 5, f(−10) = 101, f(1/2) = 1.25, f(−2/3) = 4/9 + 1 = 13/9, . . .

You can think of this function as a rule or law which specifies what real number y will be the output or result
of providing the real number x as input. 5

I am quite sure that you did not have any difficulty following the above because you have already been taught
about functions. But let us look a little bit closer at the function y = f(x) = x2 + 1 and its properties:

(a): There is a function value f(x) for every x ∈ R.

(b): Not every x ∈ R is suitable as a function value: A square cannot be negative, hence x2 + 1 will never be
less than 1.

(c): There is exactly one function value f(x) for every x ∈ R. Not zero, not two, not 21 y-values belong to a
given x but exactly one: f(2) = 5 and f(2) is nothing else but 5.

(d): On the other hand, given y ∈ R, there may be zero x-values (e.g., y = 1/2), exactly one x-value (if
y = 1) or two x-values (e.g. y = 5 which is obtained as both f(2) and f(−2).

Here is a complicated way of looking at the example above: Let X = R and Y = R. Then y = f(x) = x2 + 1
is a rule which "maps" each element x ∈ X to a uniquely determined number y ∈ Y which depends on y (in
a very simple way: it’s 1 plus the square of x).

Mathematicians are very lazy as far as writing is concerned and they figured out long ago that writing
"depends on xyz" all the time not only takes too long, but also is aesthetically very unpleasing and makes
statements and their proofs hard to understand. So they decided to write “(xyz)” instead of “depends on
xyz” and the modern notion of a function or mapping y = f(x) was born.

Here is another example: if you say f(x) = x2 −
√

2, it’s just a short for "I have a rule which maps a number
x to a value f(x) which depends on x in the following way: compute x2 −

√
2." It is crucial to understand

from which set X you are allowed to pick the "arguments" x and it is often helpful to state what kinds of
objects f(x) the x–arguments are associated with, i.e., what set Y they will belong to.

Put all this together and you see the motivation for the following definition.

Definition 3.4 (Mappings (functions)). Given are the two arbitrary sets X and Y each of which has
at least one element. We assign to each a ∈ X exactly one element y = f(a) ∈ Y . Such an association
f(·) is called a function or mapping from X into Y . The set X is called the domain or preimage
and Y is called the target or image set or codomain of the mapping f(·). Domain elements x ∈ X
are called or independent variables or argument and f(x) ∈ Y is called the function value of x.
The subset

f(X) := {y ∈ Y : y = f(x) for some x ∈ X}
5 If you do not know about the different kinds of numbers, review the section ”Numbers” on p.6. To get by, it is

enough that you know that we call positive integers {1, 2, 3, . . . } ”natural numbers” and we call any kind of number,
including fractions and decimals, ”real numbers”. We write N for the set of all natural numbers and R for the set of all
real numbers.
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of Y is called the range or image of the function f(·). 6

Usually mathematicians simply write f for the function f(·) We shall sometimes follow that con-
vention but ofte include the “(·)” part if it helps you to see more easily in a formula that a function
rather than a simple element is involved. If the names of the sets involved need to be stressed,
mathematicians draw diagrams such as

f : X // Y x � // f(x)

.

They say “f maps X into Y ” and “f maps the domain value x to the function value f(x)”.

Remark 3.3 (Mappings vs. functions). Mathematicians do not always agree 100% on their defini-
tions. The issue of what is called a function and what is called a mapping is subject to debate. Some
mathematicians will call a mapping a function only if its target is a subset of the real numbers 7

but the majority does what I’ll try to adhere to in this document: I use “mapping” and “function”
interchangeably and I’ll talk about real functions rather than just functions if the codomain is part
of R (see (5.1) on p.33).

Definition 3.5 (identity mapping). Given any non–empty set X , we shall use the symbol id for the
identity mapping

id(·) : X // X x � // x

which assigns each element of the domain to itself. If it is necessary to show the name of the set X
to avoid confusion, the notation idX is used.

Definition 3.6 (Surjective, injective, bijective). a. Surjectivity: In general it is not true that f(X) =
Y . But if it is, we call f(·) surjective and we say that f maps X onto Y .

b. Injectivity: For each argument a ∈ X there must be exactly one function value f(a) ∈ f(X).
But it is OK if more than one argument is mapped into one and the same y ∈ f(X). f(·) is
called injective if different arguments x1 6= x2 ∈ X will always be mapped into different values
f(x1) 6= f(x2).

c. Bijectivity: Assume now that the mapping f(·) from X into Y is both injective and surjective.
In that case it is called bijective. In other words, a bijective mapping has the following property:
For each y ∈ Y there exists at least one x ∈ X such that y = f(x) (because f is surjective) but no
more than one such x (because f is injective). In other words, not only does each x in the domain
uniquely determine its corresponding function value y = f(x), but the reverse also is true: Each y
in the codomain uniquely determines an x in the domain that is mapped by f to y.

We write g(y) = x for the mapping that assigns to any y ∈ Y this unique element x ∈ X whose
image f(x) is y. This assignment y 7→ g(y) defines indeed a mapping from Y into X .

It is not hard to see that g(f(x)) = x for all x ∈ X and f(g(y)) = y for all y ∈ Y . We call g(·) the
inverse mapping or inverse function of f(·) and write f−1(·) .

Many more properties of mappings will be discussed later. Now we shall look at families, sequences and more
some additional properties of sets.

6 We distinguish the image set (codomain) Y of f(·) from its image (range) f(X).
7 (or if it is a subset of the complex numbers, but we won’t discuss complex numbers in this document)
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3.2.3 Sequences, families and functions as families

We can turn any set into a "family" by tagging each of its members with an "index". As an example, look at
this tagged version of S2 from example 3.1 on p. 9:

F = (a1, e1, e2, i1, i2, i3, o1, o2, o3, o4, uA, uB, uC , uD, uE)

I chose on purpose not to tag the five “u-vowels” with numbers 1, 2, 3, 4, 5 but rather with letters “A,B,C,D,E”
just to drive home the point that the nature of the index does not matter. Only the ability to distinguish any
two members of the collection by their index does.

Definition 3.7 (Indexed families and sequences). An indexed collection is called an indexed family
or simply a family. In all cases of interest to us such a collection is indexed through the elements
of a set which we call the index set of the family. If the name of the index set is J, then we can use
the notation

(xi)i∈J .

A sequence (xj) is nothing but a family of things xj which are indexed by integers. Usually
those integers are the natural numbers N = {1, 2, 3, 4, . . . } or the non-negative integers N0 =
{0, 1, 2, 3, . . . }

Sequences are easier understood than families and you probably have been taught about them already. Here
are two examples of sequences:

Example 3.2 (Oscillating sequence). xj := (−1)j (j ∈ N0)
Try to understand why this is the sequence

x0 = 1, x2 = −1, x2 = 1, x3 = −1, x4 = 1, x5 = −1, . . .

Example 3.3 (Series (summation sequence) ). sk := 1 + 2 + . . .+ k (k = 1, 2, 3, . . . )

s1 =1, s2 = 1 + 1/2 = 2− 1/2, s3 = 1 + 1/2 + 1/4 = 2− 1/4, . . . ,

sk =1 + 1/2 + . . .+ 2k−1 = 2− 2k−1; s = 1 + 1/2 + 1/4 + 1/8+, . . . “infinite sum”.

You obtain sk+1 from sk = 2−2k−1 by cutting the difference 2k−1 to the number 2 in half (that would
be 2k) and adding that to sk. It is intuitively obvious that the infinite sum s adds up to 2. Such an
infinite sum is called a series. The precise definition of a series will be given later.

Note 3.1. This is something you should remember: the name of the index variable does not matter
as long as it is applied consistently. It does not matter whether you write (xj)j∈J or (xn)n∈J or
(xβ)β∈J .

Note 3.2. There is a subtle difference between sequences and families.

a. Sequences:

Let Y be a set that contains all indexed items yj of a sequence (yj)j∈N0 . We can always create such
a Y by defining Y := {yj : j ≥ 0}.

12



We can transport the natural left-to-right ordering
0, 1, 2, 3 . . .

to the indexed family
y0, y1, y2, y3 . . .

which allows us to reconstruct the assignment
0 7→ y0, 1 7→ y1, 2 7→ y2, 3 7→ y3 . . . .

In other words, the sequence y0, y1, y2, y3 . . . contains just as much information as the more com-
plicated sequence of elements of N0 × Y , (0, y0), (1, y1), (2, y2), (3, y3) . . . . You should be able to
see that this last collection describes a function f : N −→ Y which maps its domain elements j as
follows: f(j) := yj .

b. Families:

Contrast the above with a family (yx)x∈X . In other words, we have a bunch of “y-items” which
are indexed by an index set X which we assume, as usual, to be not empty. There may not be a
natural order on X which would allow to rank any two items x, x̃ ∈ X as x first, x̃ second, or vice
versa. Such would be, for example, the case for two-dimensional space X = R2 (which is bigger:
(3, 5)or(5, 3))? We can no longer infer which x0 was the index for a given yx, say, yx = 129. To do so
we need to pair up the index values with the y items they are indexing:

If we replace the original family (yx)x∈X with the new one.
(
(x, yx)

)
x∈X then this new family com-

pletely and uniquely describes the function f : X −→ Y which maps its domain elements x as
follows: f(x) := yx.

We express this yet another way: any function f : X −→ Y can be written equivalently as the family(
(x, f(x))

)
x∈X . This expression in turn is equivalent to the set Γf := Γ(f) := {(x, f(x) : x ∈ X}

We note that there is no issue with the fact that families may contain duplicates whereas sets may
not: Even if two items x, x̃ ∈ X may to the same y ∈ Y , the two pairs (x, f(x)) and (x̃, f(x̃) are
considered different because their left sides do not match.

We have laid the groundwork for the following definition.

Definition 3.8 (Mappings as graphs). Given are the two arbitrary sets X and Y each of which has
at least one element and a function f : X −→ Y . Then Γf := Γ(f) := {(x, f(x)) : x ∈ X} is called
the graph of the function f .

Proposition 3.3. The following three definitions of a function f : X −→ Y are equivalent:

a. assigning to each a ∈ X exactly one element y = f(a) ∈ Y (see def. 3.4), p. 10
b. f is defined by the family

(
(x, f(x))

)
x∈X

c. f is defined by its graph Γf := Γ(f) := {(x, f(x)) : x ∈ X}

Proof: contained in note 3.1 above. �

There will be a lot more on sequences and series (sequences of sums) in later chapters, but we need to develop
more concepts, such as convergence, to continue with this subject. Now let’s get back to sets.
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3.3 Basic set operations and Cartesian products

Definition 3.9 (empty set). ∅ or {} denotes the empty set. It is the one set that does not contain any
elements.

Definition 3.10 (subsets and supersets). We say that a set A is a subset of the set B and we write
A ⊆ B if any element of A also belongs to B. Equivalently we say that B is a superset of the set A
and we write B ⊇ A . We also say that B includes A or A is included by B. Note that A ⊆ A and
∅ ⊆ A is true for any set A.

If A 6= B, i.e., there is at least one x ∈ B such that x /∈ A, we can emphasize that by saying that A is
a strict subset of B. We write “A ( B” or “A ⊂ B”. Alternatively we say that B is a strict superset
of A and we write “B ) A”) or “B ⊃ A”.

Definition 3.11 (unions, intersections and disjoint unions). Given are two arbitrary sets A and B.
No assumption is made that either one is contained in the other or that either one contains any
elements!

The union A ∪ B (pronounced "A union B") is defined as the set of all elements which belong to A
or B or both.

The intersection A ∩ B (pronounced "A intersection B") is defined as the set of all elements which
belong to both A and B.

We callA andB disjoint if A ∩B = ∅. In this case we can also writeA]B (pronounced “A disjoint
union B”) for the union A∪B of disjoint sets. We call a family of sets (Ai)i mutually disjoint if any
two different sets Ai, Aj have intersection Ai ∩Aj = ∅ . In this case we often write A ] B rather
than A ∪B for the union of A and B.

Definition 3.12 (set differences and symmetric differences). Given are two arbitrary sets A and B.
No assumption is made that either one is contained in the other or that either one contains any
elements!

The difference set or set difference A \ B (pronounced "A minus B") is defined as the set of all
elements which belong to A but not to B:

(3.7) A \B := {x ∈ A : x /∈ B}

The symmetric differenceA4B (pronounced "A delta B") is defined as the set of all elements which
belong to either A or B but not to both A and B:

(3.8) A4B := (A ∪B) \ (A ∩B)

Draw some Venn diagrams in which the sets are represented as circles to understand why the following is
true for any sets A, B, X where we assume that A ⊆ X .
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A4B = (A \B) ] (B \A)(3.9a)
A \A = ∅(3.9b)
A4A = ∅(3.9c)
X4A = X \A(3.9d)
A ∪B = (A4B) ∪ (A ∩B)(3.9e)

After this digression about A \ B and A4B we now continue with the set-theoretic notations which are
relevant for this article.

Definition 3.13 (Universal set). Usually there always is a big set Ω that contains everything we are
interested in and we then deal with all kinds of subsets A ⊆ Ω. Such a set is called a “universal”
set.

For example, in this document, we often deal with real numbers and our universal set will then be R.

If there is a universal set, it makes perfect sense to talk about the complement of a set:

Definition 3.14 (Complement of a set). The complement of a set A consists of all elements of Ω

which do not belong to A. We write {A or A{. In other words:

(3.10) A{ := {A := Ω \A = {ω ∈ Ω : x /∈ A}

Remark 3.4 (Complement of empty, all). Note that for any kind of universal set Ω it is true that

Ω{ = ∅, ∅{ = Ω(3.11)

Example 3.4 (Complement of a set relative to the unit interval). Assume we are exclusively dealing
with the unit interval, i.e., Ω = [0, 1] = {x ∈ R : 0 5 x 5 1}. Let a ∈ [0, 1] and δ > 0 and

(3.12) Bδ(a) = {x ∈ [0, 1] : a− δ < x < a+ δ}

the δ–neighborhood 8 of a (with respect to [0, 1] because numbers outside the unit interval are not
considered part of our universe). Then the complement of Bδ(a) is

Bδ(a){ = {x ∈ [0, 1] : x 5 a− δ or x = a+ δ}.

Theorem 3.1 (De Morgan’s Law). Let there be a universal set Ω (see (3.13) on p.15). Then the following
“duality principle” holds for any indexed family (Aα)α∈I of sets:

a) {(
⋃
α

Aα) =
⋂
α

({Aα)

b) {(
⋂
α

Aα) =
⋃
α

({Aα)
(3.13)

To put this in words, the complement of an arbitrary union is the intersection of the complements and the
complement of an arbitrary intersection is the union of the complements.

8 Neighborhoods of a point will be discussed in the chapter on the topology of Rn (see (7.6) on p.66) In short, the
δ–neighborhood of a is the set of all points with distance less than δ from a.
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Generally speaking this leads to the duality principle that states that any true statement involving a family
of subsets of a universal sets can be converted into its “dual” true statement by replacing all subsets by their
complements, all unions by intersections and all intersections by unions.

Proof of De Morgan’s law, formula a:

First we prove that {(
⋃
α
Aα) ⊆

⋂
α

({Aα): Assume that x ∈ {(
⋃
α
Aα). Then x /∈ (

⋃
α
Aα) which is the same

as saying that x does not belong to any of the Aα. That means that x belongs to each {Aα and hence also to
the intersection

⋂
α

({Aα).

Now we prove that the right hand side set of formula a contains the left hand side set. So let x ∈
⋂

({Aα).
Then x belongs to each of the {Aα and hence to none of the Aα. Then it also does not belong to the union of
all the Aα and must therefore belong to the complement {(

⋃
α
Aα). This completes the proof of formula a. The

proof of formula b is not given here because the mechanics are the same. �

Draw the Venn diagrams involving just two setsA1 andA2 for both formulas a and b so that you understand
the visual representation of De Morgan’s law.

Definition 3.15 (Cartesian Product of two sets). The cartesian product of two sets A and B is

A×B := {(a, b) : a ∈ A, b ∈ B}

i.e., it consists of all pairs (a, b) with a ∈ A and b ∈ B.

Two elements (a1, b1) and (a2, b2) are called equal if and only if a1 = a2 and b1 = b2. In this case we
write (a1, b1) = (a2, b2).

It follows from this definition of equality that the pairs (a, b) and (b, a) are different unless a = b. In
other words, the order of a and b is important. We express this by saying that the cartesian product
consists of ordered pairs.

As a shorthand, we abbreviate A2 := A×A.

Example 3.5 (Coordinates in the plane). Here is the most important example of a cartesian product
of two sets. Let A = B = R . Then R× R = R2 = {(x, y) : x, y ∈ R} is the set of pairs of real num-
bers. I am sure you are familiar with what those are: They are just points in the plane, expressed by
their x– and y–coordinates.
Examples are: (1, 0) ∈ R2, (a point on the x–axis) (0, 1) ∈ R2, (a point on the y–axis) (1.234,−

√
2) ∈ R2

Now you should understand why we do not allow two pairs to be equal if we flip the coordinates:
Of course (1, 0) and (0, 1) are different points in the xy–plane!

Remark 3.5 (Empty cartesian products). Note that A×B = ∅ if and only if A = ∅ or B = ∅ or
both are empty.

Remark 3.6 (Associativity of cartesian products). Assume we have three sets A, B and C. We can
then look at

(A×B)× C = {((a, b), c) : a ∈ A, b ∈ B, c ∈ C}
A× (B × C) = {(a, (b, c)) : a ∈ A, b ∈ B, c ∈ C}
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In either case, we are dealing with a triplet of items a, b, c in exactly that order. This means that it
does not matter whether we look at ((a, b), c) ∈ (A×B)× C or (a, (b, c)) ∈ A× (B × C). and we
can simply write

(3.14) A×B × C := (A×B)× C = A× (B × C) associativity

Now we know that the next definition makes sense:

Definition 3.16 (Cartesian Product of three or more sets). The cartesian product of three sets A, B
and C is defined as

A×B × C := {(a, b, c) : a ∈ A, b ∈ B, c ∈ C}

i.e., it consists of all pairs (a, b, c) with a ∈ A, b ∈ B and c ∈ C.

More generally, for N sets X1, X2, X3, . . . , XN , we define the cartesian product as 9

X1 ×X2 ×X3 × . . .×XN := {(x1, x2, . . . , xN ) : xj ∈ Xj for all 1 5 j 5 N}

Two elements (x1, x2, . . . , xN ) and (y1, y2, . . . , yN ) ofX1×X2×X3× . . .×XN are called equal if and
only if xj = yj for all j such that 1 5 j 5 N . In this case we write (x1, x2, . . . , xN ) = (y1, y2, . . . , yN ) .

As a shorthand, we abbreviate XN := X ×X ×+ · · · ×X︸ ︷︷ ︸
N times

.

Example 3.6 (N–dimensional coordinates). Here is the most important example of a cartesian prod-
uct ofN sets. Let X1 = X2 = . . . = XN = R . Then RN = {(x1, x2, . . . , xN ) : xj ∈ R} for 1 5 j 5 N
is the set of points in N–dimensional space. You may not be familiar with what those are unless
N = 2 (see example 3.5 above) or N = 3.
In the 3–dimensional case it is customary to write (x, y, z) rather than (x1, x2, x3) . Each such
triplet of real numbers represents a point in (ordinary 3–dimensional) space and we speak of its
x–coordinate, y–coordinate and z–coordinate.
For the sake of completeness: If N = 1 the item (x) ∈ R1 (where x ∈ R; observe the parentheses
around x) is considered the same as the real number x. In other words, we “identify” R1 with R.
Such a “one–dimensional point” is simply a point on the x–axis.

A short word on vectors and coordinates: For N 5 3 you can visualize the following: Given a point
x on the x–axis or in the plane or in 3–dimensional space, there is a unique arrow that starts at the
point whose coordinates are all zero (the "origin") and ends at the location marked by the point x.
Such an arrow is customarily called a vector.

Because it makes sense in dimensions 1, 2, 3, an N–tuple (x1, x2, . . . , xN ) is also called a vector of
dimension N . You will read more about this in the chapter 6, p.43, on vectors and vector spaces.

This is worth while repeating: We can uniquely identify each x ∈ RN with the corresponding vector:
an arrow that starts in (0, 0, . . . , 0︸ ︷︷ ︸

N times

) and ends in x.

9 If N > 3 there are many ways to group the factors of a cartesian product. For N = 4 there already are 3 times as
many possibilities as for N = 3:

X1 × (X2 ×X3 ×X4), (X1 ×X2)× (X3 ×X4), X1 × (X2 ×X3 ×X4),

An exact proof that we can group the sets with parentheses any way we like is very tedious and will not be given here.
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Now that we have discussed the cartesian product of finitely many sets, we’ll deal with cartesian products of
an entire family of sets (Xi)i∈I .

Definition 3.17 (Cartesian Product of a family of sets). Let I be an arbitrary, non–empty set (the
index set) and let (Xi)i∈I be a family of non–empty sets Xi. The cartesian product of the family
(Xi)i∈I is the set ∏

i∈I
Xi := (

∏
Xi)i∈I := {(xi)i∈I : xi ∈ Xi ∀i ∈ I}

of all familes (xi)i∈I each of whose members xj belongs to the corresponding set Xj . The "
∏

" is the
greek “upper case” letter “Pi” (whose lower case incarnation “π” you are probably more familiar
with). As far as I know, it was chosen because it has the same starting “p” sound as the word
“product” (as in cartesian product).

Two elements (xi)i∈I and (yk)k∈I of
∏
i∈I

Xi are called equal if and only if xi = yi for all i ∈ I . In this

case we write (xi)i∈I = (yk)k∈I .

As a shorthand, if all sets Xi are equal to one and the same set X , we abbreviate XI :=
∏
i∈I

X .

It turns out that the very last remark in the preceding definitions fits in very nicely with the next chapter on
mappings because the elements (yx)x∈X of the cartesian product Y X are nothing but mappings 10

y(·) : X → Y . But before we get there, we take a quick look at countably infinite sets.

3.4 Countable sets

This brief chapter is not very precise in that we do not talk about an axiomatic approach to finite sets and
countably infinite sets. You can find that in ch.13 of [1] (Beck/Geoghegan).

Here are the definitions but they won’t be needed in this document.

Everyone understands what a finite set is: It’s a set with a finite number of elements:

Definition 3.18 (Finite sets). Let n ∈ N. we say that a set X has cardinality n and we write
card(X) := |X| := n if there is a bijective mapping between X and the set [n] := {1, 2, . . . , n}We
call such sets finite .

In other words, a set X of cardinality n is one whose elements can be enumerated as x1, x2, . . . , xn:
The cardinality of a finite set is simply the number of elements it contains.

We define the empty set ∅ to be finite and set card(∅) := 0.

You may be surprised to hear this but there are ways to classify the degree of infinity when looking at infinite
sets.

10 Mappings or functions were briefly discussed already in paragraph ?? on p.??. Families being functions in disguise
explains why, contrary to sets, an item can be listed more often than once (in fact, infinitely often): you keep track of the
index i of an item xi.

18



The “smallest degree of infinity” is found in sets that can be compared, in a sense, to the set N of all natural
numbers. Look back to definition (3.2) on the principle of complete induction. It is based on the property of N
that there is a starting point a1 = 1 and from there you can progress in a sequence

a2 = 2; a3 = 3; a4 = 4; . . . ak = k; ak+1 = k + 1; . . .

in which no two elements aj , ak are the same for different j and k. We have a special name for inifinite sets
whose elements can be arranged into a sequence of that nature.

Definition 3.19 (Countable and countably infinite sets). Let X an arbitrary set such that there is a
bijection f : N −→ X . This means that all of the elements of X can be arranged in a sequence

X = {x1 = f(1), x2 = f(2), x3 = f(3), . . . }.

which is infinite, i.e., we rule out the case of sets with finitely many members. X is called a count-
ably infinite set. We call a set that is either finite or countably infinite a countable set. and we
also say that X is countable.

A set that is neither finite nor countably infinite is called uncountable or not countable

The proofs given in the remainder of this brief chapter on cardinality are not precise as we do not try to
establish, for example in the first proof below, that for any subset B of a countable set there either exists an
n ∈ N and a bijection from B to [n] or there exists a bijection between B and N. You may be surprised to hear
that even the fact that there is no bijection between [m] = {1, 2, . . .m} and [n] = {1, 2, . . . n} for m 6= n
needs a proof that is not entirely trivial.

Theorem 3.2 (Subsets of countable sets are countable). Any subset of a countable set is countable.

Proof: It is obvious that any subset of a finite set is finite. So we only need to deal with the case where we take
a subset B of a countably infinite set A. Because A is countably infinite, we can arrange its elements into a
sequence

A = {a1, a2, a3, . . . }

where j1 = min{j = 1 : aj1 ∈ B We walk along that sequence and set

b1 := aj1 where j1 = min{j = 1 : aj1 ∈ B},
b2 := aj2 where j2 = min{j > j1 : aj2 ∈ B},
b3 := aj3 where j3 = min{j > j2 : aj3 ∈ B}, . . .

. . .

i.e., bj is element number j of the subsetB. The sequence (bj) contains exactly all elements ofB which means
that this set is either finite (in case there is an n0 ∈ N such that bn0 is the last element of that sequence) or it
is countably infinite in case that there are infinitely many bj . �

The following proposition is proved again more exactly in a later chapter (see thm.4.1 on p.31)

Theorem 3.3 (Countable unions of countable set). The union of countably many countable sets is count-
able.
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Proof: In the finite case let the sets be
A1, A2, A3, . . . , AN .

In the countable case let the sets be

A1, A2, A3, . . . , An, An+1, . . .

In either case we can assume that the sets are mutually disjoint, i.e., any two different sets Ai, Aj have
intersection Ai ∩Aj = ∅ (see definition (3.11) on p.14). This is just another way of saying that no two sets
have any elements in common. The reason we may assume mutual disjointness is that if we substitute

B1 := A1; B2 := A2 \B1; B3 := A3 \B2; . . .

then ⋃
j∈N

Aj =
⋃
j∈N

Bj

(why?) and the Bj are mutually disjoint. So let us assume the Aj are mutually disjoint. We write the
elements of each set Aj as aj1, aj2, aj3, . . . .

A.A.A. Let us first assume that none of those sets is finite. We start the elements of each Aj in a separate row and
obtain
a11 // a12

||

a13 // a14

||

. . .

a21

��

a22

<<

a23

||

a24 . . .

a31

<<

a32

||

a33 a34 . . .

a41 a42 a43 a44 . . .

. . . . . . . . . . . . . . .

Now we create a new sequence bn by following the arrows from the start at a11. We obtain

b1 = a11; b2 = a12; b3 = a21; b4 = a31; . . .

You can see that this sequence manages to collect all elements aij in that infinite two–dimensional grid and
it follows that the union of the sets Aj is countable.

B.B.B. How do we modify this proof if some or all of the Ai are finite? We proceed as follows: If the predeces-
sor Ai−1 is finite with Ni−1 elements, we stick the elements aij to the right of the last element ai−1,Ni−1 .
Otherwise they start their own row. If Ai itself is finite with Ni elements, we stick the elements ai+1,j to the
right of the last element ai,Ni . Otherwise they start their own row . . .

B.1.B.1.B.1. If an infinite number of sets has an infinite number of elements, then we have again a grid that is infinite
in both horizontal and vertical directions and you create the “diagonal sequence” bj just as before: Start off
with the top-left element.Go one step to the right. Down–left until you hit the first column. Then down one
step. Then up–right until you hit the first row. Then one step to the right. Down–left until you hit the first
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column. Then down one step. Then up–right until you hit the first row. Then one step to the right. Down–left
until you hit the first column. Then down one step. Then up–right until . . . I’m sure you get the picture.

B.2.B.2.B.2. Otherwise, if only a finite number of sets has an infinite number of elements, then we have a grid that
is infinite in only the horizontal direction. You create the “diagonal sequence” bj almost as before. The
exception: if you hit the bottom row, then must go one to the right rather than one down. Afterward you
march again up–right until you hit the first column . . .
�

Corollary 3.1 (The rational numbers are countable).

Proof: Assume we can show that the set Q ∩ [0, 1[= {q ∈ Q : 0 5 q < 1 is countable. Then the set Q ∩ [z, z + 1[= {q ∈ Q : z 5 q < z + 1
is countable for any integer z ∈ Z. The reason: once we find a sequence bj that runs through all el-
ements of Q ∩ [0, 1[, then the sequence ej := bj + z runs through all elements of Q ∩ [z, z + 1[. But
Z = N ∪ {0} ∪ {−k : k ∈ N is countable as a union of only three countable sets. Abbreviate Qz := Q ∩ [z, z + 1[.
Can you see that Q =

⋃
z∈Z

Qz? Good for you, because now that you know that Z is countable, you under-

stand that Q can be written as a countable union of setsQz each of which is countable. So we are done with the
proof . . . except we still must prove that the set Q0 of all rational numbers between zero and one is countable.

We do that now. Let A1 := 0. Let

A2 :={z ∈ Q1 : z has denominator 2} = {0

2
,
1

2
}

A3 :={z ∈ Q1 : z has denominator 3} = {0

3
,
1

3
,
2

3
}

A4 :={z ∈ Q1 : z has denominator 4} = {0

4
,
1

4
,
2

4
,
3

4
}

. . .

An :={z ∈ Q1 : z has denominator n} = { 0

n
,

1

n
,

2

n
, . . . ,

n− 1

n
}

. . .

Then each set is finite and Q1 =
⋃
k∈N

Ak is a countable union of countably many finite sets and hence,

according to the previous theorem (3.3), countable. We are finished with the proof. �

Theorem 3.4 (The real numbers are uncountable). The real numbers are uncountable: There is no se-
quence (rn)n∈N such that {rn : n ∈ N} = R.

Proof:

LATER �
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4 Sets and Functions, direct and indirect images (Study this!)

4.1 Basic Properties of Sets

The following trivial lemma (a lemma is a “proof subroutine” which is not remarkable on its own but very
useful as a reference for other proofs) is useful if you need to prove statements of the form A ⊆ B or A = B
for sets A and B. It is a means to simplity the proofs of [1] B/G (Beck/Geoghegan), project 5.12. You must
reference this lemma as the “inclusion lemma” when you use it in your homework or exams. Be sure to
understand what it means if you choose J = {1, 2} (draw one or two Venn diagrams).

Lemma 4.1 (Inclusion lemma). Let J be an arbitrary, non-empty index set and let Xj , Y, Zj ,W (j ∈ J)
be sets such that Xj ⊆ Y ⊆ Zj ⊆W for all j ∈ J . Then

(4.1)
⋂
j∈J

Xj ⊆ Y ⊆
⋃
j∈J

Zj ⊆W.

Proof:
Let x ∈

⋂
j∈J

Xj . Then x ∈ Xj for all j ∈ J . But then x ∈ Y for all j ∈ J because Xj ⊆ Y for all j ∈ J .

But x ∈ Y for all j ∈ J implies that x ∈ Y and the left side inclusion of the lemma is shown.

Now assume x ∈ Y . We note that Y ⊆ Zj for all j ∈ J implies x ∈ Zj for all j ∈ J . But then certainly
x ∈ Zj for at least one j ∈ J (did you notice that we needed to assume J 6= ∅?) It follows that x ∈

⋃
j∈J

Zj

and the middle inclusion of the lemma is shown.

Finally, assume x ∈
⋃
j∈J

Zj It follows from the definitions of unions that there exists at least one j0 ∈ J such

that x ∈ Zj0 . But then x ∈ W as W contains Zj0 . x is an arbitrary element of
⋃
j∈J

Zj and if follows that⋃
j∈J

Zj ⊆W . This finishes the proof of the rightmost inclusion. �

4.2 Direct images and indirect images (preimages) of a function

Here are the references for the material below. I took them from a Math 330 course which was held some time
ago by Prof. Mazur. You should recognize them from your home page and syllabus:

[6] Author unknown: Introduction to Functions Ch.2. (mazur-330-func-1.pdf)
[7] Author unknown: Properties of Functions Ch.2. (mazur-330-func-2.pdf)
[8] Author unknown: Ch.1: Introduction to Sets and Functions (mazur-330-sets-1.pdf)
[9] Author unknown: Ch.4: Applications of Methods of Proof (mazur-330-sets-2.pdf)
[3] Pete L. Clark: Lecture notes on relations and functions (mazur-330-relat-func.pdf)

Definition 4.1. Let X,Y be two non-empty sets and f : X → Y be an arbitrary function with
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domain X and codomain Y . Let A ⊆ X and B ⊆ Y . Let

1) f(A) = {f(x) : x ∈ A}(4.2)

2) f−1(B) = {x ∈ X : f(x) ∈ B}(4.3)

We call f(A) the direct image of A under f and we call We call f−1(B) the indirect image or
preimage of B under f

Notational conveniences:

If we have a set that is written as {. . . } then we may write f{. . . } instead of f({. . . }) and f−1{. . . } instead
of f−1({. . . }). Specifically for x ∈ X and y ∈ Y we get f−1{x} and f−1{y}. Many mathematicians will
write f−1(y) instead of f−1{y} but this writer sees no advantages doing so whatsover. There seemingly are
no savings with respect to time or space for writing that alternate form but we are confounding two entirely
separate items: a subset f−1{y} of X v.s. the function value f−1(y) of y ∈ Y which is an elementof X . We
can talk about the latter only in case that the inverse function f−1 of f exists.

In measure theory and probability theory the following notation is also very common: {f ∈ B} rather than
f−1(B) and {f = y} rather than f−1{y}

Let a < b ∈ R. We write {a 5 f 5 b} rather than f−1([a, b]), {a < f < b} rather than f−1(]a, b[),
{a 5 f < b} rather than f−1([a, b[) and {a < f 5 b} rather than f−1(]a, b]), {f 5 b} rather than
f−1(]−∞, b]), etc.

Proposition 4.1. Some simple properties:

f(∅) = f−1(∅) = 0(4.4)
A1 ⊆ A2 ⊆ X ⇒ f(A1) ⊆ f(A2)(4.5)

B1 ⊆ B2 ⊆ Y ⇒ f−1(B1) ⊆ f−1(B2)(4.6)
x ∈ X ⇒ f({x}) = {f(x)}(4.7)

f(X) = Y ⇐⇒ f is surjective(4.8)

f−1(Y ) = X always!(4.9)

Proof of all properties is immediate. �

Proposition 4.2 (f−1 is compatible with all basic set ops). In the following we assume that J is an
arbitrary index set, and that B ⊆ Y , Bj ⊆ Y for all j.
The following all are true:

f−1(
⋂
j∈J

Bj) =
⋂
j∈J

f−1(Bj)(4.10)

f−1(
⋃
j∈J

Bj) =
⋃
j∈J

f−1(Bj)(4.11)

f−1(B{) = f−1(B){(4.12)

f−1(B1 \B2) = f−1(B1) \ f−1(B2)(4.13)
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Proof of (4.10): Let x ∈ X . Then

x ∈ f−1(
⋂
j∈J

Bj) ⇐⇒ f(x) ∈
⋂
j∈J

Bj (def preimage)

⇐⇒ ∀j f(x) ∈ Bj (def ∩)

⇐⇒ ∀j x ∈ f−1(Bj) (def preimage)

⇐⇒ x ∈
⋂
j∈J

f−1(Bj) (def ∩)

(4.14)

Proof of (4.11): Let x ∈ X . Then

x ∈ f−1(
⋃
j∈J

Bj) ⇐⇒ f(x) ∈
⋃
j∈J

Bj (def preimage)

⇐⇒ ∃j0 : f(x) ∈ Bj0 (def ∪)

⇐⇒ ∃j0 : x ∈ f−1(Bj0) (def preimage)

⇐⇒ x ∈
⋃
j∈J

f−1(Bj) (def ∪)

(4.15)

Proof of (4.12): Let x ∈ X . Then

x ∈ f−1(B{) ⇐⇒ f(x) ∈ B{ (def preimage)
⇐⇒ f(x) /∈ B (def (·){)
⇐⇒ x /∈ f−1(B) (def preimage)

⇐⇒ x ∈ f−1(B){ (·){)

(4.16)

Proof of (4.13): Let x ∈ X . Then

x ∈ f−1(B1 \B2) ⇐⇒ x ∈ f−1(B1 ∩B{2) (def \)

⇐⇒ x ∈ f−1(B1) ∩ f−1(B{2) (see (4.10)

⇐⇒ x ∈ f−1(B1) ∩ f−1(B2)
{ (see (4.12)

⇐⇒ x ∈ f−1(B1) \ f−1(B2) (def \)

(4.17)

�

Proposition 4.3 (Properties of the direct image). In the following we assume that J is an arbitrary index
set, and that A ⊆ X , Aj ⊆ X for all j.
The following all are true:

f(
⋂
j∈J

Aj) ⊆
⋂
j∈J

f(Aj)(4.18)

f(
⋃
j∈J

Aj) =
⋃
j∈J

f(Aj)(4.19)
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Proof of (4.18): This follows from the monotonicity of the direct image (see 4.5):⋂
j∈J

Aj ⊆ Ai ∀i ∈ J ⇒ f(
⋂
j∈J

Aj) ⊆ f(Ai) ∀i ∈ J (see 4.5)

⇒ f(
⋂
j∈J

Aj) ⊆
⋂
i∈J

f(Ai) (def ∩)

First proof of (4.19)) - “Expert proof”:

y ∈ f(
⋃
j∈J

Aj) ⇐⇒ ∃ x ∈ X : f(x) = y and x ∈
⋃
j∈J

Aj (def f(A))(4.20)

⇐⇒ ∃ x ∈ X and j0 ∈ J : f(x) = y and x ∈ Aj0 (def ∪)(4.21)
⇐⇒ ∃ x ∈ X and j0 ∈ J : f(x) = y and f(x) ∈ f(Aj0) (def4.2)(4.22)
⇐⇒ ∃ j0 ∈ J : y ∈ f(Aj0) (def f(A))(4.23)

⇐⇒ y ∈
⋃
j∈J

f(Aj) (def ∪)(4.24)

Alternate proof of (4.19)) - Proving each inclusion separately. Unless you have a lot of practice reading and
writing proofs whose subject is the equality of two sets you should write your proof the following way:

A. Proof of “⊆”:

y ∈ f(
⋃
j∈J

Aj) ⇒ ∃ x ∈ X : f(x) = y and x ∈
⋃
j∈J

Aj (def f(A))(4.25)

⇒ ∃ j0 ∈ J : f(x) = y and x ∈ Aj0 (def ∪)(4.26)
⇒ y = f(x) ∈ f(Aj0)(def f(A))(4.27)

⇒ y ∈
⋃
j∈J

f(Aj) (def ∪)(4.28)

B. Proof of “⊇”:

This is a trivial consequence from the monotonicity of A 7→ f(A):

Ai ⊆
⋃
j∈J

Aj ∀ i ∈ J ⇒ f(Ai) ⊆ f
( ⋃
j∈J

Aj
)
∀ i ∈ J(4.29)

⇒
⋃
i∈J

f(Ai) ⊆ f
( ⋃
j∈J

Aj
)
∀ i ∈ J (def ∪)(4.30)

�

You see that the “elementary” proof is barely longer than the first one, but it is so much easier to understand!

Remark 4.1. In general you will not have equality in (4.18). Counterexample: f(x) = x2 with
domain R: Let A1; =]−∞, 0] and A2; = [0,∞[. Then A1 ∩A2 = {0}, hence f(A1 ∩A2) = f({0}) =
{0}. On the other hand, f(A1) = f(A2) = [0,∞], hence f(A1) ∩ f(A2) = [0,∞] which is clearly
bigger than {0}. �
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Proposition 4.4 (Preimage of function compositions). Let X,Y, Z be a arbitrary, non–empty sets. Let
f : X → Y and g : Y → Z and let W ⊆ Z. Then

(g ◦ f)−1 = f−1 ◦ g−1, i.e., (g ◦ f)−1(W ) = f−1
(
g−1(W )

)
for all W ⊆ Z.

Proof:
a. “⊆”: Let W ⊆ Z and x ∈ (g ◦ f)−1(W ). Then (g ◦ f)(x) = g

(
f(x)

)
∈ W , hence f(x) ∈ g−1(W ). But

then x ∈ f−1
(
g−1(W )

)
. This proves “⊆)”.

b. “⊇”: Let W ⊆ Z and x ∈ f−1
(
g−1(W )

)
. Then f(x) ∈ g−1(W ), hence h(x) = g(f(x)) ∈ W , hence

x ∈ h−1(W ) = (g ◦ f)−1(W ). This proves “⊇)”. �

Proposition 4.5 (Indirect image and fibers of f ). We define on X the equivalence relation

x1 ∼ x2 ⇐⇒ f(x1) = f(x2), i.e.,(4.31)
[x]f = {x̄ ∈ X : f(x̄) = f(x)}, are the equivalence classes.(4.32)

Then the following is true:

x ∈X ⇒
[

[x]f = {x̂ ∈ X : f(x̂ = f(x))} = f−1{f(x)}
]

(4.33)

A ⊆X ⇒ f−1(f(A)) =
⋃
a∈A

[a]f .(4.34)

Proof of (4.33): The equation on the left is nothing but the definition of the equivalence classes generated by
an equivalence relation, the equation on the right follows from the definition of preimages.

Proof of (4.34):

As f(A) = f(
⋃
x∈A{x}) =

⋃
x∈A{f(x)} (see 4.19), it follows that

f−1(f(A)) = f−1(
⋃
x∈A
{f(x)})(4.35)

=
⋃
x∈A

f−1{f(x)} (see 4.11)(4.36)

=
⋃
x∈A

[x]f (see 4.33)(4.37)

�

Corollary 4.1.

A ∈X ⇒ f−1(f(A)) ⊇ A.(4.38)

Proof: It follows from x ∼ x for all x ∈ X that x ∈ [x]f , i.e., {x} ∈ [x]f for all x ∈ X . But then

A =
⋃
x∈A
{x} ⊆

⋃
x∈A

[x]f = f−1(f(A))(4.39)

where the last equation holds because of (4.34). �
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Proposition 4.6.

B ⊂ Y ⇒ f(f−1(B)) = B ∩ f(X).(4.40)

Proof of “⊆”:

Let y ∈ f(f−1(B)). There exists x0 ∈ f−1(B) such that f(x0) = y (def direct image). We have
a) x0 ∈ f−1(B) ⇒ y = f(x0) ∈ B (def. of preimage)
b) Of course x0 ∈ X . Hence y = f(x0) ∈ f(X). a and b together imply y ∈ B ∩ f(X).

Proof of “⊇”:

Let y ∈ f(X) and y ∈ B. We must prove that y ∈ f(f−1(B)). Because y ∈ f(X) there exists x0 ∈ X such
that y = f(x0). Because y = f(x0) ∈ B we conclude that x0 ∈ f−1(B) (def preimage). Let us abbreviate
A := f−1(B). Now it easy to see that

x0 ∈ f−1(B) = A ⇒ y = f(x0) ∈ f(f−1(B)).(4.41)

We have shown that if y ∈ f(X) and y ∈ B then y ∈ f(f−1(B)). The proof is completed. �

Remark 4.2. Be sure to understand how the assumption y ∈ f(X) was used.

Corollary 4.2.

B ∈Y ⇒ f(f−1(B)) ⊆ B.(4.42)

Trivial as f(f−1(B)) = B ∩ f(X) ⊆ B. �

27



4.3 Appendix: Cardinality - Alternate approach to Beck/Geoghegan

At the beginning of this chapter we look at two lemmata that let you replace bijective and surjective functions
with more suitable ones that inherit bijectivity or surjectivity. This will come in handy when we prove
propositions concerning cardinality.

The first lemma shows how to preserve bijectivity if two function values need to be switched around.

Lemma 4.2. Let X,Y 6= ∅, let f : X −→ Y be bijective and let x1, x2 ∈ X . Let

(4.43) g(x) :=


f(x2) ifx = x1,

f(x1) ifx = x2,

f(x) ifx 6= x1, x2.

(In other words, we swap two function arguments). Then g : X −→ Y also is bijective.

Proof: Let y1 := f(x1, y2) := f(x2). Let f−1 : Y −→ X be the inverse function of f
and define G : Y −→ X as follows

(4.44) G(y) :=


f−1(y2) if y = y1,

f−1(y1) if y = y2,

f−1(y) if y 6= y1, y2.

We shall show that G satisfies G ◦ g = idX and g ◦ G = idY , i.e., g has G as its inverse. This suffices to
prove bijectivity of g.

y 6= y1, y2 ⇒ g ◦G(y) = g(f−1(y)) = f(f−1(y)) = y as f−1(y) 6= x1, x2,

g ◦G(y1) = g(f−1(y2)) = g(x2) = f(x1) = y1 as f−1(y2) = x2,

g ◦G(y2) = g(f−1(y1)) = g(x1) = f(x2) = y2 as f−1(y1) = x1.

Further,

x 6= x1, x2 ⇒ G ◦ g(x) = G(f(x)) = f−1f(x)) = y as f(x) 6= y1, y2,

G ◦ g(x1) = G(f(x2)) = G(y2) = f−1(y1)) = x1 as f(x1) = y1,

G ◦ g(x2) = G(f(x1)) = G(y1) = f−1(y2)) = x2 as f(x2) = y2.

We have proved that g has an inverse, the function G. �

Note that the validity of G ◦ g = idX and g ◦ G = idY is obvious without the use of any formalism: g
differs from f only in that it switches around the function values f(x1) and f(x2). and G differs from f−1

only in that this switch is reverted.

A more general version of the above shows how to preserve surjectivity if two function values need to be
switched around.

Lemma 4.3. LetX,Y 6= ∅ and assume that Y contains at least two elements. Let f : X −→ Y be surjective
and let y1, y2 ∈ Y . Let A1 := f−1{y1}, A2 := f−1{y2}, and B := X \ (A1 ∪A2). Let

(4.45) g(x) :=


y2 ifx ∈ A1,

y1 ifx ∈ A2,

f(x) ifx ∈ B.
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(In other words, everything that f maps to y1 is now mapped to y2 and everything that f maps to y2 is now
mapped to y1.) Then g : X −→ Y also is surjective.

Proof:

We notice that A1, A2, B partition X into three mutually exclusive parts: X = B
⊎
A1
⊎
A2 and that the

sets f(A1) = {y1}, f(A2) = {y2}, f(B) = Y \ {y1, y2} partition Y into Y = f(B)
⊎
f(A1)

⊎
f(A2).

(Do you see why f(B) = Y \ {y1, y2}?) B and hence f(B) might be empty but none of the other four sets
are. It follows that there is indeed a function value g(x) for each x ∈ X and there is exactly one such value,
i.e., g in fact defines a mapping from X to Y . The surjectivity of g follows from that of f and the fact that

(4.46) Y = f(B) ∪ f(A1) ∪ f(A2) = g(B) ∪ g(A2) ∪ g(A1)

(see (4.19) on p. 24 in prop. 4.3 (Properties of the direct image)). �

The definitions of finite, countable, countably infinite and uncountable sets were given at the beginning of ch.
3.4: “Countable sets” on p. 18.

Definition 4.2 (cardinality comparisons). Given two arbitrary sets X and Y we say cardinality of
X 5 cardinality of Y and we write card(X) 5 card(Y ) if there is an injective mapping f : X −→ Y .

We say X,Y have same cardinality and we write card(X) = card(Y ) if both card(X) 5 card(Y )
and card(Y ) 5 card(X), i.e., there is a bijective mapping f : X

∼−→ Y .

Finally we say cardinality of X < cardinality of Y and we write card(X) < card(Y ) if both
card(X) 5 card(Y ) and card(Y ) = card(X), i.e., there is an injective mapping but not a bijection
f : X −→ Y .

Proposition 4.7. Let m,n ∈ N. Let ∅ 6= A ⊆ [m]. If m < n then there is no surjection from A to [n].

Proof by induction on n:

Base case: Let n = 2. This implies m = 1 and A = [1] (no other non-empty subset of [1]). If there was
surjective f : A −→ [2] then either f(1) = 1 in which case 2 /∈ f(A) or f(1) = 2 in which case 1 /∈ f(A).
This proves the base case.

Induction assumption: Fix n ∈ N and assume that for any m̃ < n and non-empty Ã ⊆ [m̃] there is no
surjective f̃ : Ã −→ [n].

We must now prove the following: Let m ∈ N and ∅ 6= A ⊆ [m]. If m < n + 1 then there is no surjection
from A to [n+ 1]. Let us assume contrary to assumption that a surjective f : A −→ [n+ 1] exists.

case 1: n /∈ A: As m < n+ 1 this implies both n, n+ 1 /∈ A, hence A ⊆ [n− 1]. Let Ã := A \ f−1{n+ 1}.
Then Ã ⊆ A ⊆ [n−1] and, as the surjective f “hits” every integer between 1 and n+1 and we only removed
those a ∈ A which map to n + 1, the restriction f̃ of f to Ã still maps to any integer between 1 and n. In
other words, f̃ : Ã −→ [n] is surjective, contradictory to our induction assumption.

case 2: n ∈ A and f(n) = n + 1: As in case 1, let Ã := A \ f−1{n + 1}. Then Ã ⊆ A ⊆ [n − 1]
because n was discarded from A as an element of f−1{n + 1}. Again, the surjective f “hits” every integer
between 1 and n+ 1 and again, we only removed those a ∈ A which map to n+ 1. It follows as in case 1 that
f̃ : Ã −→ [n] is surjective, contradictory to our induction assumption.
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case 3: n ∈ A and f(n) 6= n+ 1: According to lemma 4.7 on p. 29 we can replace f by a surjective function
g which maps n to n+1. This function satisfies the conditions of case 2 above, for which it was already proved
that no surjective mapping from A to [n+ 1] exists. We have reached a contradiction. �

Corollary 4.3 (No bijection from [m] to [n] exists). B/G Thm.13.4: Let m,n ∈ N. If m 6= n then there is
no bijective f : [m]

∼−→ [n].

Proof: We may assume m < n and can now apply prop. 4.7 with A := [m]. �

Corollary 4.4 (Pigeonhole Principle). B/G Prop.13.5: Let m,n ∈ N. If m < n then there is no injective
f : [n] −→ [m].

Proof: Otherwise g would have a (surjective) left inverse g : [m] −→ [n] in contradiction to the preceding
proposition. �

Proposition 4.8 (B/G Prop.13.6, p.122: Subsets of finite sets are finite). Let ∅ 6= B ⊆ A and let A be
finite. Then B is finite.

Proof: Done by induction on the cardinality n of sets:

Base case: n = 1 or n = 2: Proof obvious.

Induction assumption: Assume that all subsets of sets of cardinality less than n are finite.

Now let A be a set of card(A) = n. there is a bijection a(·) : [n] −→ A. Let B ⊆ A.

Case 1: a(n) ∈ B: Let Bn := B \ {a(n)} and An := A \ {a(n)}. Then the restriction of a(·) to [n − 1] is
a bijection [n− 1] −→ An according to B/G prop.13.2. As card(An) = n− 1 and Bn ⊆ An it follows from
the induction assumption that Bn is finite: there exists m ∈ N and a bijection b(·) : [m] −→ Bn. We now
extend b(·) to [m+ 1] by defining b(m+ 1) := a(n). It follows that this extension remains injective and it is
also surjective if we choose as codomain Bn ∪ {a(n)} = B. It follows that B is finite.

Case 2: a(n) /∈ B: We pick an arbitrary b ∈ B. Let j := a−1(b). Clearly j ∈ [n]. Now we modify the
mapping a(·) by switching the function values for j and n. We obtain another bijection f : [n] −→ A (see
lemma 4.2 on p. 28) for which b(n) = a(j) = b ∈ B. We now can apply what was proved in case 1 and
obtain that B is finite. �

Proposition 4.9 (B/G Cor.13.16, p.122). N2 is countable.

Proof: Done by directly specifiying a bijection F : N2 ∼−→ N.

We think of N2 as a matrix with “infinitely many rows and columns”

(1, 1) (1, 2) (1, 3) . . .(4.47)
(2, 1) (2, 2) (2, 3) . . .(4.48)
(3, 1) (3, 2) (3, 3) . . .(4.49)

Let For an integer n = 2 let Dn := {(i, j) ∈ N2 : i + j} be the “n-th diagonal” of N2. It is clear that
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N2 =
⋃
n=2

Dn. We reorganize the elements of N2 into an ordinary sequence (aj)j∈N as follows:

a1 :=(1, 1),(4.50)
a2 :=(1, 2), a3 := (2, 1),(4.51)
a4 :=(1, 3), a5 := (2, 2), a6 := (3, 1),(4.52)
a7 :=(1, 4), a8 := (2, 3), a9 := (3, 2), a10 := (4, 1),(4.53)

. . .(4.54)

In other words, we traverse first D2, then D3, then D4, ... starting for each Dn at the upper right (1, n− 1)

and ending at the lower left (n − 1, 1)). In formal terms: For k ∈ N let sk :=

k∑
j=1

j = k(k + 1)/2. As

card(Dn) = n − 1 and the first element of Dn+1 becomes part of the sequence (aj) after the last element of
Dn was assigned, we obtain

asn−1+j = (j, (n+ 1)− j) (1 5 j < n+ 1)(4.55)

If we interpret the sequence (aj) as a function a(·) : N −→ N2 then we show that is bijective by giving the
inverse g : N2 −→ N:

F (1, 1) = 2,(4.56)

F (i, (n+ 1)− i) = sn−1 + i
(
n = 2, 1 5 i < n+ 1, sk =

k∑
j=1

j =
k(k − 1)

2

)
(4.57)

�

Lemma 4.4. Let A1, A2, A3, . . . be a sequence of sets. Let

B1 := A1; B2 := A2 \A1; B3 := A3 \ (A1 ∪A2); Bn+1 := An+1 \ (A1 ∪A2 ∪ . . . ∪An).

Then the sets Bj are mutually disjoint and

n⋃
j=1

Aj =

n⋃
j=1

Bj (n ∈ N)(4.58)

⋃
j∈N

Aj =
⋃
j∈N

Bj(4.59)

Proof: Left to the reader. �

The following proposition was proved informally before (see thm.3.3 on p.19)

Theorem 4.1 (B/G prop.13.6: Countable unions of countable sets). The union of countably many count-
able sets is countable.

Proof: Let the sets be
A1, A2, A3, . . . and let A :=

⋃
n∈N

Ai.
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We assume that at least one of those sets is not empty: otherwise their union is empty, hence finite, hence
countable and we are done. We may assume, on account of lemma 4.4 that the sets are mutually disjoint, i.e.,
any two different sets Ai, Aj have intersection Ai ∩Aj = ∅ (see definition (3.11) on p.14).

A.A.A. As each of the non-empty Ai is countable, either this set is finite and we have an Ni ∈ N and a bijective
mapping ai(·) : Ai

∼−→ [Ni], or Ai is countably infinite and we have a bijective mapping ai(·) : Ai
∼−→ N.

We now define the mapping f : A −→ N2 as follows: Let a ∈ A. As the Aj are disjoint there is a unique
index i such that a ∈ Ai and, as sets do not contain duplicates of their elements, there is a unique index j such
that a = ai(j). In other words, for any a ∈ A there exists a unique pair (ia, ja) ∈ N2 such that a = aia(ja)
and the assignment a 7→ (ia, ja) defines an injective function f : A −→ N2. But then this same assignment
gives us a bijective function F : A

∼−→ f(A). f(A) is countable as a subset of the countable set N2 and this
proves the theorem as any subset of a countable set is countable (see B/G prop.13.10). �

Corollary 4.5. Let the set X not be countable and let A ⊆ X be countable. Then its complement A{ is not
countable.

Instructor’s Note:
Proof: Left to the reader.

Definition 4.3 (algebraic numbers). Let x ∈ R be the root (zero) of a polynomial with integer coef-
ficients. We call such x an algebraic number and we call any real number that is not algebraic a
transcendental number

Proposition 4.10 (B/G Prop.13.21, p.125: All algebraic numbers are countable). All algebraic numbers
are countable

Proof: Let P be the set of all integer polynomials and Z the set of zeroes for all such polynomials. Let

(4.60) Pn := {polynomials p(x) =
k∑
j=1

ajx
j : aj ∈ Z and − n 5 aj 5 n}.

Then Pn is finite and

(4.61) Zn := {x ∈ R : p(x) = 0 for some p ∈ Pn}

also is finite as a polynomial of degree n has at most n zeroes. �

Here are some trivial consequences of the fact that R is not countable (see thm. 3.4, p.3.4 and B/G Thm.13.22).

Proposition 4.11 (The transcendental numbers are not countable). All transcendental numbers are not
countable.

Proof: the uncountable real numbers are the disjoint union of the countable algebraic numbers with the
transcendentals. �
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5 Real functions (Understand this!)

5.1 Operations on real functions

Definition 5.1 (real functions). If the codomain Y of a mapping
f(·) : X // Y x � // f(x)

is a subset of R, then we call f(·) a real function or real valued function.

Remember that this definition does not exclude the case Y = R because Y ⊆ R is in particular true if both
sets are equal.

Real functions are a pleasure to work with because, given any fixed argument x0, the object f(x0) is just an
ordinary number. In particular you can add, subtract, multiply and divide real functions. Of course, division
by zero is not allowed:

Definition 5.2 (Operations on real functions). Let X an arbitrary non-empty set.
Given are two real functions f(·), g(·) : X → (R) and a real number α. The um f + g, difference
f − g, product fg or f · g, quotient f/g or f

g , and scalar product αf are defined by doing the
operation in question with the numbers f(x) and g(x) for each x ∈ X .

(f + g)(x) := f(x) + g(x)

(f − g)(x) := f(x)− g(x)

(fg)(x) := f(x)g(x)

(f/g)(x) := f(x)/g(x) for all x ∈ X where g(x) 6= 0

(αf)(x) := α · g(x)

(5.1)

Before we list some basic properties of addition and scalar multiplication of functions (the operations that
interest us the most), let us have a quick look at constant functions.

Definition 5.3 (Constant functions). Let a be an ordinary real number. You can think of a as a
function from any non-empty set X to R as follows:

a(·) : X // R x � // a

In other words, the function a(·) assigns to each x ∈ X one and the same value a. We call such a
function a constant function.

The most important constant function is the zero function 0(·) which maps any x ∈ X to the number
zero. We usually just write 0 for this function unless doing so would confuse the reader. Note that
scalar multiplication (αf)(x) = α · g(x) is a special case of multiplying two functions (gf)(x) =
g(x)f(x): Let g(x) = α (constant function α).

We do not need to assume that f(·) is a real function. We call any mapping f from X to Y constant
if its image f(X) ⊆ Y is a singleton, i.e, it consists of exactly one element.

One last definition before we finally get so see some examples:
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Definition 5.4 (Negative function). Let X be an arbitrary, non-empty set and let
f(·) : X // R x � // f(x)

be a real function on X . The function
−f(·) : X // R x � // −f(x)

which assigns to each x ∈ X the value −f(x) is called negative f or minus f . Sometimes we write
−f rather than −f(·).

All those last definitions about sums, products, scalar products, . . . of real functions are very easy to under-
stand if you remember that, for any fixed x ∈ X , you just deal with ordinary numbers!

Example 5.1 (Arithmetic operations on real functions). For simplicity, we set X := R+ = {x ∈ R : x = 0} .
Let

f(·) : R+
// R x � // (x− 1)(x+ 1)

g(·) : R+
// R x � // x− 1

h(·) : R+
// R x � // x+ 1

Then

(f + h)(x) = (x− 1)(x+ 1) + x+ 1 = x2 − 1 + x+ 1 = x(x+ 1) ∀x ∈ R+

(f − g)(x) = (x− 1)(x+ 1)− (x− 1) = x2 − 1− x+ 1 = x(x− 1) ∀x ∈ R+

(gh)(x) = (x− 1)(x+ 1) = f(x) ∀x ∈ R+

(f/h)(x) = (x− 1)(x+ 1)/(x+ 1) = x− 1 = g(x) ∀x ∈ R+

(f/g)(x) = (x− 1)(x+ 1)/(x− 1) = x+ 1 = h(x) ∀x ∈ R+ \ {1}

It is really, really important for you to understand that f/g(·) and h(·) are not the same functions on
R+. Matter of fact, f/g(·) is not defined for all x ∈ R+ because for x = 1 you obtain (1−1)(1+1)

1−1 = 0/0.
The domain of f/g is different from that of h and both functions thus are different.

5.2 Maxima, suprema, limsup ... (Study this!)

Definition 5.5 (Upper and lower bounds, maxima and minima). Let A ⊆ R. Let l, u ∈ R. We call l a
lower bound of A if l 5 a for all a ∈ A. We call u an upper bound of A if u = a for all a ∈ A.

A minimum of A is a lower bound l of A such that l ∈ A. A maximum of A is an upper bound u of
A such that u ∈ A.

The next proposition will show that minimum and maximum are unique if they exist. This makes
it possible to write min(A) or minA for the minimum of A and max(A) or maxA for the maximum
of A.

Proposition 5.1. Let A ⊆ R. If A has a maximum then it is unique. If A has a minimum then it is unique.

Proof for maxima: Let u1 and u2 be two maxima of A: both are upper bounds of A and both belong to A. As
u1 is an upper bound, it follows that a 5 u1 for all a ∈ A. Hence u2 5 u1. As u2 is an upper bound, it
follows that u1 5 u2 and we have equality u1 = u2. The proof for minima is similar. �
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Definition 5.6. Given A ⊆ R we define

Alowb := {l ∈ R : l is lower bound of A}
Auppb := {u ∈ R : u is upper bound of A}.

(5.2)

We say that A is bounded above if Auppb 6= ∅ and we say that A is bounded below if Alowb 6= ∅.

Axiom 5.1 (R is complete). (see [1] B/G axiom 8.52, p.83).
Let A ⊆ R.
If Auppb is not empty then Auppb has a minimum.

Remark 5.1. Alowb and/or Auppb may be empty: A = R, A = R>0, A = R<0,

Definition 5.7. Let A ⊆ R. If Auppb is not empty then min(Auppb) exists by axiom 5.1 and it is unique
by prop. 5.5. We write sup(A) or l.u.b.(A) for min(Auppb) and call it the supremum or least upper
bound of A.

We shall see in cor.5.1 that, if Alowb is not empty, then max(Alowb) exists and it is unique by prop. 5.5.
We write inf(A) or g.l.b.(A) for max(Alowb) and call it the infimum or greatest lower bound of A.

Proposition 5.2 (Duality of upper and lower bounds, min and max, inf and sup). Let A ⊆ R and
x ∈ R. Then the following is true for −x and −A = {−y : y ∈ A}:

−x is a lower bound of A ⇐⇒ x is an upper bound of -A and vice versa,
−x ∈ Auppb ⇐⇒ x ∈ (−A)lowb and vice versa,

−x = sup(A) ⇐⇒ x = inf(−A) and vice versa,
−x = max(A) ⇐⇒ x = min(−A) and vice versa.

(5.3)

Proof: A simple consequence of

−x ≤ y ⇐⇒ x = −y and − x = y ⇐⇒ x 5 −y. �

Corollary 5.1. Let A ⊆ R. If A has lower bounds then inf(A) exists.

Proof: According to the duality proposition prop.5.2, if A has lower bounds then (−A) has upper bounds. It
follows from the completeness axiom that sup(−A) exists. We apply once more prop.5.2 to prove that inf(A)
exists: inf(A) = sup(−A).

Here are some examples. We define for all three of them f(x) := −x and g(x) := x.

Example 5.2 (Example a: Maximum exists). Let X1 := {t ∈ R : 0 5 t 5 1} .
For each x ∈ X1 we have |f(x)− g(x)| = g(x)− f(x) = 2x and the biggest possible such differ-
ence is g(1)− f(1) = 2, so d(f, g) = 2.

Example 5.3 (Example b: Supremum is finite). Let X2 := {t ∈ R : 0 5 t < 1}, i.e., we now exclude
the right end point 1 at which the maximum difference was attained. For each x ∈ X we have

|f(x)− g(x)| = g(x)− f(x) = 2x
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and the biggest possible such difference is certainly bigger than

g(0.9999999999)− f(0.9999999999) = 1.9999999998.

If you keep adding 5, 000 9s to the right of the argument x, then you get the same amount of 9s
inserted into the result 2x, so 2x comes closer than anything you can imagine to the number 2,
without actually being allowed to reach it. The supremum is still considered in a case like this
to be 2. This precisely is the difference in behavior between the supremum s := sup(A) and the
maximum m := max(A) of a set A ⊆ R of real numbers: For the maximum there must actually be
at least one element a ∈ A so that a = max(A). For the supremum it is sufficient that there is a
sequence a1 5 a2 5 . . . which approximates s from below in the sense that the difference s − an
"drops down to zero" as n approaches infinity. I will not be more exact than this because doing so
would require us to delve into the concept of convergence and contact points.

Example 5.4 (Example c: Supremum is infinite). Let X3 := {t ∈ R : 0 5 t} . For each x ∈ X1 we
have again |f(x)− g(x)| = g(x)− f(x) = 2x. But there is no more limit to the right for the values
of x. The difference 2x will exceed all bounds and that means that the only reasonable value for
sup{|f(x) − g(x)| : x ∈ X3} is +∞. As in case b above, the max does not exist because there is no
x0 ∈ X3 such that |f(x0)− g(x0)| attains the highest possible value amongst all x ∈ X3. By the
way, you should understand that even though sup(A) as best approximation of the largest value
of A ⊆ R is allowed to take the "value" +∞ or −∞ this cannot be allowed for max(A). How so?
The infinity values are not real numbers, but, by definition of the maximum, if α := max(A) exists,
then α ∈ A . In particular, the max must be a real number.

That last example motivates the following definition.

Definition 5.8 (Supremum and Infimum of unbounded and empty sets). If A is not bounded from
above then we define

(5.4) supA =∞

If A is not bounded from below then we define

(5.5) inf A = −∞

Finally we define

(5.6) sup ∅ = −∞, inf ∅ = +∞

Note that we have defined infimum and supremum for any kind of set: empty or not, bounded above or
below or not. We use those definitions to define infimum and supremum for functions, sequences and indexed
families.

Definition 5.9 (supremum and infimum of functions). Let X be an arbitrary set, A ⊆ X a subset
of X , f : X → R a real function on X . Look at the set f(A) = {f(x) : x ∈ A}, i.e., the image of A
under f(·).

The supremum of f(·) on A is then defined as

(5.7) sup
A
f := sup

x∈A
f(x) = sup (f(A))
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The infimum of f(·) on A is then defined as

(5.8) inf
A
f := inf

x∈A
f(x) = inf (f(A))

Definition 5.10 (supremum and infimum of families). Let (xi)i∈I be an indexed family of real num-
bers xi. Remember that if I ⊆ Z we call (xi) a sequence!

The supremum of (xi)i∈I is then defined as

(5.9) sup (xi) := sup (xi)i∈I := sup
i∈I

xi = sup {xi : i ∈ I}

The infimum of (xi)i∈I is then defined as

(5.10) inf (xi) := inf (xi)i∈I := inf
i∈I

xi = inf {xi : i ∈ I}

The definition above for families is consistent with the one given earlier for sequences (the special case of
countable families). We repeat it here for your convenience.

Definition 5.11 (supremum and infimum of sequences). Let (xn)n∈N be a sequence of real numbers
xn. The supremum of (xn)n∈N is then defined as

(5.11) sup (xn) := sup (xn)n∈N := sup
n∈N

xn = sup {xn : n ∈ N}

The infimum of (xn)n∈N is then defined as

(5.12) inf (xn) := inf (xn)n∈N := inf
n∈N

xn = inf {xn : n ∈ N}

We note that the “duality principle” for min and max, sup and inf is true in all cases above: You flip the sign
of the items you examine and the sup/max of one becomes the inf/min of the other and vice versa.

Definition 5.12 (Tail sets of a sequence). Let (xn)n∈N be a sequence in R. Let

(5.13) Tn := {xj : j = n} = {xn, xn+1, xn+2, xn+3, . . . }

be what remains in the sequence after we discard the first n − 1 elements. We call (Tn)n∈N the
sequence of tail sets of the given sequence (xk)k∈N.

Remark 5.2. Some simple properties of tail sets:

a. We deal with sets and not with sequences Tn: If, e.g., xn = (−1)n then each Tn = {−1, 1} only
contains two items and not infinitely many.
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b. The tail set sequence Tn is “decreasing”: If m < n then Tm ⊇ Tn.

We recall the following: Let xn be a sequence of real numbers that is non-decreasing, i.e., xn 5 xn+1

for all n (see def. 2.1, p.5 ) and bounded above. Then lim
n→∞

xn exists and coincides with sup{xn :

n ∈ N} (see the proof of [1] B/G thm 10.19, p.101). And, for a sequence yn of real numbers that
is non-increasing, i.e., yn = yn+1 for all n and bounded below, the analogous result is that lim

n→∞
yn

exists and coincides with inf{yn : n ∈ N}. It follows that

inf
(
{sup(Tn) : n ∈ N}

)
= lim

n→∞

(
sup(Tn)

)
= lim

n→∞

(
sup{xj : j ∈ N, j = n}

)
,

sup
(
{inf(Tn) : n ∈ N}

)
:= lim

n→∞

(
inf(Tn)

)
= lim

n→∞

(
inf{xj : j ∈ N, j = n}

)
.

(5.14)

An expression like sup{xj : j ∈ N, j = n} can be written more compactly as sup
j∈N,j=n

{xj}. Moreover,

when dealing with sequences (xn), it is understood in most cases that n ∈ N or n ∈ Z=0 and the last
expression simplifies to sup

j=n
{xj}. This can also be written as sup

j=n
(xj) or sup

j=n
xj .

In other words, (5.14) becomes

inf
n∈N

(
sup
j=n

xj
)

= inf
(
{sup(Tn) : n ∈ N}

)
= lim

n→∞

(
sup(Tn)

)
= lim

n→∞

(
sup
j=n

xj
)
,

sup
n∈N

(
inf
j=n

xj
)

= sup
(
{inf(Tn) : n ∈ N}

)
= lim

n→∞

(
inf(Tn)

)
= lim

n→∞

(
inf
j=n

xj
)
.

(5.15)

The above justifies the following definition:

Definition 5.13. Let (xn)n∈N be a sequence in R and let Tn = {xj : j ∈ R, j = n} be the tail set for
xn. Assume that Tn is bounded above for some n0 ∈ N (and hence for all n = n0). We call

lim sup
n→∞

xj := lim
n→∞

(
sup
j=n

xj
)

= inf
n∈N

(
sup
j=n

xj
)

the lim sup or limit superior of the sequence (xn). If, for each n, Tn is not bounded above then we
say lim sup

n→∞
xj =∞. Assume that Tn is bounded below for some n0 (and hence for all n = n0). We

call

lim inf
n→∞

xj := lim
n→∞

(
inf
j=n

xj
)

= sup
n∈N

(
inf
j=n

xj
)

the lim inf or limit inferior of the sequence (xn). If, for each n, Tn is not bounded below then we
say lim inf

n→∞
xj = −∞.

Proposition 5.3. Let (xn)n∈N be a sequence in R which is bounded above with tail sets Tn.

A. Let

U := {y ∈ R : Tn ∩ [y,∞] 6= ∅ for all n ∈ N},
U1 := {y ∈ R : for all n ∈ N there exists k ∈ N such that xn+k = y},
U2 := {y ∈ R : ∃ subsequence n1 < n2 < n3 < · · · ∈ N such that xnj = y for all j ∈ N},
U3 := {y ∈ R : xn = y for infinitely many n ∈ N}.

(5.16)
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Then U = U1 = U2 = U3.

B. There exists z = z(U ) ∈ R such that U is either an interval ]−∞, z] or an interval ]−∞, z[.

C. Let u := sup(U ). Then u = z = z(U ) as defined in part B. Further, u is the only real number such that
C1.

u− ε ∈ U and u+ ε /∈ U for all ε > 0.(5.17)

C2. There exists a subsequence (nj)j∈N of integers such that u = lim
j→∞

xnj and

u is the largest real number for which such a subsequence exists.

Proof of A:

A.1 - U = U1: This equality is valid by definition of tailsets of a sequence:

x ∈ Tn ⇐⇒ x = xj for some j = n ⇐⇒ x = xn+k for some k ∈ Z=0

from which it follows that x ∈ Tn ∩ [y,∞] ⇐⇒ x = xn+k for some k = 0 and xn+k = y.

A.2 - U1 ⊆ U2: Let y ∈ U1 and n ∈ N. We prove the existence of (nj)j by induction on j. Base case j = 1:
As T2 ∩ [y,∞] 6= ∅ there is some x ∈ T2 such that y 5 x <∞, i.e., x = y. Because x ∈ T2 = {x2, x3, . . . }
we have x = xn1 for some integer n1 > 1 and we have proved the existence of n1. Induction assumption:
Assume that n1 < n2 < · · · < nj0 have already been picked. Induction step: Let n = nj0 . As y ∈ U1 there is
k ∈ N such that xnj0

+k = y. We set nj0+1 := nj0 +k. As this index is strictly larger than nj0 , the induction
step has been proved.

A.3 - U2 ⊆ U3: This is trivial: Let y ∈ U2. The strictly increasing subsequence n1 < n2 < n3 < · · · ∈ N
constitutes the infinite set of indices that is required to grant y membership in U3.

A.2 - U3 ⊆ U : Let y ∈ U3. Fix some n ∈ N. Let J = J(y) ⊆ N be the infinite set of indices j for which
xj = y. At most finitely many of those j can be less than that given n and there must be (infinitely many)
j ∈ J such that j = n Pick any one of those, say j′. Then xj′ ∈ Tn and xj′ = y. It follows that y ∈ U

We have shown the following sequence of inclusions:

U = U1 ⊆ U2 ⊆ U3 ⊆ U

It follows that all four sets are equal and part A of the proposition has been proved.

Proof of B: Let y1, y2 ∈ R such that y1 < y2 and y2 ∈ U . It follows from [y2,∞] ⊆ [y1,∞] that, because
Tn ∩ [y2,∞] 6= ∅ for all n ∈ N, we must have Tn ∩ [y1,∞] 6= ∅ for all n ∈ N, i.e., y1 ∈ U . But that means
that U must be an interval of the form ]−∞, z] or ]−∞, z[ for some z ∈ R.

Proof of C: Let z = z(U ) as defined in part B and u := sup(U ).

Proof of C.1 - (5.17) part 1, u− ε ∈ U : As u− ε is smaller than the least upper bound u of U , u− ε is not
an upper bound of U . Hence there is y > u− ε such that y ∈ U . It follows from part B that u− ε ∈ U .X

Proof of C.1 - (5.17) part 2, u+ ε /∈ U : This is trivial as u+ ε > u = sup(U ) implies that y 5 u < u+ ε
for all y ∈ U . But then y 6= u for all y ∈ U , i.e., u /∈ U . This proves u+ ε /∈ U .
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Proof of C.2: We construct by induction a sequence n1 < n2 < . . . of natural numbers such that

u − 1/j ≤ xnj 5 u + 1/j.(5.18)

Base case: We have proved as part of C.1 that xn = u + 1 for at most finitely many indices n. Let K be the
largest of those. As u − 1 ∈ U3, there are infinitely many n such that xn = u − 1. Infinitely many of them
must exceed K. We pick one of them and that will be n1. Clearly, n1 satisfies (5.18) and this proves the base
case.
Let us now assume that n1 < n2 < · · · < nk satisfying (5.18) have been constructed. xn = u+ 1/(k+ 1) is
possible for at most finitely many indices n. Let K be the largest of those. As u− 1/(k + 1) ∈ U3, there are
infinitely many n such that xn = u− 1/(k+ 1). Infinitely many of them must exceed max(K,nk). We pick
one of them and that will be nk+1. Clearly, nk+1 satisfies (5.18) and this finishes the proof by induction.
We now show that lim

j→∞
xnj = u. Given ε > 0 there is N = N(ε) such that 1/N < ε. It follows from (5.18)

that |xnj − u| 5 1/j < 1/N < ε for all j = n and this proves that xnj → u as j →∞.

We will be finished with the proof of C.2 if we can show that ifw > u then there is no sequence n1 < n2 < . . .
such that xnj → w as j →∞. Let ε := (w− u)/2. According to (5.17), u+ ε /∈ U . But then, by definition
of U , there is n ∈ N such that Tn∩ [u+ε,∞[ = ∅. But u+ε = w−ε and we have Tn∩ [w−ε,∞[ = ∅. This
implies that |w−xj | = ε for all j = n and that rules out the possibility of finding nj such that lim

j→∞
xnj = w.

�

Corollary 5.2. As in prop.5.3, let u := sup(U ). Then U = ]−∞, u] or U = ]−∞, u[.

Further, u is determined by the following property: For any ε > 0, xn > u − ε for infinitely many n and
xn > u+ ε for at most finitely many n.

Proof: This follows from U = U3 and parts B and C of prop.5.3. �

When we form the sequence yn = −xn then the roles of upper bounds and lower bounds, max and min, inf
and sup will be reversed. Example: x is an upper bound for {xj : j = n if and only if −x is a lower bound
for {yj : j = n.

The following “dual” version of prop. 5.3 is a direct consequence of the duality of upper/lower bounds,
min/max, inf/sup proposition prop.5.2, p.35.

Proposition 5.4. Let (xn)n∈N be a sequence in R which is bounded below with tail sets Tn.

A. Let
L := {y ∈ R : Tn ∩ [−∞, y] 6= ∅ for all n ∈ N},
L1 := {y ∈ R : for all n ∈ N there exists k ∈ N such that xn+k 5 y},
L2 := {y ∈ R : ∃ subsequence n1 < n2 < n3 < · · · ∈ N such that xnj 5 y for all j ∈ N},
L3 := {y ∈ R : xn 5 y for infinitely many n ∈ N}.

(5.19)

Then L = L1 = L2 = L3.

B. There exists z = z(L ) ∈ R such that L is either an interval [z,∞[ or an interval ]z,∞[.

C. Let l := inf(L ). Then l = z = z(L ) as defined in part B. Further, l is the only real number such that
C1.

l + ε ∈ L and l − ε /∈ L(5.20)
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C2. There exists a subsequence (nj)j∈N of integers such that l = lim
j→∞

xnj and

l is the smallest real number for which such a subsequence exists.

Proof: Let yn = −xn and apply prop.5.3. �

Proposition 5.5. Let (xn) be a bounded sequence of real numbers. As in prop. 5.3 and prop 5.4, let

u = sup(U ) = sup{y ∈ R : Tn ∩ [y,∞[6= ∅ for all n ∈ N},
l = inf(L ) = inf{y ∈ R : Tn∩]−∞, y] 6= ∅ for all n ∈ N},

(5.21)

Then

u = lim sup
n→∞

xj and l = lim inf
n→∞

xj .

Proof that u = lim sup
n→∞

xj : Let

βn := sup
j=n

xj , β := inf
n
βn = lim sup

n→∞
xn.(5.22)

We shall prove that β has the properties listed in prop.5.3.C that uniquely characterize u: For any ε > 0, we
have

β − ε ∈ U and β + ε /∈ U

An other way of saying this is that

b ∈ U for b < β and a /∈ U for a > β.(5.23)

We now shall prove the latter characterization. Let a ∈ R, a > β = inf{βn : n ∈ N}. Then a is not a lower
bound of the βn: βn0 < a for some n0 ∈ N. As the βn are not increasing in n, this implies strict inequality
βj < a for all j = n0. By definition, βj is the least upper bound (hence an upper bound) of the tail set Tj . We
conclude that xj < a for all j = n0. From that we conclude that Tn ∩ [a,∞] = ∅ for all j = n0. It follows
that a /∈ U .

Now let b ∈ R, b < β = g.l.b{βn : n ∈ N}. As β 5 βn we obtain b < βn for all n. In other words,
b < sup(Tn) for all n: It is possible to pick some xk ∈ Tn such that b < xk. But then Tn ∩ [b,∞] 6= ∅ for all
n and we conclude that b ∈ U .

We put everything together and see that β has the properties listed in (5.23). This finishes the proof that
u = lim sup

n→∞
xj . The proof that l = lim inf

n→∞
xj follows again by applying what has already been proved to the

sequence (−xn). �

We have collected everything to prove

Theorem 5.1 (Characterization of limsup and liminf). Let (xn)n∈N be a bounded sequence in R. Then

A1. lim sup
n→∞

xn is the largest of all real numbers x for which a sequence n1 < n2 < · · · ∈ N can be found

such that x = lim
j→∞

xnj .
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A2. lim sup
n→∞

xn is the only real number u such that, for all ε > 0, the following is true:

xn > u+ ε for at most finitely many n and xn > u− ε for infinitely many n.

B1. lim inf
n→∞

xn is the smallest of all real numbers x for which a sequence n1 < n2 < · · · ∈ N can be found
such that x = lim

j→∞
xnj .

B2. lim inf
n→∞

xn is the only real number l such that, for all ε > 0, the following is true:
xn < l − ε for at most finitely many n and xn < l + ε for infinitely many n.

Proof: We know from prop.5.5 on p.41 that lim sup
n→∞

xn is the unique number u described in part C of prop.5.3,

p.38: u− ε ∈ U and u+ ε /∈ U for all ε > 0 and u is the largest real number for which there exists a
subsequence (nj)j∈N of integers such that u = lim

j→∞
xnj .

u − ε ∈ U = U3 (see part A of prop.5.5) means that there are infinitely many n such that xn = u − ε and
u+ ε /∈ U = U3 means that there are at most finitely many n such that xn = u+ ε. This proves A1 and A2.

We also know from prop.5.5 that lim inf
n→∞

xn is the unique number l described in part C of prop.5.4, p.40:
l + ε ∈ L and l − ε /∈ L for all ε > 0 and l is the smallest real number for which there exists a
subsequence (nj)j∈N of integers such that u = lim

j→∞
xnj .

l + ε ∈ L = L3 (see part A of prop.5.5) means that there are infinitely many n such that xn 5 l + ε and
l − ε /∈ L = L3 means that there are at most finitely many n such that xn 5 l − ε. This proves B1 and B2.
�

Theorem 5.2 (Characterization of limits via limsup and liminf). Let (xn)n∈N be a bounded sequence in
R. Then (xn) converges to a real number if and only if liminf and limsup for that sequence coincide and we
have

lim
n→∞

xn = lim inf
n→∞

xn = lim sup
n→∞

xn.(5.24)

Proof of “⇒”: Let L := lim
n→∞

xn. Let ε > 0. There is N = N(ε) ∈ N such that Tk ⊆ ] L− ε, L+ ε [ for all
k = N . But then

L− ε 5 αk := inf(Tk) ≤ βk := sup(Tk) 5 L+ ε for all k = N.

It follows from Tj ⊆ Tk for all j = k that

L− ε ≤ αk 5 αj 5 βj 5 βk 5 L+ ε, hence
L− ε ≤ lim

k→∞
αk = lim inf

k→∞
xk 5 lim sup

k→∞
xk = lim

k→∞
βk 5 L+ ε.

The equalities above result from prop.5.5. We have shown that, for any ε > 0, lim inf
k→∞

xk and lim sup
k→∞

xk differ

by at most 2ε, hence they are equal.

Proof of “⇐”: Let L := lim inf
n→∞

xn = lim sup
n→∞

xn. Let ε > 0. We know from (5.17), p.39 and (5.20), p.40

that L+ ε/2 /∈ U and L− ε/2 /∈ L But then there are at most finitely many n for which xn has a distance
from L which exceeds ε/2. Let N be the maximum of those n. It follows that |xn − L| < ε for all n > N ,
hence L = lim

n→∞
xn. �

42



6 Vectors and vector spaces (Understand this!)

6.1 RN : Euclidian space

6.1.1 N–dimensional Vectors

This following definition of a vector is much more specialized than what is usually understood amongst
mathematicians. For them, a vector is an element of a “vector space” . You can find later in the document
the definition of a vector space ((6.4) on p.49) What you see here is a definition of vectors of “finite dimension”.

Definition 6.1 (N–dimensional vectors). A vector is a finite, ordered collection ~v = (x1, x2, x3, . . . , xN )
of real numbers x1, x2, x3, . . . , xN . “Ordered” means that it matters which number comes first, sec-
ond third, . . . If the vector has N elements then we say that it is N–dimensional . The set of all
N–dimensional vectors is written as RN .

You are encouraged to go back to the section on cartesian products (3.16 on p.17) to review what was said
there about RN = R× R×+ · · · × R︸ ︷︷ ︸

N times

. Here are some examples of vectors:

Example 6.1 (Two–dimensional vectors). The two–dimensional vector with coordinates x = −1.5
and y =

√
2 is written (−1.5,

√
2) and we have (−1.5,

√
2) ∈ R2. Order matters, so this vector is

different from (
√

2,−1.5) ∈ R2.

Example 6.2 (Three–dimensional vectors). The three–dimensional vector ~vt = (3− t, 15,
√

5t2 + 22
7 ) ∈ R3

with coordinates x = 3 − t, y = 15 and z =
√

5t3 + 22
7 is an example of a parametrized vec-

tor (parametrized by t). To be picky, Each specific value of t defines an element of ∈ R3, e.g.,

~v−2 = (5, 15,
√

20 + 22
7 ).

Can you see that
F (·) : R // R3 t � // F (t) = ~vt

defines a mapping from R into R3 in the sense of definition ( 3.4 ) on p.10? Each argument s has

assigned to it one and only one argument ~vs = (3− s, 15,
√

5s2 + 22
7 ) ∈ R3.

Or, is it rather that we have three functions
x(·) : R // R t � // x(t) = 3− t
y(·) : R // R t � // y(t) = 15

z(·) : R // R t � // x(t) =
√

5t2 + 22
7

and t→ ~vt = (x(t), y(t), z(t)) is a vector of three real valued functions x(·), y(·), z(·)?

Both points of view are correct and it depends on the specific circumstances how you want to inter-
pret ~vt

Example 6.3 (One–dimensional vectors). Let us not forget about the one–dimensional case: A one-
dimensional vector has a single coordinate. ~w1 = (−3) ∈ R1 with coordinate x = −3 ∈ R and
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~w2 = (5.7a) ∈ R1 with coordinate x = 5.7a ∈ R are one–dimensional vectors. ~w2 is not a fixed
number but parametrized by a.

Mathematicians do not distinguish between the one–dimensional vector (x) and its coordinate
value, the real number x. For brevity, they will simply write ~w1 = −3 and ~w2 = 5.7a.

Example 6.4 (Vectors as functions). An N–dimensional vector ~x = (x1, x2, x3, · · · , xN ) can be inter-
preted as a real function (remember: a real function is one which maps it arguments into R)

f~x(·) : {1, 2, 3, · · · , N} → R m 7→ xm

f~x(1) = x1, f~x(2) = x2, · · · , f~x(N) = xN ,
(6.1)

i.e., as a real function whose domain is the natural numbers 1, 2, 3, · · · , N . This goes also the other
way around: given a real function f(·) : {1, 2, 3, · · · , N} → R we can associate with it the vector

~vf(·) := (f(1), f(2), f(3), · · · , f(N))

~vf1 = f(1), ~vf2 = f(2), , · · · , ~vfN = f(N)
(6.2)

6.1.2 Addition and scalar multiplication for N–dimensional vectors

Definition 6.2 (Addition and scalar multiplication in RN ). Given are two N–dimensional vectors
~x = (x1, x2, . . . , xN ) and ~y = (y1, y2, . . . , yN ) and a real number α. We define the sum ~x+ ~y of ~x
and ~y as the vector ~z with the components

(6.3) z1 = x1 + y1; z2 = x2 + y2; . . . ; zN = xN + yN ;

We define the scalar product α~x of α and ~x as the vector ~w with the components

(6.4) w1 = αx1; w2 = αx2; . . . ; wN = αxN ;

The following picture describes vector addition:

Adding two vectors ~v and ~w means that you take one of them, say ~v, and shift it in parallel (without rotating
it in any way or flipping its direction), so that its starting point moves from the origin to the endpoint of
the other vector ~w. Look at the picture and you see that the vectors ~v, ~w and ~v shifted form three pages of
a parallelogram. ~v + ~w is then the diagonal of this parallelogram which starts at the origin and ends at the
endpoint of ~v shifted.

6.1.3 Length of N–dimensional vectors, the Euclidean Norm

It is customary to write ‖~v‖ for the length, sometimes also called the norm of the vector ~v.

Length of one–dimensional vectors: For a vector ~v = x ∈ R its length is its absolute value ‖~v‖ = |x|.
This means that ‖ − 3.57‖ = | − 3.57| = 3.57 and ‖

√
2‖ = |

√
2| ≈ 1.414.

Length of two–dimensional vectors: We start with an example. Look at ~v = (4,−3). Think of an xy-
coordinate system with origin (the spot where x-axis and y-axis intersect) (0, 0). Then ~v is represented by an
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Figure 1: Adding two vectors.
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Figure 2: Length of a 2–dimensional vectors.

arrow which starts at the origin and ends at the point with coordinates x = 4 and y = −3. How long is that
arrow?

Think of it as the hypothenuse of a right angle triangle whose two other sides are the horizontal arrow from
(0, 0) to (4, 0) (the vector ~a = (4, 0) ) and the vertical line B between (4, 0) and (4,−3). Note that B is
not a vector because it does not start at the origin! Obviously (I hope it’s obvious) we have ‖~a‖ = 4 and
length–of(B) = 3. Pythagoras tells us that

‖~v‖2 = ‖~a‖2 + length–of(B)2

and we obtain for (4, -3): ‖~v‖ =
√

16 + 9 = 5.

The above argument holds for any vector ~v = (x, y) with arbitrary x, y ∈ R. The horizontal leg on the
x-axis is then ~a = (x, 0) with length |x| =

√
x2 and the vertical leg on the y-axis is a line equal in length to

~b = (0, y) the length of which is |y| =
√
y2 The theorem of Pythagoras yields ‖(x, y)‖2 = x2 + y2 which
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becomes, after taking square roots on both sides,

(6.5) ‖(x, y)‖ =
√
x2 + y2

Length of three–dimensional vectors: This is not so different from the two–dimensional case above. We
build on the previous example. Let ~v = (4,−3, 12). Think of an xyz-coordinate system with origin (the spot
where x-axis, y-axis and z-axis intersect) (0, 0, 0). Then ~v is represented by an arrow which starts at the
origin and ends at the point with coordinates x = 4, y = −3 and z = 12. How long is that arrow?

Remember what the standard 3–dimensional coordinate system looks like: The x-axis goes from west to east,
the y-axis goes from south to north and the z-axis goes vertically from down below to the sky. Now drop a
vertical line B from the point with coordinates (4,−3, 12) to the xy–plane which is “spanned” by the x-axis
and y-axis. This line will intersect the xy–plane at the point with coordinates x = 4 and y = −3 (and
z = 0. Why?) Note that B is not a vector because it does not start at the origin! It should be clear that
length–of(B) = |z| = 12. Now we connect the origin (0, 0, 0) with the point (4,−3, 0) in the xy–plane
which is the endpoint ofB.

We can forget about the z–dimension because this arrow is entirely contained in the xy–plane. Matter of fact,
it is a genuine two–dimensional vector ~a = (4,−3) because it starts in the origin. Observe that ~a has the
same values 4 and −3 for its x– and y–coordinates as the original vector ~v. 11 We know from the previous
example about two–dimensional vectors that

‖~a‖2 = ‖(x, y)‖2 = x2 + y2 = 16 + 9 = 25.

At this point we have constructed a right angle triangle with a) hypothenuse ~v = (x, y, z) where we have
x = 4, y = −3 and z = 12, b) a vertical leg with length |z| = 12 and c) a horizontal leg with length√
x2 + y2 = 5. Pythagoras tells us that

‖~v‖2 = z2 + ‖(x, y)‖2 = 144 + 25 = 169 or ‖~v‖ = 13.

None of what we just did depended on the specific values 4, −3 and 12. Any vector (x, y, z) ∈ R3 is the
hypothenuse of a right triangle where the square lengths of the legs are z2 and x2 + y2. This means we have
proved the general formula ‖(x, y, z)‖2 = x2 + y2 + z2 or

(6.6) ‖(x, y, z)‖ =
√
x2 + y2 + z2

The previous examples provide the motivation for the following definition:

Definition 6.3 (Euclidean norm). Let ~v = (x1, x2, . . . , xn) ∈ Rn be an n–dimension vector. The
Euclidean norm ‖~v‖ of ~v is defined as follows:

(6.7) ‖~v‖ =
√
x12 + x22 + . . .+ xn2 =

√√√√ n∑
j=1

xj2

11 You will learn in the chapter on vector spaces that the vector ~a = (4,−3) is the projection on the xy–coordinates
π1,2(·) : R3 → R2 (x, y, z) 7→ (x, y) of the vector ~v = (4,−3, 12) . (see Example C(6.16) on p.54)
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This definition is important enough to write the special cases for n = 1, 2, 3 where ‖~v‖ coincides with the
length of ~v:

1− dim : ‖(x)‖ =
√
x2 = |x|

2− dim : ‖(x, y)‖ =
√
x2 + y2

3− dim : ‖(x, y, z)‖ =
√
x2 + y2 + z2

(6.8)

Proposition 6.1 (Properties of the Euclidian norm). Let n ∈ N. Then the Euclidean norm, viewed as a
function

‖ · ‖ : Rn // R ~v = (x1, x2, . . . , xn) � // ‖~v‖ =

√
n∑
j=1

xj2

has the following three properties:

‖~v‖ = 0 ∀~v ∈ Rn and ‖~v‖ = 0 ⇐⇒ ~v = 0 positive definite(6.9a)
‖α~v‖ = |α| · ‖~v‖ ∀~v ∈ Rn,∀α ∈ R homogeneity(6.9b)
‖~v + ~w‖ 5 ‖~v‖+ ‖~w‖ ∀ ~v, ~w ∈ Rn triangle inequality(6.9c)

Proof:
a. It is certainly true that ‖~v‖ = 0 for any n–dimensional vector ~v because it is defined as +

√
K where the

quantityK is, as a sum of squares, non–negative. If 0 is the zero vector with coordinates x1 = x2 = . . . = xn = 0
then obviously ‖0‖ =

√
0 + . . .+ 0 = 0. Conversely, let ~v = (x1, x2, . . . , xn) be a vector in Rn such that

‖~v‖ = 0. This means that

√
n∑
j=1

xj2 = 0 which is only possible if everyone of the non–negative xj is zero.

In other words, ~v must be the zero vector 0.

b. Let ~v = (x1, x2, . . . , xn) ∈ Rn and α ∈ R . Then

‖α~v‖ =

√√√√ n∑
j=1

(αxj)
2 =

√√√√ n∑
j=1

α2αxj2 =

√√√√α2

n∑
j=1

αxj2 =
√
α2

√√√√ n∑
j=1

αxj2

=
√
α2‖~v‖ = |α| · ‖~v‖

because it is true that
√
α2 = |α| for any real number α (see assumption 3.1 on p.7).

c. The proof will only be given for n = 1, 2, 3.
n = 1n = 1n = 1 : Property (6.9.c) simply reduces to the triangle inequality for real numbers (see 3.1 on 7) and we are
done.
n = 2, 3n = 2, 3n = 2, 3 : Look back at the picture about addition of vectors in the plane or in space (see p.45). Remember that
for any two vectors ~v and ~w you can always build a triangle whose sides have length ‖~v‖, ‖~w‖ and ‖ ~v + w‖.
It is clear that the length of any one side cannot exceed the sum of the lengths of the other two sides, so we get
specifically ‖ ~v + w‖ 5 ‖~v‖+ ‖~w‖ and we are done with the following limitation:

The geometric argument is not exactly an exact proof but I used it nevertheless because it shows the origin of
the term "triangle inequality" for property (6.9.c). An exact proof will be given as a consequence of the so–
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called Cauchy–Schwartz inequality which you will find further down (theorem (6.1) on p.57) in the section
which discusses inner products on vector spaces. �

6.2 General vector spaces

6.2.1 Vector spaces: Definition and examples

Mathematicians are very fond of looking at very different objects and figuring out what they have in common.
They then create an abstract concept whose items have those properties and examine what they can conclude.
For those of you who have had some exposure to object oriented programming: It’s like defining a base class,
e.g., "mammal", that possesses the core properties of several concrete items such as "horse", "pig", "whale"
(sorry – can’t require that all mammals have legs). We have looked at the following items that seem to be quite
different:

real numbers
N–dimensional vectors
real functions

Well, that was sort of disingenuous. I took great pains to explain that real numbers and one–dimensional
vectors are sort of the same (see 6.3 on p.43). Besides I also explained that N–dimensional vectors can be
thought of as real functions on a special domain X , namely 1, 2, 3, · · · , N . (see 6.4 on p.44). Never mind,
I’ll introduce you now to vector spaces as sets of objects which you can "add" and multiply with real numbers
according to rules which are guided by those that apply to addition and multiplication of ordinary numbers.

Here is quick reminder on how we addN–dimensional vectors and multiply them with scalars (real numbers)
(see (6.1.2) on p.44). Given are two N–dimensional vectors
~x = (x1, x2, . . . , xN ) and ~y = (y1, y2, . . . , yN ) and a real number α. Then the sum ~z = ~x+ ~y of ~x and
~y is the vector with the components

z1 = x1 + y1; z2 = x2 + y2; . . . ; zN = xN + yN ;

and the scalar product ~w = α~x of α and ~x is the vector with the components

w1 = αx1; w2 = αx2; . . . ; wN = αxN ;

Example 6.5 (Vector addition and scalar multiplication). We use N = 2 in this example:
Let a = (−3, 1/5) , b = (5,

√
2) We add those vectors by adding each of the coordinates separately:

a+ b = (2, 1/5 +
√

2)

and we multiply a with a scalar λ ∈ R, e.g. λ = 100, by multiplying each coordinate with λ:

100a = (−300, 20).

In the last example I have avoided using the notation "~x" with the cute little arrows on top for vectors. I did
that on purpose because this notation is not all that popular in Math even for N–dimensional vectors and
definitely not for the more abstract vectors as elements of a vector space. Here now is the definition of a vector
space, taken almost word for word from the book "Introductory Real Analysis" (Kolmogorov/Fomin [4]). This
definition is rather lengthy because a set needs to satisfy many rules to be a vector space.
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Definition 6.4 (Vector spaces (linear spaces)). A non–empty set L of elements x, y, z, . . . is called a
vector space or linear space if it satisfies the following:

A. Any two elements x, y ∈ L uniquely determine a third element x+ y ∈ L, called the sum of x
and y with the following properties:

1. x+ y = y + x ( commutativity );

2. (x+ y) + z = x+ (y + z) ( associativity );

3. There exists an element 0 ∈ L, called the zero element, or zero vector, or null vector, with
the property that x+ 0 = x for each x ∈ L;

4. For every x ∈ L, there exists an element −x, called the negative of x, with the property that
x+ (−x) = 0 for each x ∈ L. When adding negatives, then there is a convenient short form.
We write x− y as an abbreviation for x+ (−y);

B. Any real number α and element x ∈ L together uniquely determine an element αx ∈ L (some-
times also written α · x for clarity), called the scalar product of α and x. It has the following prop-
erties:

1. α(βx) = (αβ)x;

2. 1x = x;

C. The operations of addition and scalar multiplication obey the two distributive laws

1. (α+ β)x = αx+ βx;

2. α(x+ y) = αx+ αy;

The elements of a vector space are called vectors

Definition 6.5 (Subspaces of vector spaces). Let L be a vector space and let A ⊆ L be a non–empty
subset of L with the following property: For any x, y ∈ A and α ∈ R the sum x + y and the scalar
product αx also belong to A. Note that if α = 0 then αx = 0 and it follows that the null–vector
belongs to A.

A is called a subspace of L.

We ruled out the case A = ∅ but did not ask that A be a strict subset of L ((3.10) on p.14). In other
words, L is a subspace of itself.

The set {0} which contains the null–vector 0 of L as its single element also is a subspace, the so
called nullspace

Proposition 6.2 (Subspaces are vector spaces). A subspace of a vector space is a vector space, i.e., it
satisfies all requirements of definition (6.4).
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Proof: None of the equalities that are part of the definition of a vector space magically ceases to be valid just
because we look at a subset. The only thing that could go wrong is that some of the expressions might not
belong to A anymore. I’ll leave it to you to figure out why this won’t be the case, but I’ll show you the proof
for the second distributive law of part C.

We must prove that for any x, y ∈ A and λ ∈ R

λ(x+ y) = λx+ λy :

First, x + y ∈ A because a subspace contains the sum of any two of its elements. It follows that λ(x + y)
as product of a real number with an element of A again belongs to A because it is a subspace. Hence the left
hand side of the equation belongs to A.

Second, both λx and λy belong to A because each is the scalar product of λ with an element of A and this set
is a subspace. Hence the right hand side of the equation belongs to A.

Equality of λ(x+ y) and λx+ λy is true because it is true if we look at x and y as elements of L. �

Remark 6.1 (Closure properties). If a subset B of a larger set X has the property that certain oper-
ations on members of B will always yield elements of B, then we say that B is closed with respect
to those operations.

We can now express the definition of a linear subspace as follows:

A subspace is a subset of a vector space which is closed with respect to vector addition and scalar multiplica-
tion.

You have already encountered the following examples of vector spaces:

Example 6.6 (A: vector space R). The real numbers R are a vector space if you take the ordinary
addition of numbers as "+" and the ordinary multiplication of numbers as scalar multiplication.

Example 6.7 (B: vector space Rn). More general, the sets Rn of n–dimensional vectors are vector
spaces when you define addition and scalar multiplication as in (6.2) on p.44. To see why, just look
at each component (coordinate) separately and you just deal with ordinary real numbers.

Example 6.8 (C: vector space of real functions). The set

FFF (X,R) = {f(·) : f(·) is a real function on X}

of all real functions on an arbitrary non–empty set X is a vector space if you define addition and
scalar multiplication as in (5.2) on p.33. The reason is that you can verify the properties A, B, C of
a vector space by looking at the function values for a specific argument x ∈ X and again, you just
deal with ordinary real numbers. The “sup–norm”

‖f(·)‖ = sup{|f(x)| : x ∈ X}

is not a real function on all of FFF (X,R) because ‖f(·)‖ = +∞ for any unbounded f(·) ∈FFF (X,R).

The subset
BBB(X,R) = {h(·) : h(·) is a bounded real function on X}

(see (7.1) on p. 63) is a subspace of the vector space of all real functions on X . On this subspace the
sup–norm truly is a real function in the sense that ‖f(·)‖ <∞.
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And here are some more examples:

Example 6.9 (D: subspace {(x, y) : x = y} ). The set L := {(x, x) ∈ R2 : x ∈ R} of all vectors in the
plane with equal x and y coordinates has the following property: For any two vectors ~x = (a, a) and
~y = (b, b) ∈ L (a, b ∈ R) and real number α the sum ~x+ ~y = (a+ b, a+ b) and the scalar product
α~x = (αa, αa) have equal x–and y–coordinates, i.e., they again belong to L. Moreover the zero–
vector 0 with coordinates (0, 0) belongs to L. It follows that the subset L of R2 is a subspace of R2

(see (6.5) on p.49).

I won’t show the following even though it is not hard:

Example 6.10 (E: subspace {(x, y) : y = αx} ). Any subset of the form

Lα := {(x, y) ∈ R2 : y = αx}

is a subspace of R2 (α ∈ R). Draw a picture: Lα is the straight line through the origin in the xy–plane
with slope α.

Example 6.11 (F: Embedding of linear subspaces ). The last example was about the subspace of
a bigger space. Now we switch to the opposite concept, the embedding of a smaller space into a
bigger space. We can think of the real numbers R as a part of the xy–plane R2 or even 3–dimensional
space R3 by identifying a number awith the two-dimensional vector (a, 0) or the three-dimensional
vector (a, 0, 0). Let M < N . It is not a big step from here that the most natural way to uniquely
associate anN–dimensional vector with anM–dimensional vector ~x := (x1, x2, . . . , xM ) by adding
zero-coordinates to the right:

~x := (x1, x2, . . . , xM , 0, 0, . . . , 0︸ ︷︷ ︸
N−M times

)

Example 6.12 (G: All finite–dimensional vectors ). Let

S :=
⋃
n∈N

Rn = R1 ∪ R2 ∪ . . . ∩ Rn ∪ . . .

be the set of all vectors of finite (but unspecified) dimension.

We can define addition for any two elements ~x, ~y ∈ S as follows: If ~x and ~y both happen to have
the same dimension N then we add them as usual: the sum will be x1 + y1, x2 + y2, . . . , xN + yN ,.
If not, then one of them, say ~x will have dimension M smaller than the dimension N of ~y. We now
define the sum ~x+ ~y as the vector

~z := (x1 + y1, x2 + y2, . . . , xM + yM , yM+1, yM+2, . . . , yN )

which is hopefully what you expected me to do.

Example 6.13 (H: All sequences of real numbers ). Let RN =
∏
j∈N

R (see (3.17) on p.18). Is this the

same set as S from the previous example? The answer is No. Can you see why? I would be
surprised if you do, so let me give you the answer: Each element x ∈ S is of some finite dimension,
say N , meaning that that it has no more than N coordinates. Each element y ∈ RN is a collection of
numbers y1, y2, . . . none of which need to be zero. In fact, RN is the vector space of all sequences of
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real numbers. Addition is of course done coordinate by coordinate and scalar multiplication with
α ∈ R is done by multiplying each coordinate with α.

There is again a natural way to embed S into RN as follows: We transform anN–dimensional vector
(a1, a2, . . . , aN ) into an element of RN (a sequence (aj)j∈N) by setting aj = 0 for j > N .

Definition 6.6 (linear combinations). Let L be a vector space and let x1, x2, x3, . . . , xn ∈ L be a
finite number of vectors in L. Let α1, α2, α3, . . . , αn ∈ R. We call the finite sum

(6.10)
n∑
j=0

αjxj = α1x1 + α2x2 + α3x3 + . . .+ αnxn

a linear combination of the vectors xj . The multipliers α1, α2, . . . are called scalars in this context.

In other words, linear combinations are sums of scalar products. You should understand that the expression
in (6.10) always is an element of L, no matter how big n ∈ N was chosen:

Proposition 6.3 (Vector spaces are closed w.r.t. linear combinations). Let L be a vector space
and let x1, x2, x3, . . . , xn ∈ L be a finite number of vectors in L. Let α1, α2, α3, . . . , αn ∈ R. Then the

linear combination
n∑
j=0

αjxj also belongs to L. Note that this is also true for subspaces because those are

vector spaces, too.

Proof: This is another example of a proof by complete induction (see def. 3.2, 8). Each scalar product αjxj is
an element of L because part B of the definition of a vector space demands it. The sum of two such expressions
belongs to L because part A demands it. Then (6.10) must be true for n = 3 because, if we set z :=
α1x1 + α2x2, then α1x1 + α2x2 + α3x3 = z + α3x3 can be written as the sum of two elements of L and

therefore belongs to L. But then
4∑
j=0

αjxj =
3∑
j=0

αjxj + α4x4 can be written as the sum of two elements of

L (we just saw that
3∑
j=0

αjxj as the sum of three elements of L belongs to L) and therefore belongs to L.

We keep going with n = 5, 6, 7, . . . (an exact proof needs induction) and conclude that
n∑
j=0

αjxj =
n−1∑
j=0

αjxj+

αnxn can be written as the sum of two elements of L (we just saw that
n−1∑
j=0

αjxj as the sum of n−1 elements

of L belongs to L) and therefore belongs to L . . . . �

Definition 6.7 (linear mappings). Let L1, L2 be two vector spaces.

Let f(·) : L1 → L2 be a mapping with the following properties:

f(x+ y) = f(x) + f(y) ∀x, y ∈ L1 additivity(6.11a)
f(αx) = αf(x) ∀x ∈ L1, ∀α ∈ R homogeneity(6.11b)

Then we call f(·) a linear mapping.

Note 6.1 (Note on homogeneity). We encountered homogeneity when looking at the properties of
the Euclidian norm ((6.9) on p.47), but homogeneity is defined differently there in that you had to
take the absolute value |α| instead of α.
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Remark 6.2 (Linear mappings are compatible with linear combinations). We saw in the last propo-
sition that vector spaces are closed with respect to linear combinations. Linear mappings and linear
combinations go together very well in the following sense:

Remember that for any kind of mapping x 7→ f(x) , f(x) was called the image of x. Now we can
express what linear mappings are about like this:

A: The image of the sum is the sum of the image

B: The image of the scalar product is the scalar product of the image

C: The image of the linear combination is the linear combination of the image

Mathematicians express this by saying that linear mappings preserve or are compatible with linear
combinations.

Proposition 6.4 (Linear mappings preserve linear combinations). Let L1, L2 be two vector spaces.

Let f(·) : L1 → L2 be a linear map and let x1, x2, x3, . . . , xn ∈ L1 be a finite number of vectors in the
domain L1 of f(·). Let λ1, λ2, λ3, . . . , λn ∈ R. Then f(·) preserves any such linear combination:

(6.12) f(

n∑
j=0

λjxj) =

n∑
j=0

λjf(xj).

Proof:
First we note that f(λjxj) = λjf(xj) for all j because linear mappings preserve scalar products. Because
they also preserve the addition of any two elements, the proposition holds for n = 2. We prove the general
case by induction (see (3.2) on p.8). Our induction assumption is

f(

n−1∑
j=0

λjxj) =

n−1∑
j=0

λjf(xj).

We use it in the third equality here:

f(
n∑
j=0

λjxj) = f(
n−1∑
j=0

λjxj +λnxn) = f(
n−1∑
j=0

λjxj)+f(λnxn) =
n−1∑
j=0

λjf(xj)+f(λnxn) =
n∑
j=0

λjf(xj)

�

Here are some examples of linear mappings.

Example 6.14 (A: Projections to any subspace). Let N ∈ N. The map

π1(·) : RN → R (x1, x2, . . . , xN ) 7→ x1

is called the projection on the first coordinate or the first coordinate function.

Example 6.15 (B: Projections on any coordinate). More generally, let N ∈ N and 1 5 j 5 N . The
map

πj(·) : RN → R (x1, x2, . . . , xN ) 7→ xj
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is called the projection on the jth coordinate or the jth coordinate function.

It is easy to see what that means if you setN = 2: For the two–dimensional vector ~v := (3.5,−2) ∈ R2

you get π1(~v) = 3.5 and π2(~v) = −2.

Example 6.16 (C: Projections to any subspace). In the last two examples we projected RN onto a one–
dimensional space. More generally, we can project RN onto a vector space RM of lower dimension
M (i.e., we assume M < N ) by keeping M of the coordinates and throwing away the remaining
NM . Mathematicians express this as follows:

Let M,N, i1, i2, . . . , iM ∈ N such that M < N and 1 5 i1 < i2 < · · · < iM 5 N . The map

(6.13) πi1,i2,...,iM (·) : RN → RM (x1, x2, . . . , xN ) 7→ (xi1 , xi2 , . . . , xiM )

is called the projection on the coordinates i1, i2, . . . , iM . 12

Example 6.17. Let x0 ∈ A. The mapping

(6.14) εx0 : FFF (A,R)→ R; f(·) 7→ f(x0)

which assigns to any real function on A its value at the specific point x0 is a linear mapping because

if h(·) =
n∑
j=0

ajfj(·) then

εx0(

n∑
j=0

ajfj(·)) = εx0(h(·)) = h(x0) =

n∑
j=0

ajfj(x0) =

n∑
j=0

ajεx0(fj(·))

and this proves the linearity of the mapping εx0(·). The mapping εx0(·) is called the Radon inte-
gral at x0.

6.2.2 Normed vector spaces (Skip this!)

The following definition of inner products and proof of the Cauchy–Schwartz inequality were taken from
"Calculus of Vector Functions" (Williamson/Crowell/Trotter [11]).

Definition 6.8 (Inner products). Let L be a vector space with a function

•(·, ·) : L× L→ R; (x, y) 7→ x • y := •(x, y)

which satisfies the following properties:

x • x = 0 ∀x ∈ L and x • x = 0 ⇐⇒ x = 0 positive definite(6.15a)
x • y = y • x ∀x, y ∈ L symmetry(6.15b)
(x+ y) • z = x • z + y • z ∀ x, y, z ∈ L additivity(6.15c)
(λx) • y = λ(x • y) ∀ x, y ∈ L ∀ λ ∈ R homogeneity(6.15d)

We call such a function an inner product.
12 You previously encountered an example where we made use of the projection

π1,2(·) : R3 → R2 (x, y, z) 7→ (x, y).

This was in the course of computing the length of a 3–dimensional vector (see (6.1.3) on p.44).
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Note that additivity and homogeneity of the mapping x 7→ x • y for a fixed y ∈ L imply linearity of that
mapping and the symmetry property implies that the mapping y 7→ x • y for a fixed x ∈ L is linear too. In
other words, an inner product is binear in the following sense:

Definition 6.9 (Bilinearity). Let L be a vector space with a function

F (·, ·) : L× L→ R; (x, y) 7→ F (x, y).

F (·, ·) is called bilinear if it is linear in each component, i.e., the mappings

F1 :L→ R; x 7→ F (x, y)

F2 :L→ R; y 7→ F (x, y)

are both linear.

Proposition 6.5 (Algebraic properties of the inner product). Let L be a vector space
with inner product •(·, ·). Let a, b, x, y ∈ L. Then

(a+ b) • (x+ y) = a • x + b • x + a • y + b • y(6.16a)
(x+ y) • (x+ y) = x • x + 2(x • y) + y • y(6.16b)
(x− y) • (x− y) = x • x − 2(x • y) + y • y(6.16c)

Proof of a:

(a+ b) • (x+ y) = (a+ b) • x + (a+ b) • y
= a • x + b • x + a • y + b • y.

We used linearity in the second argument for the first equality and linearity in the first argument for the
second equality.

Proof of b:
(x+ y) • (x+ y) = x • x + y • x + x • y + y • y

according to part a. Symmetry gives us y • x = x • y and part b follows.

Proof of c: Replace y with −y in part b. Bilinearity gives both

x • −y = −(x • y); −y • −y = (−1)2y • y = y • y

and this gives c. �

The following is the most important example of an inner product.

Proposition 6.6 (Inner product on RN )). Let N ∈ N. Then the real function

(6.17) (~v, ~w) 7→ x1y1 + x2y2 + . . .+ xNyN =
n∑
j=1

xjyj

is an inner product on RN × RN .
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Proof:
aaa : For ~v = ~w we obtain ~v • ~v) = ‖~v‖ and positive definiteness of the inner product follows from that of the
Euclidean norm.
bbb : Symmetry is clear because xjyj = yjxj .
ccc : Additivity follows from the fact that (xj + yj)zj = xjzj + yjzj .
ddd : Homogeneity follows from the fact that (λxj)yj = λ(xjyj). �

Proposition 6.7 (Cauchy–Schwartz inequality for inner products). LetL be a vector space with an inner
product

•(·, ·) : L× L→ R; (x, y) 7→ x • y := •(x, y)

Then
(x • y)2 5 (x • x) (y • y).

Proof:
Step1 :Step1 :Step1 : We assume first that x • x = y • y = 1. Then

0 5 (x− y • x− y)

= x • x− 2x • y + y • y = 2− 2x • y

where the first equality follows from proposition (6.5) on p.55.
This means 2x • y 5 2, i.e., x • y 5 1 = (x • x) (y • y) where the last equality is true because we had
assumed x • x = y • y = 1. The Cauchy–Schwartz inequality is thus true under that special assumption.

Step2 :Step2 :Step2 : General case: We do not assume anymore that x • x = y • y = 1. If x or y is zero then the Cauchy–
Schwartz inequality is trivially true because, say if x = 0 then the left hand side becomes

(x • y)2 = (0x • y)2 = 0(x • y)2 = 0

whereas the right hand side is, as the product of two non–negative numbers x • x and y • y , non–negative.

So we can assume that x and y are not zero. On account of the positive definiteness we have x • x > 0 and
y • y > 0. This allows us to define u := x/

√
x • x and v := y/

√
y • y. But then

u • u = (x • x)/
√
x • x2 = 1

v • v = (y • y)/
√
y • y2 = 1.

We have already seen in step 1 that u • v 5 1. It follows that

(x • y)/(
√
x • x√y • y) = (x/

√
x • x) • (y/

√
y • y) 5 1

We multiply both sides with
√
x • x√y • y,

x • y 5
√
x • x√y • y.

We replace x by −x and obtain
−(x • y) 5

√
x • x√y • y.

Think for a moment about the meaning of the absolute value and it is clear that the last two inequalities
together prove that

|x • y| 5
√
x • x√y • y.
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We square this and obtain
(x • y)2 5 (x • x) (y • y)

and the Cauchy–Schwartz inequality is proved. �

Note 6.2. We previously discussed the sup–norm

(6.18) ‖f(·)‖∞ = sup{|f(x)| : x ∈ X}

for real functions on some non–empty set X and the Euclidean norm

(6.19) ‖~x‖2 =
n∑
j=1

xj
2

for n–dimensional vectors ~x = (x1, x2, . . . , xn). You saw that either one satisfies positive definite-
ness, homogeneity and the triangle inequality (see (7.1) on p.63 and (6.1) on p.47). As previously
mentioned, mathematicians like to define new objects that are characterized by a given set of prop-
erties. As an example we had the definition of a vector space which encompasses objects as different
as finite–dimensional vectors and real functions. In chapter (7) on the topology of real numbers (p.
59) you will learn about metric spaces as a concept that generalizes the measurement of distance (or
closeness, if you prefer) for the elements of a non–empty set. Now we define a norm as a real func-
tion on a vector space by demanding the three characteristics of positive definiteness, homogeneity
and the triangle inequality.

Definition 6.10 (Normed vector spaces). Let L be a vector space. A norm on L is a real function
‖ · ‖ : L // R x � // ‖x‖

with the following three properties:

‖x‖ = 0 ∀x ∈ L and ‖x‖ = 0 ⇐⇒ x = 0 positive definite(6.20a)
‖αx‖ = |α| · ‖x‖ ∀x ∈ L,∀α ∈ R homogeneity(6.20b)
‖x+ y‖ 5 ‖x‖+ ‖y‖ ∀ x, y ∈ L triangle inequality(6.20c)

Theorem 6.1 (Inner products define norms). Let L be a vector space with an inner product

•(·, ·) : L× L→ R; (x, y) 7→ x • y

Then
‖ · ‖ : x 7→ ‖x‖ :=

√
(x • x)

defines a norm on L

Proof:
Positive definiteness : follows immediately from that of the inner product.

Homogeneity : Let x ∈ L and λ ∈ R. Then

‖λx‖ =
√

(λx) • (λx) =
√
λλ(x • x)) = |λ|

√
x • x = |λ|‖x‖

and we are done
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Triangle inequality : Let x, y ∈ L. Then

‖x+ y‖2 = (x+ y) • (x+ y)

=x • x + 2(x • y) + y • y
5x • x + 2|x • y| + y • y
5x • x + 2

√
x • x√y • y + y • y

=‖x‖2 + 2‖x‖ ‖y‖ + ‖y‖2

=
(
‖x‖ + ‖y‖

)2
The second equation uses bilinearity and symmetry of the inner product. The first inequality expresses the
simple fact that α 5 |α| for any number α. The second inequality uses Cauchy–Schwartz. The next equality
just substitutes the definition ‖x‖ =

√
(x • x) of the norm. The next and last equality is your beloved

binomial expansion (a+ b)2 = a2 + 2ab+ b2 for the ordinary real numbers a = ‖x‖ and b = ‖y‖. We
take square roots and obtain ‖x+ y‖ 5 ‖x‖ + ‖y‖ and that’s the triangle inequality we set out to prove. �
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7 Convergence and Continuity

There is a branch of Mathematics, called topology, which deals with the concept of closeness. The concept of
limits of a sequence (xn)n is based on closeness: All points of the sequence must get “arbitrarily close” to its
limit as n→∞. Continuity of functions also can be phrased in terms of closeness: They map arbitrarily close
elements of the domain to arbitrarily close elements of the codomain. In the most general setting Topology
deals with neighborhoods of a point without providing the concept of measuring the distance of two points.
We won’t deal with that in this document. Instead we’ll deal with sets X that are equipped with a metric.

7.1 Metric spaces (Study this!)

A metric is a real function of two arguments which associates with any two points x, y ∈ X their "distance"
d(x, y).

It is clear how you measure the distance (or closeness, depending on your point of view) of two numbers
x and y: you plot them on an x–axis where the distance between two consecutive integers is exactly one
inch, grab a ruler and see what you get. Alternate approach: you compute the difference. For example, the
distance between x = 12.3 and y = 15 is x− y = 12.3− 15 = −2.7. Actually, we have a problem: There
are situations where direction matters and a negative distance is one that goes into the opposite direction of a
positive distance, but we do want that in this context and understand the distance to be always non–negative,
i.e.,

dist(x, y) = |y − x| = |x− y|

More importantly, you must forget what you learned in your in your science classes: “Never ever talk about
a measure (such as distance or speed or volume) without clarifying its dimension”. Is the speed measured in
miles per hour our inches per second? Is the distance measured in inches or miles or micrometers? In the
context of metric spaces we measure distance simply as a number, without any dimension attached to it. For
the above example, you get

dist(12.3, 15) = |12.3− 15| = +2.7.

In section 6.1.3 on p.44 it is shown in great detail that the distance between two two–dimensional vectors
~v = (v1, v2) and ~w = (w1, w2) is

dist(~v, ~w) =
√

(w1 − v1)2 + (w2 − v2)2

and the distance between two three–dimensional vectors ~v = (v1, v2, v3) and ~w = (w1, w2, w3) is

dist(~v, ~w) =
√

(w1 − v1)2 + (w2 − v2)2 + (w3 − v3)2.

We shall see in thm 7.1 on p.60 that this distance function is a metric according to the next definition:

Definition 7.1 (Metric spaces). Let X be an arbitrary, non–empty set.
A metric on X is a real function

d(·, ·) : X ×X // R (x, y) � // d(x, y)
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with the following three properties: 13

d(x, y) = 0 ∀x, y ∈ X and d(x, y) = 0 ⇐⇒ x = y positive definite(7.1a)
d(x, y) = d(y, x) ∀x, y ∈ X symmetry(7.1b)
d(x, z) 5 d(x, y) + d(y, z) ∀ x, y, z ∈ X triangle inequality(7.1c)

The pair (X, d(·, ·)), usually just written as (X, d), is called a metric space. We’ll write X for short
if it is clear which metric we are talking about.

To appreciate that last sentence, you must understand that there can be more than one metric on X . See the
examples below.

Remark 7.1 (Metric properties). Let us quickly examine what those properties mean:
“Positive definite”: The distance is never negative and two items x and y have distance zero if and
only if they are equal.
“symmetry”: the distance from x to y is no different to that from y to x. That may come as a surprise
to you if you have learned in Physics about the distance from point a to point b being the vector ~v
that starts in a and ends in b and which is the opposite of the vector ~w that starts in b and ends in a,
i.e., ~v = −~w . In this document we care only about size and not about direction.
“Triangle inequality”: If you directly walk from x to z then this will be less painful than if you must
make a stopover at an intermediary y.

Before we give some examples of metric spaces, here is a theorem that tells you that a vector space with a norm,
i.e., a function with the three properties of the Euclidian norm (see 6.1 on p.47), becomes a metric space as
follows:

Theorem 7.1 (Norms define metric spaces). A norm on a vector space L is a real function 14

‖ · ‖ : L→ R+; x 7→ ‖x‖

such that

‖x‖ = 0 ∀x ∈ L and ‖x‖ = 0 ⇐⇒ x = 0 positive definite
‖αx‖ = |α| · ‖x‖ ∀x ∈ L,∀α ∈ R homogeneity
‖x+ y‖ 5 ‖x‖+ ‖y‖ ∀ x, y ∈ L triangle inequality

(7.2)

The following is true:
d‖·‖(·, ·) : (x, y) 7→ ‖y − x‖

defines a metric space (L, d‖·‖)

Proof The proof may be required as part of an upcoming homework and will not be given here. It is really
simple, even the triangle inequality for the metric d(x, y) = ‖x−y‖ follows easily from the triangle inequality
for the norm.

Here are some examples of metric spaces.
13 If you forgot the meaning of X ×X , it’s time to review [1] B/G (Beck/Geoghegan) ch.5.3 on cartesian products.
14 This definition was given in the section on abstract vector spaces (def.6.10, p.57) which is considered optional mate-

rial
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Example 7.1 (R : d(a, b) = |b − a|). This is a metric space because |·| is the Euclidean norm on
R = R1. It is obvious that if x, y are real numbers then the difference x− y , and hence its absolute
value, is zero if and only if x = y and that proves positive definiteness.
Symmetry follows from the fact that

d(x, y) = |x− y| = |−(y − x)| = |y − x| = d(y, x).

The triangle inequality follows from the one which says that

|a+ b| 5 |a|+ |b|

([1] B/G (Beck/Geoghegan), prop.10.8(iv)) as follows:

d(x, z) = |x− z| = |(x− y)− (z− y)| 5 |(x− y)|+ |(z− y)| = d(x, y) + d(z, y) = d(x, y) + d(y, z).

Example 7.2 (bounded real functions with d(f, g) = supd(f, g) = supd(f, g) = sup–norm of g(·)− f(·)g(·)− f(·)g(·)− f(·)).

d(f, g) = sup{|g(x)− f(x)| : x ∈ X}

is a metric on the set BBB(X,R) of all bounded real functions on X .

This follows from the fact that f 7→ sup{|f(x)| : x ∈ X} is a norm on the vector space BBB(X,R) (see (7.1)
on p.63). If you prefer, you can also conclude this from prop.7.2 on p.64 which directly proves the metric
properties of sup{|g(x)− f(x)| : x ∈ X}.

Example 7.3 (RN : d(~x, ~y) = Euclidean norm).

d(~x, ~y) =

√
(y1 − x1)2 + (y2 − x2)2 + . . .+ (yN − xN )2 =

√√√√ N∑
j=1

(yj − xj)2

This follows from the fact that the Euclidean norm is a norm on the vector space RN (see (6.1) on p.47).

Just in case you think that all metrics are derived from norms, this one will set you straight.

Example 7.4 (Discrete metric). Let X be non–empty. Then the function

d(x, y) =

{
0 for x = y

1 for x 6= y

on X ×X defines a metric.

Proof: Obviously the function is non–negative and it is zero if and only if x = y.
Symmetry is obvious too. The triangle inequality d(x, z) = d(x, y) + d(y, z) is clear in the special case
x = z. (Why?) So let us assume x 6= z. But then x 6= y or y 6= z or both must be true. (Why?) That
means that

d(x, z) = 1 5 d(x, y) + d(y, z)

and this proves the triangle inequality. �
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7.1.1 Measuring the distance of real functions

How do we compare two functions? Let us make our lives easier: How do we compare two real functions f(·)
and g(·)? One answer is to look at a picture with the graphs of f(·) and g(·) and look at the shortest distance
|f(x)− g(x)| as you run through all x. That means that the distance between the functions f(x) = x and
g(x) = x2 is zero because f(1) = g(1) = 1. The distance between f(x) = x+ 1 and g(x) = 0 (the x–
axis) is also zero because f(−1) = g(−1) = 0. Do you really think this is a good way to measure closeness?
You really do not want two items to have zero distance unless they coincide. It’s a lot better to look for an
argument x where the value |f(x)− g(x)| is largest rather than smallest. Now we are ready for a proper
definition.

Definition 7.2 (Distance between real functions). Let X be an arbitrary, non-empty set and let
f(·), g(·) : X → R be two real functions on X . We define the distance between f(·) and g(·) as

(7.3) d(f, g) := d(f(·), g(·)) := sup{|f(x)− g(x)| : x ∈ X}

The following picture illustrates this definition: Plot the graphs of f and g as usual and find the the spot x0
on the x–axis for which the difference |f(x0)− g(x0)| (the length of the vertical line that connects the two
points with coordinates (x0, f(x0)) and (x0, g(x0))) has the largest possible value. The domain of f and g is
the subset of R that corresponds to the thick portion of the x–axis.

- x

6
y

x0

d(f, g)

Figure 3: Distance of two real functions.

Now that you know how to measure the distance d(f(·), g(·)) between two real functions f(·), g(·), the next
picture shows you how to visualize the δ–neighborhood

(7.4) Bδ(f) := {g(·) : X → R : d(f, g) < δ} = {g(·) : X → R : sup
x∈X
|f(x)− g(x)| < δ}

If X is a subset of R, you draw the graph of f(·) + δ (the graph of f(·) shifted up north by the amount of
δ) and the graph of f(·)− δ (the graph of f(·) shifted down south by the amount of δ). Any function g(·)
which stays completely inside this band, without actually touching it, belongs to the δ–neighborhood of f(·).

In other words assuming that the domainA is a single, connected chunk and not a collection of more than one
separate intervals, the δ–neighborhood of f(·) is a "band" whose contours are made up on the left and right
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Figure 4: δ–neighborhood of a real function.

by two vertical lines and on the top and bottom by two lines that look like the graph of f(·) itself but have
been shifted up and down by the amount of δ.

The distance of a real function f(·) to the zero function (see 5.3 on 33) has a special notation.

Definition 7.3 (Norm of bounded real functions). LetX be an arbitrary, non-empty set. Let f(·) : X → R
be a bounded real function on X , i.e., there exists a (possibly very large) number K such that
|f(x)| 5 K for all x ∈ X . We define

‖f(·)‖ := sup{|f(x)| : x ∈ X}

You should see that for any two bounded real functions f(·), g(·) we have

‖f − g‖ = sup{|f(x)− g(x)| : x ∈ X} = d(f, g).

Proposition 7.1 (Properties of the norm of a real function). Let X be an arbitrary, non–empty set. Let

BBB(X,R) := {h(·) : h(·) is a bounded real function on X}

Then the norm function
‖ · ‖ : BBB(X,R) // R+ h(·) � // ‖h(·)‖ = sup{|f(x)| : x ∈ X}

satisfies the three properties of a norm (see (7.2), p.60):

‖f‖ = 0 ∀f ∈BBB(X,R) and ‖f‖ = 0 ⇐⇒ f(·) = 0 positive definite(7.5a)
‖αf(·)‖ = |α| · ‖f(·)‖ ∀f ∈BBB(X,R),∀α ∈ R homogeneity(7.5b)
‖f(·) + g(·)‖ 5 ‖f(·)‖+ ‖g(·)‖ ∀ f, g ∈BBB(X,R) triangle inequality(7.5c)

Proof The proof is required as part of an upcoming homework. It is really simple, even the triangle inequality
for the metric d(x, y) = ‖x− y‖ follows easily from the triangle inequality for the norm.
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Proposition 7.2 (Metric properties of the distance between real functions). Let X be an arbitrary,
non–empty set.
Let BBB(X,R) := {h(·) : h(·) is a bounded real function on X}.
Let f(·), g(·), h(·) ∈BBB(X,R) Then the distance function

d(·) : BBB(X,R)×BBB(X,R) // R+ (h1, h2)
� // d(h1, h2) := ‖h1 − h2‖

has the following three properties: 15

d(f, g) = 0 ∀f(·), g(·) ∈BBB(X,R) and d(f, g) = 0 ⇐⇒ f(·) = g(·) positive definite(7.6a)
d(f, g) = d(g, f) ∀f(·), g(·) ∈BBB(X,R) symmetry(7.6b)
d(f, h) 5 d(f, g) + d(g, h) ∀ f, g, h ∈BBB(X,R) triangle inequality(7.6c)

We have seen in other contexts what those properties mean:
“Positive definite”: The distance is never negative and two functions f(·) and g(·) have distance zero if and
only if they are equal, i.e., if and only if f(x) = g(x) for each argument x ∈ X .
“symmetry”: the distance from f(·) to g(·) is no different than that from g(·) to f(·). Symmetry implies that
you do not obtain a negative distance if you walk in the opposite direction.
“Triangle inequality”: If you directly compare the maximum deviation between two functions f(·) and h(·)
then this will never be more than than using an intermediary function g(·) and adding the distance between
f(·)andg(·) to that between g(·)andh(·).

Proof: The proof is required as part of an upcoming homework. It is really simple, even the triangle inequality
for the metric d(x, y) = ‖x− y‖ follows easily from the triangle inequality for the norm.

7.1.2 Bounded sets and bounded functions

Definition 7.4 (bounded sets). Given is a subset A of a metric space (X, d). The diameter of A is
defined as

(7.7) diam(∅) := 0, diam(A) := sup{d(x, y) : x, y ∈ A} if A 6= ∅.

We call A a bounded set if diam(A) <∞.

Proposition 7.3 (bounded if and only if finite diameter). Given is a metric space (X, d).
A non-empty subset A is bounded if and only if either of the following is true: 16

A. diam(A) <∞.(7.8)
B. There is a γ > 0 and x0 ∈ X such that A ⊆ Bγ(x0).(7.9)
C. For all x ∈ X there is a γ > 0 such that A ⊆ Bγ(x).(7.10)

Proof of “bounded if and only if A”: Obvious from the definition of the supremum as least upper bound (see
(5.7) on p.35).

15 If you forgot the meaning of BBB(X,R)×BBB(X,R), it’s time to review [1] B/G (Beck/Geoghegan) ch.5.3 on cartesian
products.

16 Neighborhoods of a point will be discussed in chapter 7.1.3, p.65 about Neighborhoods and open sets. In short, the
γ–neighborhood of x0 is the set of all points with distance less than γ from x0. (see def. 7.6 on p. 66).
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Proof of “B⇒ A”: For any x, y ∈ A we have

d(x, y) 5 d(x, x0) + d(x0, y) 5 2γ

and it follows that diam(A) 5 2γ.

Proof of “A⇒ B”: Pick an arbitrary x0 ∈ A and let γ := diam(A) . Then

y ∈ A =⇒ d(x0, y) 5 sup
x∈A

d(x, y) 5 sup
x,z∈A

d(x, z) = diam(A) = γ.

It follows that A ⊆ Bγ(x0). �

Proof of “C⇒ A”: We pick an arbitrary x0 ∈ A which is possible as A is not empty. Then there is γ = γ(x0)
such that A ⊆ Bγ(x0). For any y, z ∈ A we then have

d(y, z) 5 d(y, x0) + d(x0, z) 5 2γ

and it follows that diam(A) 5 2γ <∞.

Proof of “A⇒ C”: Given x ∈ X , pick an arbitrary x0 ∈ A and let γ := d(x, x0) + diam(A). Then

y ∈ A =⇒ d(x, y) 5 d(x, x0) + d(x0, y) 5 d(x, x0) + sup
u∈A

d(u, y)

5 d(x, x0) + sup
u,z∈A

d(u, z) = d(x, x0) + diam(A). = γ

It follows that A ⊆ Bγ(x).

Definition 7.5 (bounded functions). Given is a metric space (X, d).
A real-valued function f(·) onX is called bounded from above if there exists a (possibly very large)
number γ1 > 0 such that

(7.11) f(x) < γ1 for all arguments x.

It is called bounded from below if there exists a (possibly very large) number γ2 > 0 such that

(7.12) f(x) > −γ2 for all arguments x.

It is called a bounded function if it is both bounded from above and below. It is obvious that if you
set γ := max(γ1, γ2) then bounded functions are exactly those that satisfy the inequality

(7.13) |f(x)| < γ for all arguments x.

We note that f is bounded if and only if its range f(X) is a bounded subset of R (compare this to definition
5.9 on p.36 on supremum and infimum of functions)

7.1.3 Neighborhoods and open sets

A. Given a point x0 ∈ R (a real number), we can look at

Bε(x0) = (x0 − ε, x0 + ε) = {x ∈ R : x0 − ε < x < x0 + ε}
= {x ∈ R : d(x, x0) = |x− x0| < ε}

(7.14)
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which is the set of all real numbers x with a distance to x0 of strictly less than a number ε (the open interval
with end points x0 − ε and x0 + ε). (see example (7.1) on p.61).

B. Given a point ~x0 = (x0, y0) ∈ R2 (a point in the xy–plane), we can look at

Bε(~x0) = {~x ∈ R2 : ‖~x− ~x0‖ < ε}
= {(x, y) ∈ R2 : (x− x0)2 + (y − y0)2 < ε2}

(7.15)

which is the set of all points in the plane with a distance to ~x0 of strictly less than a number ε (the open disc
around ~x0 with radius ε from which the points on the boundary (those with distance equal to ε) are excluded).

C. Given a point ~x0 = (x0, y0, z0) ∈ R3 (a point in the 3–dimensional space), we can look at

Bε(~x0) = {~x ∈ R3 : ‖~x− ~x0‖ < ε}
= {(x, y, z) ∈ R3 : (~x− ~x0)2 + (~y − ~y0)2 + (~z − ~z0)2 < ε2}

(7.16)

which is the set of all points in space with a distance to ~x0 of strictly less than a number ε (the open ball
around ~x0 with radius ε from which the points on the boundary (those with distance equal to ε) are excluded).

D. Given a normed vector space (L, ‖ · ‖) and a vector x0 ∈ L, we can look at

(7.17) Bε(x0) = {x ∈ L : ‖x− x0‖ < ε}

which is the set of all vectors in L with a distance to x0 of strictly less than a number ε (the open set around
x0 with ”radius” ε from which the points on the boundary (those with distance equal to ε) are excluded).

There is one more item more general than neighborhoods of elements belonging to normed vector spaces, and
that would be neighborhoods in metric spaces. We have arrived at the final definition:

Definition 7.6 (ε-Neighborhood). Given a metric space (X, d) and an element x0 ∈ X , we can look
at

(7.18) Bε(x0) = {x ∈ L : d(x, x0) < ε}

which is the set of all elements ofX with a distance to x0 of strictly less than the number ε (the open
set around x0 with ”radius” ε from which the points on the boundary (those with distance equal to
ε) are excluded). We call Bε(x0) the ε–neighborhood of x0.

Let us not be too scientific about this, but the following should be intuitively clear: Look at any point
a ∈ Bε(x0). You can find δ > 0 such that the entire δ–neighborhood Bδ(a) of a is contained inside Bε(x0).
Just in case you do not trust your intuition, here is the proof. It is worth while to examine it closely because
you can see how the triangle inequality is put to work:

a ∈ Bε(x0) means that ε− d(a, x0) > 0 , say

(7.19) ε− d(a, x0) = 2δ

where δ > 0. Let b ∈ Bδ(a). I claim that any such b is an element of Bε(x0). How so?

d(b, x0) 5 d(b, a) + d(a, x0) 5 δ + d(a, x0) < 2δ + d(a, x0) = ε
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In the above chain, the first inequality is a consequence of the triangle inequality. The second one reflects the
fact that b ∈ Bδ(a). The strict inequality is trivial because we added the strictly positive number δ. The final
equality is a consequence of (7.19).

So we have proved that for any b ∈ Bδ(a) we have b ∈ Bε(x0), hence Bδ(a) ⊆ Bε(x0).

In other words, any a ∈ Bε(x0) is an interior point of Bε(x0) in the following sense:

Definition 7.7 (Interior point). Given is a metric space (X, d).
An element a ∈ A ⊆ X is called an interior point of A if we can find some ε > 0, however small it
may be, so that Bε(a) ⊆ A.

Definition 7.8 (open set). Given is a metric space (X, d).
A set all of whose members are interior points is called an open set.

Proposition 7.4. Bε(x0) is an open set

Proof: we showed earlier on that any a ∈ Bε(x0) is an interior point of Bε(x0). �

Definition 7.9 (Neighborhoods in Metric Spaces). Let (X, d) be a metric space, x0 ∈ X . Any open
set that contains x0 is called an open neighborhood of x0. Any superset of an open neighborhood
of x0 is simply called a neighborhood of x0.

Remark 7.2 (Open neighborhoods are the important ones). You will see that the important neigh-
borhoods are the small ones, not the big ones. The definition above says that you can sandwich an
open neighborhood Ux inbetween a point x and anyone of its neighborhoods Ax. In other words,
there are many propositions and theorems where you may assume that a neighborhood you deal
with is open.

Theorem 7.2 (Metric spaces are topological spaces). The following is true about open sets of a metric
space (X, d):

An arbitrary union
⋃
i∈I

Ui of open sets Ui is open.(7.20a)

A finite intersection U1 ∩ U2 ∩ . . . ∩ Un (n ∈ N) of open sets is open.(7.20b)
The entire set X is open and the empty set ∅ is open.(7.20c)

Proof of a: Let U :=
⋃
i∈I

Ui and assume x ∈ U . We must show that x is an interior point of U . An element

belongs to a union if and only if it belongs to at least one of the participating sets of the union. So there exists
an index i0 ∈ I such that x ∈ Ui0 . Because Ui0 is open, x is an interior point and we can find a suitable
ε > 0 such that Bε(x) ⊆ Ui0 . But Ui0 ⊆ U and we have Bε(x) ⊆ U and have shown that x is interior
point of U . But x was an arbitrary point of U =

⋃
i∈I

Ui which therefore is shown to be an open set.

Proof of b: Let x ∈ U := U1 ∩ U2 ∩ . . . ∩ Un. Then x ∈ Uj for all 1 5 j 5 n according to the definition
of an intersection and it is inner point of all of them because they all are open sets. Hence, for each j there is a
suitable εj > 0 such that Bεj (x) ⊆ Uj Now define

ε := min{ε1, ε2, ε3, . . . , εn}
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Then ε > 0 and 17

Bε(x) ⊆ Bεj (x) ⊆ Uj (1 5 j 5 n) =⇒ Bε(x) ⊆
n⋂
j=1

Uj .

We have shown that an arbitrary x ∈ U is interior point of U and this proves part b.

Proof of c: First we deal with the set X . Choose any x ∈ X . No matter how small or big an ε > 0 you choose,
Bε is a subset of X . But then x is an inner point of X , so all members of x are inner points and this proves
that X is open.
Now to the empty set ∅. You may have a hard time to accept the logic of this statement: All elements of ∅
are interior points. But remember, the premise “let x ∈ X” is always false and you may conclude from it
whatever you please. �

7.1.4 Digression: Abstract topological spaces (Skip starting at def. 7.12: Basis and neighbor-
hood basi)!)

Theorem 7.2 on p.67 gives us a way of defining neighborhoods for sets which do not have a metric.

Definition 7.10 (Abstract topological spaces). Let X be an arbitrary non-empty set and let U be a
set of subsets of X whose members satisfy the properties a, b and c of (7.20) on p.67:

An arbitrary union
⋃
i∈I

Ui of sets Ui ∈ U belongs to U,(7.21a)

U1, U2, . . . , Un ∈ U (n ∈ N) ⇒ U1 ∩ U2 ∩ . . . ∩ Un ∈ U,(7.21b)
X ∈ U and ∅ ∈ U.(7.21c)

Then (X,U) is called a topological space The members of U are called “open sets” of (X,U) and the
collection U of open sets is called the topology of X .

Definition 7.11 (Topology induced by a metric). Let (X, d) be a metric space and let Ud be the set
of open subsets of (X, d), i.e., all sets U ∈ X which consist of interior points only: for each x ∈ U
there exist ε > 0 such that

Bε(x) = {y ∈ X : d(x, y) < ε} ⊆ U

(see (7.7) on p.67). We have seen in theorem (7.2) that those open sets satisfy the conditions of the
previous definition. In other words, (X,Ud) defines a topological space. We say that its topology
is induced by the metric d(·, ·) or that it is generated by the metric d(·, ·). If there is no confusion
about which metric we are talking about, we also simply speak about the metric topology.

Let X be a vector space with a norm ‖ · ‖. Remember that any norm defines a metric d‖·‖(·, ·) via
d‖·‖(x, y) = ‖x− y‖ (see (7.1) on p.60). Obviously, this norm defines open sets

U‖·‖ := Ud‖·‖

17 by the way, this is the exact spot where the proof breaks down if you deal with an infinite intersection of open sets:
the minimum would have to be replaced by an infimum and there is no guarantee that it would be strictly larger than
zero.
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on X by means of this metric. We say that this topology is induced by the norm ‖ · ‖ or that it is
generated by the norm ‖ · ‖. If there is no confusion about which norm we are talking about, we
also simply speak about the norm topology.

Example 7.5 (Discrete topology). Let X be non–empty. We had defined in (7.4) on p.61 the discrete
metric as

d(x, y) =

{
0 for x = y

1 for x 6= y.

The associated topology is
Ud = {A : A ⊆ X}.

In other words, each subset of X is open. Why? First observe that for any x ∈ X , B1/2(x) = {x}.
Hence, each singleton inX is open. But any subset A ⊆ X is the union of it members: A =

⋃
a∈A
{a}

and it must be open as a union of open sets. Note that the discrete metric defines the biggest possible
topology onX , i.e., the biggest possible collection of subsets ofX whose members satisfy properties
a, b, c of definiton 7.10 on p.68. We call this topology the discrete topology of X .

Example 7.6 (Indiscrete topology). Here is an example of a topology which is not generated by a
metric. Let X be an arbitrary non–empty set and define U := {∅, X}. Then (X,U) is a topological
space. This is trivial because any intersection of members of U is either ∅ (if at least one member is
∅) or X (if all members are X). Conversely, any union of members of U is either ∅ (if all members
are ∅) or X (if at least one member is X).

The topology {∅, X} is called the indiscrete topology of X . It is the smallest possible topology on
X .

Definition 7.12 (Basis and neighborhood basis). Let (X,U) be a topological space.

A subset B ⊆ U of open sets is called a basis of the topology if any open set U can be written as a
union

(7.22) U =
⋃
i∈I

Bi (Bi ∈ B for all i ∈ I)

where I is a suitable index set.

Let x ∈ X and A ⊆ X . It is not assumed that A be open. A is called a neighborhood of x and x is
called an interior point of A if you can find an open set U such that

(7.23) x ∈ U ⊆ A.

The set of subsets of X

(7.24) N(x) := {A ⊆ X : A is a neighborhood of X}

is called the neighborhood system of x

Given a point x ∈ X , any subset B := B(x) ⊆ N(x) of the neighborhood system of x is called a
neighborhood basis of x if it satisfies the following condition: For any A ∈ N(x) you can find a
B ∈ B(x) such that B ⊆ A. In other words, in theorems where proving closeness to some element
is the issue, it often suffices to show that something is true for all sets that belong to a neighborhood
basis of x rather than having to show it for all neighborhoods of x.
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Definition 7.13 (First axiom of countability). Let (X,U) be a topological space.
We say that X satisfies the first axiom of countability or X is first countable if we can find for
each x ∈ X a countable neighborhood base.

Theorem 7.3 (Metric spaces are first countable). Let (X, d) be a metric space. Then X is first countable.

Proof (outline): For any x ∈ X let

(7.25) B(x) := { B1/n(x) : n ∈ N }.

Then B(x) is a neighborhood basis of x. �

Definition 7.14 (Second axiom of countability). Let (X,U) be a topological space.
We say that X satisfies the second axiom of countability or X is second countable if we can find
a countable basis for U.

Theorem 7.4 (Euclidean space RN is second countable). Let

(7.26) B := { B1/n(q) : q ∈ QN , n ∈ N }.

Here QN = {q = (q1, . . . , qN ) : qj ∈ Q, 1 5 j 5 N} is the set of all points in RN with rational coordinates.
Then B is a countable basis.

Proof (outline): You have seen that Q is countable (corollary 3.1 on p.21). It can be shown that QN too is
countable. Let U ∈ U be an arbitrary open set in X . Any x ∈ U is inner point of U , hence we can find
some (large) integer nx such that the entire 3/nx–neighborhood B3/nx

(x) is contained within U . As any
vector can be approximated by vectors with rational coordinates, we can find some q = qx ∈ QN such that
d(x, qx) < /nx. Draw a picture and you see that both x ∈ B1/nx

(qx) and B1/nx
(qx) ⊆ B3/nx

(x). In other
words, we have

x ∈ B1/nx
(qx) ⊆ U

for all x ∈ U . But then
U ⊆

⋃ [
B1/nx

(qx) : x ∈ U
]
⊆ U

and it follows that U is the (countable union of the sets B1/nx
(qx). �

7.1.5 Convergence, contact points and closed sets

Definition 7.15 (convergence of sequences). Given is a metric space (X, d).
We say that a sequence (xn) of elements of X converges to a ∈ X for n→∞ if almost all of the xn
will come arbitrarily close to a in the following sense:
Let δ be an arbitrarily small positive real number. Then there is a (possibly extremely large) integer
n0 such that all xj belong toBδ(a) just as long as j = n0. To say this another way: Given any number
δ > 0, however small, you can find an integer n0 such that

(7.27) d(a, xj) < δ for all j = n0

We write either of

(7.28) a = lim
n→∞

xn or xn → a

and we call a the limit of the sequence (xn)
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There is yet another way of interpreting convergence towards a: No matter how small a neighborhood of a
you choose: at most finitely many of the xn will be located outside that neighborhood.

Convergence is an extremely important concept in Mathematics, but it excludes the case of sequences such
as xn := n and yn := −n (n ∈ N). Intuition tells us that xn converges to ∞ and yn converges to −∞
because we think of very big numbers as being very close to +∞ and very small numbers (i.e., very big ones
with a minus sign) as being very close to −∞.

Definition 7.16 (Limit infinity). For this definition we do not deal with an arbitrary metric space
but specifically with X = R and d(x, y) = |b− a|. Given a real number K > 0, we define

BK(∞) := {x ∈ R : x > K}(7.29a)
BK(−∞) := {x ∈ R : x < −K}(7.29b)

We call BK(∞) the K-neighborhood of∞ and BK(−∞) the K-neighborhood of −∞.
We say that a sequence (xn) has limit∞ and we write either of

(7.30) xn →∞ or lim
n→∞

xn =∞

if the following is true for any (big) K: There is a (possibly extremely large) integer n0 such that all
xj belong to BK(∞) just as long as j = n0.
We say that the sequence (xn) has limit −∞ and we write either of

(7.31) xn → −∞ or lim
n→∞

xn = −∞

if the following is true for any (big) K: There is a (possibly extremely large) integer n0 such that all
xj belong to BK(−∞) just as long as j = n0.

Note 7.1 (Notation for limits of monotone sequences). Let (xn) be a non-decreasing sequence of real
numbers and let yn be a non-increasing sequence. If ξ = limk→∞ xk (that limit might be +∞) then
we write suggestively

xi ↗ ξ (i→∞)

If η = limj→∞ xj (that limit might be −∞) then we write suggestively

yj ↘ η (j →∞)

Remark 7.3 (No convergence or divergence to infinity). The majority of mathematicians does not
use the expressions “convergence to∞” or “divergence to∞”. Rather, they will use the phrase that
a sequence has the limit∞.

If you look at any closed interval [a, b] = {y ∈ R : a 5 y 5 b}, of real numbers, then all of its points are
interior points, except for the end points a and b. On the other hand, a and b are contact points according to
the following definition which makes sense for any metric space (X, d).
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Definition 7.17 (contact points). Given is a metric space (X, d).
Let A ⊆ X and a ∈ X (a may or may not to belong to A). a is called a contact point of A (Ger-
man: Berührungspunkt - see [10] Von Querenburg, p.21) if there exists a sequence x1, x2, x3, . . . of
members of A which converges to a.

Proposition 7.5 (Criterion for contact points). Given is a metric space (X, d).
Let A ⊆ X and a ∈ X . Then a is a contact point of A if and only if A∩N 6= ∅ for any neighborhood N of a.

Proof of “⇒”: Let x ∈ X and assume there is (xn)nsuch that xn ∈ A and xn → x. We must show that if Ux
is a (open) neighborhood of x then Ux∩A 6= ∅. Let ε > 0 such that Bε(x) ⊆ Ux. It follows from xn → x that
there is N = N(ε) such that xn ∈ Bε(x) for all n = N , especially, xN ∈ Bε(x). By assumption, xN ∈ A,
hence xN ∈ Bε(x) ∩A ⊆ Ux ∩A, hence Ux ∩A 6= ∅.

Proof of “⇐” Let x ∈ X be a contact point for A ⊆ X . Let xn ∈ B1/n(x)∩A. Such xn exists: x is a contact
point of A, hence B1/n(x) ∩ A 6= ∅. Given ε > 0, let N ∈ N be chosen such that 1/ε < N . This is possible
because N is not bounded (above) in R. For any j = N : d(xj , x) < 1/j 5 1/N < ε. This proves xn → x.
�

Note 7.2. We mentioned before that a contact point for a set A need not necessarily belong to A.
Example: Let A be the set ]0, 1[ of real numbers x such that 0 < x < 1. Then 0 is a contact point
because the sequence xn = 1/n converges to 0: No matter how small a δ you choose: if you
set n0 to an integer larger than 1/δ then

(7.32) n > n0 ⇒ d(xn, 0) = |xn − 0| = |xn| = 1/n < 1/n0 < 1/(1/δ) = δ

and it follows that 0 is a contact point of ]0, 1[. Similarly we can show that the sequence xn = 1− 1/n
converges to the number 1.

On the other hand, any b ∈ A ⊆ (X, d) is a contact point of A because the constant sequence

x1 = b; x2 = b; x3 = b; · · ·

converges to b. This means that any subset of X is contained in its closure, which we will define
next.

Note 7.3 (Contact points vs Limit points). Besides contact points there also is the concept of a limit
point. Here is the definition (see [5] Munkres, a standard book on topology): Given is a metric space
(X, d).
Let A ⊆ X and a ∈ X . a is called a limit point or cluster point or point of accumulation of A if
any neighborhood U of a intersects A in at least one point other than a. This definition excludes
“isolated points” of A from being limit points of A.

Definition 7.18 (closed sets). Given is a metric space (X, d)
and a subset A ⊆ X . We call

Ā := {x ∈ X : x is a contact point of A}

the closure of A. A set that contains all its contact points is called a closed set.

Proposition 7.6. The complement of an open set is closed.
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Proof of 7.6: Let A be an open set. Each point a ∈ A is an interior point which can be surrounded by a
δ-neighborhood Vδ(a) which, for small enough δ, will be entirely contained within A. Let B = A{ = X \ A
and assume x ∈ X is a contact point of B. We want to prove that B is a closed set, so we must show that
x ∈ B. We assume the opposite and show that this will lead to a contradiction. So let us assume that x /∈ B.
That means, of course, that x belongs to B’s complement which is A. But A is open, so x must necessarily be
an interior point ofA. This means that there is an entire neighborhoodBδ(x) surrounding x which is entirely
contained in A and hence has no points in common with the complement B. On the other hand we assumed
that x is a contact point of B of A. That again means that there must be points in B so close to x that they
also must be contained in Bδ(x) and we have reached a contradiction. �

Proposition 7.7. The complement of a closed set is open.

Proof of 7.7: Let A be closed set. Let B = A{ = X \ A. If B is not open then there must be b ∈ B which
is not an interior point of B. We’ll show now that this assumption leads to a contradiction. Because b is not
an interior point of B, there is no δ-neighborhood, for whatever small δ, that entirely belongs to B. So, for
each j ∈ N, there is an xj ∈ B1/j(b) which does not belong to B. In other words, we have a sequence xj
which converges to b and is entirely contained in A. The closed set A contains all its contact points and it
follows that b ∈ A. But we had assumed at the outset that b ∈ B which is the complement of A and we have
a contradiction. �

7.1.6 Completeness in metric spaces

Often you are faced with a situation where you need to find a contact point a and all you have is a sequence
which behaves like one converging to a contact point in the sense of inequality 7.27 (page 70)

Definition 7.19 (Cauchy sequences). Given is a metric space (X, d).
A sequence (xn) in X is called a Cauchy sequence 18 or, in short, it is Cauchy if it has the following
property: Given any whatever small number ε > 0 , you can find a (possibly very large) number
n0 such that

(7.33) d(xi, xj) < ε for all i, j = n0

This is called the Cauchy criterion for convergence of a sequence.

Example 7.7 (Cauchy criterion for real numbers). In R we have d(x, y) = |x− y| and the Cauchy
criterion requires for any given ε > 0 the existence of n0 ∈ N such that

(7.34) |xi − xj | < ε for all i, j = n0

The following theorem of the completeness of the set of all real numbers states that any Cauchy sequence
converges to a real number. To say this differently, showing that a sequence is Cauchy is all you have to do if
you want to show that a sequence has a finite limit without the need to provide the actual value of that limit.
This situation arises very often in Math. Matter of fact, you can say that this preoccupation with proving
existence rather than computing the actual value is one of the major points which distinguish Mathematics
from applied Physics and the engineering disciplines.

18 so named after the great french mathematician Augustin–Louis Cauchy (1789–1857) who contributed massively to
the most fundamental ideas of Calculus.
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Theorem 7.5 (Completeness of the real numbers). The following is true for the real numbers with the
metric d(a, b) = |b− a| but will in general be false for arbitrary metric spaces: Let (xn) be a Cauchy se-
quence in R. then there exists a real number L such that L = lim

n→∞
xn.

Proof: Part 1: We shall show that xn is bounded. There is N = N(1) such that |xi − xj | < 1/2 for all
i, j = N . In particular, |xi − xN | < 1/2, hence |xi| = |xi − xN + xN | 5 |xi − xN | + |xN | 5 |xN | + 1
for all i = N . Let M := max{|xj | : j 5 N}. Then |xj | 5 M + 1 and we have proved that the sequence is
bounded.

Part 2: We shall show next that lim inf
n→∞

xn = lim sup
n→∞

xn. Let ε > 0 and N ∈ N such that |xi − xj | 5 ε for

all i, j = N . Let Tn := {xj : j = n} be the tail set of the sequence (xn)n. Let αN := inf TN , βN := supTN .
There is some i = N such that |xi − αN | = xi − αN 5 ε and there is some j = N such that |βN − xj | =
βN − xj 5 ε It follows that

0 5 βN − αN = |βN − αN | 5 |(βN − xj) + (xj − xi) + (xi − αN )| 5 3ε.

Further, if k > N then Tk ⊆ TN , hence αk = αN and βk 5 βN and it follows that

βk − αk 5 βN − αN 5 3ε.

But then

lim sup
k→∞

xk − lim inf
k→∞

xk ≤ lim
k→∞

βk − lim
k→∞

αk 5 βN − αN 5 3ε.

ε > 0 was arbitrary, hence lim sup
k→∞

xk = lim inf
k→∞

xk.

Part 3: It follows from theorem 5.2 on p.42 that the sequence (xn)n converges to L := lim sup
k→∞

xk and the

proof is finished. �

Now that you have the completeness of R it is not very difficult to see that it is valid for RN , too.

Theorem 7.6 (Completeness of RN ). The following is true for RN with the Euclidian norm, specifically
for the real numbers with d(a, b) = |b− a| but will in general be false for arbitrary metric spaces or normed
vector spaces: Let (~xn) be a Cauchy sequence in RN . then there exists a vector~a ∈ RN such that~a = lim

n→∞
~vn.

Proof (outline): Let ~xn = (xn,1, xn,2, . . . , xn,N ). From the theorem of the completeness of the real numbers
we know that there exist real numbers

a1, a2, a3, . . . , aN such that aj = lim
n→∞

xn,j (1 5 j 5 N).

For a given number ε we can find natural numbers n0,1, n0,2, . . . , n0,N such that

|xn,j − aj | <
ε

N
for all n = n0,j .

Let n? := max(n0,1, n0,2, . . . , n0,N ). It follows that

d((~xn − ~a) =

√√√√ N∑
j=1

|xn,j − aj |2 5 N · ε
N

= ε for all n = n?.

�

Here is the formal definition of a complete set in a metric space.
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Definition 7.20 (Completeness in metric spaces). Given is a metric space (X, d). A subset A ⊆ X is
called complete if any Cauchy sequence (xn) with elements in A converges to an element of A.

We won’t really talk about completeness in general until the chapter on compact spaces. Just to mention one
of the simplest facts about completeness:

Theorem 7.7 (Complete sets are closed). Given is a metric space (X, d). Any complete subset A ⊆ X is
closed.

Proof: Let a be a contact point of A. The theorem is proved if we can show that a ∈ A. a) We shall employ
prop.7.5 on p.72: A point x ∈ X is a contact point of A if and only if A ∩ V 6= ∅ for any neighborhood V of
x. Let m ∈ N. Then B1/m(a) is a neighborhood of the contact point a, hence hence A

⋂
B1/m(a) 6= ∅ and

we can pick a point from this intersection which we name xm. b) We shall prove next that (xm)m is Cauchy.
Let ε > 0 and let N ∈ N be such that N > 1/ε. if j ∈ N and k ∈ N both exceed N then

d(xj , xk) 5 d(xj , a) + d(a, xk) 5
1

j
+

1

k
5

ε

2
+
ε

2
= ε.

It follows that the sequence (xj) is Cauchy. c) Because A is complete, this sequence must converge to some
b ∈ A. But b cannot be different from aOtherwise we could “separate” a and b by two disjoint neighborhoods:
choose the open ρ–balls Bρ(a) and Bρ(b) where ρ is one half the distance between a and b (see the proof of
thm.7.9 on p.91). Only finitely many of the xn are allowed to be outsideBρ(a) and the same is true forBρ(b).
That is a contradiction and it follows that b = a, i.e., a ∈ A. d) We summarize: if a is a contact point of A
then a ∈ A. It follows that A is closed. �

Example 7.8 (Approximation of decimals). The following should help to illustrate Cauchy sequences
and completeness in R. Take any real number x = 0 and write it as a decimal. As I explained in (3.1)
on (p.7), anything that can be written as a decimal number is a real number. Let’s say, x starts out
on the left as

x = 258.1408926584207531 . . .

If we define as xk the leftmost part of x, truncated k digits after the decimal points:

x1 = 258.1, x2 = 258.14, x3 = 258.140, x4 = 258.1408, x5 = 258.14089, . . .

and as yk the leftmost part of x, truncated k digits after the decimal points, but the rightmost digit
incremented by 1 (where you then might obtain a carry-over to the left when you add 1 to 9)

y1 = 258.2, y2 = 258.15, y3 = 258.141, y4 = 258.1409, y5 = 258.14090, . . .

then the sequence (xn) is non-decreasing: xn+1 = xn for all n and the sequence (yn) is non-increasing:
yn+1 5 yn for all n and we have the sandwich property: xn 5 x 5 yn for all n. Both sequences are
Cauchy because both

d(xn+i, xn+j) = |xn+i − xn+j | 5 10−n → 0 (n→ ∞)

d(yn+i, yn+j) = |yn+i − yn+j | 5 10−n → 0 (n→ ∞)

It is obvious that x = lim
n→∞

xn = lim
m→∞

ym.

What just has been illustrated is that there a natural way to construct for a given x ∈ R Cauchy
sequences that converge towards x. The completeness principle states that the reverse is true: For
any Cauchy sequence you can find an element x against which the sequence converges.
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7.1.7 Appendix: Addenda to chapter 7.1: Metric Spaces

Given a metric space (X, d), what is the opposite of lim
k→∞

xk = L?

Beware! It is NOT the statement that lim
k→∞

xk 6= L because such a statement would mislead you to believe

that such a limit exists, it just happens not to coincide with L

The correct answer: There exists some ε > 0 such that for all N ∈ N there exists some natural number
j = j(N) such that j ≥ N and d(xj , L) ≥ ε.

Proposition: A sequence (xk)k with values in (X, d) does not have L ∈ X as its limit iff there exists some
ε > 0 and a subsequence n1 < n2 < n3 < . . . in N such that d(xnj , L) ≥ ε for all j.
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7.2 Continuity (Study this!)

7.2.1 Definition and characterization of continuous functions

Informally speaking a continuous function
f(·) : R // R x � // y = f(x)

is one whose graph in the xy plane is a continuous line without any disconnections or gaps. This can be stated
slightly more formal by saying that if the x-values are closely together then the f(x)-values must be closely
together too. The latter makes sense for any sets X , Y where closeness can be measured, i.e., for metric spaces
(X, d1) and (Y, d2). Here is the formal definition:

Definition 7.21 (Continuous functions). Given are two metric spaces (X, d1) and (Y, d2). LetA ⊆ X ,
x0 ∈ A and let f(·) : A → Y be a mapping from A to Y . We say that f(·) is continuous at x0 and
we write

(7.35) lim
x→x0

f(x) = f(x0)

if the following is true for any sequence (xn) with values in A:

(7.36) if xn → x0 then f(xn)→ f(x0).

We say that f(·) is continuous if f(·) is continuous in a for all a ∈ A.

In other words, the following must be true for any sequence (xn) in A

(7.37) lim
n→∞

xn = x0 ⇒ lim
n→∞

f(xn) = f( lim
n→∞

xn) = f(x0)

Important points to notice:
a) It is not enough for the above to be true for some sequences that converge to x0. Rather, it must be true for
all such sequences!
b) We restrict our universe to the domain A of f . If x0 is not an interior point of A then we ignore sequences
xn → x0 unless all its members xn belong to A.

Theorem 7.8 (ε-δ characterization of continuity). Let (X, d1) and (Y, d2) be two metric spaces. Let
A ⊆ X , x0 ∈ A and let f(·) : A→ Y be a mapping from A to Y . Then f(·) is continuous at x0 if and only
if the following is true: For any (whatever small) ε > 0 there exists a (most likely very small) δ > 0 such that

(7.38) f
(
Bδ(x0) ∩A

)
⊆ Bε(f(x0)),

which is another way of saying that, for all x ∈ A,

(7.39) d1(x, x0) < δ =⇒ d2(f(x), f(x0)) < ε.

a)⇒a)⇒a)⇒: Proof that sequence continuity implies ε-δ-continuity:
We prove this by showing that the opposite assumption, that we have sequence continuity but not ε-δ-
continuity, will lead to a contradiction.
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So let us assume that there is a function f which is “sequence continuous” at x0 but not “ε-δ-continuous”.
Then there exists some ε > 0 such that neither 7.38 nor the equivalent 7.39 is true for any δ > 0.

a.1. In other words, No matter how small a δ we choose, there is at least one x = x(δ) ∈ A such that
d1(x, x0) < δ but d2(f(x), f(x0)) = ε. So let us choose a whole sequence of such δ values, say δ := δ(m) :=
1/m(m ∈ N). For each such m

(7.40) there exists some xm ∈ B1/m(x0) ∩A; such that; d2(f(xm), f(x0)) = ε.

a.2. We now show that the sequence (xm)m∈N converges to x0: Let γ > 0 and pick N := N(γ) ∈ N so big
that N > 1/γ, i.e., 1/N < γ. We obtain for any m = N that

d1(xm, x0) < 1/m 5 1/N < γ

(we used (7.40) for the first inequality) and it is proved that xm → x0.

a.3. It is clear that the sequence
(
f(xm)

)
m∈N does not converge to f(x0) as that requires d2(f(xm), f(x0)) <

ε for all sufficiently bigm, contrary to (7.40) which implies that there is not even one suchm. In other words,
the function f is not sequence continuous, contrary to our assumption. We have our contradiction.

b)⇐b)⇐b)⇐: Proof that “ε-δ-continuity” implies “sequence continuity”:
Let xn → x0. Let yn := f(xn) and y := f(x0). We must prove that yn → y as n→∞.

b.1. Let ε > 0. We can find δ > 0 such that (7.38) and hence (7.39) are satisfied. We assumed that xn → x0.
Hence there exists N := N(δ) ∈ N such that d1(xn, x0) < δ for all n = N .

b.2. It follows from (7.39) that d2(yn, y) = d2(f(xn), f(x0)) < ε for all n = N . In other words, yn → y as
n→∞ and the proof of “⇐” is finished. �

[1] B/G: Art of Proof defines in appendix A, p.136, continuity of a function f as follows: “f−1(open) =
open”. The following proposition proves that their definition coincides with the one given here: the validity of
7.35 for all x0 ∈ X .

a) Note that f now is defined on all of X in the interest of avoiding additional definitions and propositions
concerning “metric subspaces” A of metric spaces X and how their open sets relate to those of X .

b) Also note that this next proposition addresses continuity of f for all x ∈ X and not at a specific x0.

Proposition 7.8 (“f−1(open) = open” continuity). Let (X, d1) and (Y, d2) be two metric spaces and let
f(·) : X → Y be a mapping from X to Y . Then f(·) is continuous if and only if the following is true: Let V
be an open subset of Y . Then the inverse image f−1(V ) is open in X .

Proof of “⇒”: Let V be an open set in Y . Let U := f−1(V ), a ∈ U and b := f(a). Then b ∈ V by the
definition of inverse images. b is inner point of the open set V and there is ε > 0 such that Bε(b) ⊆ V . It
follows from thm.7.8 (ε-δ characterization of continuity) that there is δ > 0 such that f(Bδ(a)) ⊆ Bε(b). It
follows from the monotonicity of direct and inverse images and prop.4.1 on p.26 that

Bδ(a) ⊆ f−1
(
f(Bδ(a))

)
⊆ f−1(Bε(b)) ⊆ f−1(V ) = U.

It follows that the arbitrarily chosen a ∈ U is an interior point of U and this proves that U is open.
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Proof of “⇐”: We now assume that all inverse images of open sets in Y are open in X . Let a ∈ X, b = f(a)
and ε > 0. We must find δ > 0 such that f(Bδ(a)) ⊆ Bε(b). Let U := f−1

(
Bε(b)

)
. Then U is open as the

inverse image of the open neighborhood Bε(b) and there will be δ > 0 such that Bδ(a) ⊆ U . It follows from
the monotonicity of direct and inverse images and prop.4.6 on p.27 that

f
(
Bδ(a)

)
⊆ f(U) = f

(
f−1(f(Bε(b)))

)
= Bε(b) ∩ f(X) ⊆ Bε(b).

�

Remark 7.4 (continuity for real functions of real numbers). Let (X, d1) = (Y, d2) = R. In this case
equation (7.39) on p.77 looks like this:

|x− x0| < δ =⇒ |f(x)− f(x0)| < ε

Proposition 7.9 (continuity of the identity mapping). Let X, d) be a metric space and

id(·) : E → E x 7→ x

be the identity function on E. Then id(·) is continuous.

Proof: Given any ε > 0 , let δ := ε. Let x, y ∈ X . Assume that d(x, y) < δ. Then

d(id(x), id(y)) = d(x, y) < δ = ε

and we have satisfied condition (7.39) of the ε− δ characterization of continuity. This proves that the identity
mapping is continuous. �

7.2.2 Continuity of constants and sums and products

For all the following, unless stated differently, let (X, d) be a metric space and A ⊆ X . Let

f : A −→ R

g : A −→ R

be two real functions which both are continuous in a point x0 ∈ A. Moreover, let a, b be two (constant) real
numbers. You can think of any constant number a as a function on R as follows:

a(·) : X // R x � // a

In other words, the function a(·) assigns to each x ∈ X one and the same value a. We called such a function
a constant function (see (5.3) on p.33).

Proposition 7.10. Given is a metric space (X, d).
Let f(·), g(·), f1(·), f2(·), f3(·), . . . , fn(·) : A→ R all be continuous functions in x0 ∈ A ⊆ X . Then

a: Constant functions are continuous everywhere on R.

b: The product fg(·) : x 7→ f(x)g(x) is continuous in x0. Especially af(·)x 7→ a · f(x) is continuous in x0
and , using −1 as a constant, −f(·) : x 7→ −f(x) is continuous in x0

c: The sum f + g(·) : x 7→ f(x) + g(x) is continuous in x0

d: Any “linear combination”
n∑
j=0

ajfj(·) : x 7→
n∑
j=0

ajfj(x) is continuous in x0.
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Proof of a: Let ε > 0. We do not even have to look for a suitable δ to restrict the distance between two
arguments x and x0 because it is always true that

|a(x)− a(x0)| = |a− a| = 0 < ε

and we are done.

Proof of b: In the following chain of calculations each inequality results from applying the triangle inequality
(3.3) which states, just to remind you, that |a+ b| 5 |a|+ |b| for any two real numbers a and b:

|f(x0)g(x0)− f(x)g(x)|
= |f(x0)g(x0)− f(x)g(x0) + f(x)g(x0)− f(x)g(x)|
5 |g(x0)| · |f(x0)− f(x)| + |f(x)| · |g(x0)− g(x)|
5 |g(x0)| · |f(x0)− f(x)| + |f(x)− f(x0) + f(x0)| · |g(x0)− g(x)|
5 |g(x0)| · |f(x0)− f(x)| + (|f(x)− f(x0)|+ |f(x0)|) · |g(x0)− g(x)|

Now write xn rather than x and assume that (xn) is a sequence which converges to x0 and we have just
shown that

(7.41) |f(x0)g(x0)− f(xn)g(xn)| 5 K1 +K2

where

K1 = |g(x0)| · |f(x0)− f(xn)|
K2 = (|f(xn)− f(x0)|+ |f(x0)|) · |g(x0)− g(xn)|

The continuity of f(·) and g(·) in x0 and the convergence xn → x0 for n→∞ implies that f(xn)→ f(x0)
and g(xn)→ g(x0) (see (7.36) on p.77). So both |f(x0)− f(xn)| and |g(x0)− g(xn)| will converge to zero
as n → ∞ and the same will be true if those expressions are multiplied by the constant value |g(x0)|, no
matter how big it may be, or by |f(xn) − f(x0)| + |f(x0)| (for big n, f(xn) is very close to f(x0) so that
|f(xn)− f(x0)|+ |f(x0)| will be bounded by the constant value 1 + |f(x0)|) for big enough n. This means
that both K1 and K2 will converge to zero and (7.41) shows that fg(xn) = f(xn)g(xn) converges to fg(x0)
as n → ∞. But we made no special assumption about (xn) besides its converging against x0 and we have
proved the continuity of (fg)(·) in x0. This concludes the proof of b.

Proof of c: Let ε > 0 and let ε̃ = ε
2 . Because f(·) and g(·) are both continuous in x0, there is δ > 0 such that

|f(x0)− f(xn)| < ε̃ and |g(x0)− g(xn)| < ε̃ Again, we make heavy use of the triangle inequality:

|f(x0) + g(x0) − (f(xn) + g(xn))| = |(f(x0)− f(x)) + (g(x0)− g(x))|
5 |f(x0)− f(x)| + |g(x0)− g(x))|
5 ε̃+ ε̃ = ε

and we are done with the proof of c.

proof of d: For linear combinations of two functions f1 and f2, the proof is obvious from parts a, b and c. The
proof for sums of more than two terms needs a simple (strong) induction argument: Write

n+1∑
j=0

ajfj(x) =
( n∑
j=0

ajfj(x)
)

+ an+1fn+1(x) = I + II.

The left term “I” is continuous by the induction assumption and the entire sum I + II then is continous as
the sum of two continuous functions. �
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7.2.3 Function spaces (Understand this!)

Definition 7.22 (linear combinations (imprecise)). The following definitions were discussed in the
chapter on vector spaces (see def.6.6 on p.52 and def.6.7 on p.52). As that material is optional, they
are repeated here in abbreviated form for your convenience.

Let XXX1,XXX2,XXX3, . . . ,XXXn be a finite number of items for which it makes sense to multiply them with
real numbers a1, a2, a3, . . . , an and to add or subtract them. We call the finite sum

(7.42)
n∑
j=0

ajXXXj = a1XXX1 + a2XXX2 + a3XXX3 + . . .+ anXXXn

a linear combination of theXXXj items. The multipliers a1, a2, . . . are called scalars in this context.

Definition 7.23 (linear mappings (imprecise)). Linear mappings also were treated in greater detail
in the chapter on vector spaces Again, this is an abbreviated presentation for your convenience.

Let L1, L2 be two non–empty sets which contain with any elements XXX1,XXX2, . . . ,XXXn also any linear
combination 19

n∑
j=0

ajXXXj = a1XXX1 + a2XXX2 + a3XXX3 + . . .+ anXXXn.

Let F (·) : L1 → L2 be a mapping with the following properties:

F (x+ y) = F (x) + F (y) ∀x, y ∈ L1 (additivity)(7.43a)
F (αx) = αF (x) ∀x ∈ L1, ∀α ∈ R homogeneity(7.43b)

Then we call F (·) a linear mapping.

It is easy enough to show that conditions (7.43a) and (7.43b) are equivalent to demanding that

(7.44) F (
n∑
j=0

ajXXXj) =
n∑
j=0

ajF (XXXj)

for any linear combination in L1. 20

Example 7.9. It is important that you understand the following: Let A 6= ∅ and fj(·) : A −→ R a
sequence of real functions on A. We set XXXj := fj(·) and in this way create linear combinations of
real-valued functions:

(7.45)
n∑
j=0

ajfj(·) : x 7→ a1f1(x) + a2f2(x) + · · ·+ anfn(x)

is also a function which is defined on A. In other words, the set

(7.46) FFF (A,R) = {f(·) : f(·) is a real function on A}

satisfies the condition in def.7.23 that it contains all its linear combinations. In fact, FFF (A,R) is a
vector space in the sense of def.6.4 on p.49 and so is its subset BBB(A,R) of all bounded functions.

19 this “closure” with respect to linear combinations is the most important property of vector spaces
20 see (6.4) on p.53 if you know about vector spaces.

81



Do not worry about the vector space property if you did not previously learn about vector spaces. Instead,
review the definition (7.22) on p.81 of linear combinations. The most important aspect of vector spaces is that,
with any finite number of elements, they will also contain all linear combinations you can build with them.
Part d of the prop.7.10 on p.79 proves that continuous functions on any non–empty set satisfy exactly that
property.

Remember though the notation CCC (X,R) and CCCBBB(X,R) for continuous and continuous bounded real func-
tions on a set X . Besides, you will learn in the next section that if X is a bounded and closed subset of R then
any continuous real function on X is also bounded, i.e.,

CCCBBB(X,R) = CCC (X,R) if X ⊆ R is closed and bounded.

Example 7.10 (Vector space of continuous real functions). The set

CCC (X,R) := {f(·) : f(·) is a continuous real function on X}

of all real continuous functions on an arbitrary non–empty set X is a vector space if you define
addition and scalar multiplication as in (5.2) on p.33. The reason is that you can verify the properties
A, B, C of a vector space by looking at the function values for a specific argument x ∈ X and for
each one fo those you just deal with ordinary real numbers. The “sup–norm”

‖f(·)‖ = sup{|f(x)| : x ∈ X}

(see (7.3) on p.63) is not a real function on all of CCC (X,R) because ‖f(·)‖ = +∞ for any unbounded
f(·) ∈ CCC (X,R).

The subset

CCCBBB(X,R) := {h(·) : h(·) is a bounded continuous real function on X}

(see (7.1) on p. 63) is a subspace of the normed vector space of all bounded real functions on X . On
this subspace the sup–norm truly is a real function in the sense that ‖f(·)‖ <∞.

7.2.4 Continuity of Polynomials (Understand this!)

Definition 7.24 (polynomials). Anything that has to do with polynomials takes place in R and not
on a metric space.

Let A be subset of the real numbers and let p(·) : A→ R be a real function on A. p(·) is called a
polynomial. if there is an integer n = 0 and real numbers a1, a2, . . . , an which are constant (they do
not depend on x) so that p(·) can be written as a sum

(7.47) p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n

Remember that x0 = 1 and x1 = x and we have

(7.48) p(x) = a0x
0 + a1x

1 + a2x
2 + . . .+ anx

n =
n∑
j=0

ajx
j

In other words, polynomials are linear combinations of the monomials x→ xk (k ∈ (N)0 .

82



Proposition 7.11 (All polynomials are continuous).

Proof: It suffices to show that the monomials mj(x) := xj are continuous for all j = 0, 1, 2, . . . because
of proposition (7.10), part d and because all polynomials are linear combinations of monomials. m0(·) is
continuous because it is the constant function x → 1. m1(·) : x → x is continuous according to thm 7.8 21

(p.77) because for any given ε > 0 we choose δ := ε and this will ensure that |m1(x)−m1(y)| < ε whenever
|x−y| < δ. But ifm1(·) is continuous then so is the productm2(·) = m1(·)m1(·). But then so is the product
m3(·) = m2(·)m1(·). But then so is the product mj(·) = mj−1(·)m1(·) for any choice of j > 0. We have
shown that all monomials are continuous and so are polynomials as their linear combinations. �

Proposition 7.12 (Vector space property of polynomials). Sums and scalar products of polynomials are
polynomials.

Proof of a. Additivity:
Let

p1(x) = a0 + a1x+ a2x
2 + . . .+ anx

n
1 =

n1∑
j=0

ajx
j

and

p2(x) = b0 + b1x+ b2x
2 + . . .+ bnx

n
2 =

n2∑
j=0

bjx
j

be two polynomials. Might as well assume that n1 5 n2. Let an1+1 = an1+2 = . . . = an2 = 0. This does
not change anything and we get

p1(x) + p1(x) =

n2∑
j=0

ajx
j +

n2∑
j=0

bjx
j

=

n2∑
j=0

(aj + bj)x
j

=

n2∑
j=0

cjx
j (cj := aj + bj)

This proves that the function p1(·) + p2(·) is of the form (7.48) and we have shown that it is a polyno-
mial. The proof for the sum of more than two polynomials now follows by the principle of proof by complete
induction (see (3.2) on p.8).

Proof of b. Scalar product:
Let

p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n =

n∑
j=0

ajx
j

21 besides, m1(·) is the identity mapping on R and we know from proposition (7.9) on p.79 that identity mappings are
always continuous.

83



be a polynomial. Let λ be a real number. Then

(λp)(x) = λp(x) = λ

n∑
j=0

ajx
j

=
n∑
j=0

λajx
j =

n∑
j=0

cjx
j (cj := λaj)

This proves that the function λp(·) is of the form (7.48) and we are done. �

Polnomials may not always be given in their normalized form (7.48) on p.82. Here is an example:

p(x) = a0x
0(1− x)n + a1x

1(1− x)n−1 + a2x
2(1− x)n−2 + . . .+ an−1x

n−1(1− x)1 + anx
n

=

n∑
k=0

akx
k(1− x)n−k

is a linear combination of monomials and hence a polynomial. All you need to do is “multiply out” the
xk(1− x)n−k terms and then regroup the resulting mess. The so called Bernstein polynomials

p(x) =
n∑
k=0

(
n

k

)
f(
k

n
)xk(1− x)n−k see note22

are of that form.

Example 7.11 (Vector space of polynomials). Let A ⊆ R. I follows from (7.12) and (7.11) that the set

{p(·) : p(·) is a polynomial on A}

of all polynomials on an arbitrary non–empty subset A of the real numbers is a subspace of the
vector space CCC (A,R). (see example (7.10) on p.82. The “sup–norm”

‖f(·)‖ = sup{|f(x)| : x ∈ A}

is not a real function on the set of all polynomials on A as its value may be∞.. Matter of fact, it can
be shown that, if the set A itself is not bounded, then the only polynomials for which ‖p(·)‖ < ∞
are the constant functions on A(!)

22 Here f(·) is a function, not necessarily continuous, on the unit interval [0, 1]. The binomial coefficient
(
n
k

)
is defined

as n!
k!(n−k)!

where 0! = 1 and n! = 1 · 2 · 3 · · ·n for n ∈ !N (see ch.4 of [1] B/G Art of Proof)
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7.3 Function sequences and infinite series

7.3.1 Convergence of function sequences (Study this!)

Vectors are more complicated than numbers because an n–dimensional vector v ∈ Rn represents a grouping
of a finite number n of real numbers. Matter of fact, any such vector (x1, x2, x3, · · · , xn) can be interpreted
as a real function (remember: a real function is one which maps it arguments into R)

(7.49) f(·) : {1, 2, 3, · · · , N} → R j 7→ xj

(see (6.4) on p.44).

Next come sequences (xj)j∈N which can be interpreted as real functions

(7.50) g(·) : N→ R j 7→ xj

Finally we deal with any kind of real function

(7.51) h(·) : X → R x 7→ h(x)

as the most general case

Now we add more complexity by not just dealing with one or two or three real functions but with an entire
sequence

(7.52) fn(·) : X → R x 7→ fn(x)

For any fixed argument x0 we have a sequence f1(x0), f2(x0), f3(x0), · · · which we can examine for con-
vergence. This sequence may converge for some or all arguments x0 ∈ X to a real number. Time for some
definitions.

Definition 7.25 (Pointwise convergence of function sequences). Let X be a non-empty set, (Y, d) a
metric space and let fn(·) : X → Y and f(·) : X → Y be functions on X (n ∈ N) . Let A ⊆ X
be a subset of X . We say that fn(·) converges pointwise or, simply, converges to f(·) on A and we
write fn(·)→ f(·) if

(7.53) fn(x)→ f(x) for all x ∈ A

Definition 7.26 (Uniform convergence of function sequences). Let X be a non-empty set, (Y, d) a
metric space and let fn(·) : X → Y and f(·) : X → Y be functions on X (n ∈ N) . Let A ⊆ X be a
subset of X . We say that fn(·) converges uniformly to f(·) on A and we write 23

(7.54) fn(·) uc→ f(·)

if the following is true: For each ε > 0 (no matter how small) there exists a (probably huge) number
n0 which can be chosen once and for all, independently of the specific argument x, such that

(7.55) d(fn(x), f(x)) < ε for all x ∈ A and n = n0
23 I must confess that “ fn(·)

uc→ f(·) ” is a notation that I coined myself because it is not as tedious as writing
“ fn(·)→f(·) uniformly”
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Remark 7.5 (Uniform convergence implies pointwise convergence). Look at definition (7.15) on
p.70 of convergence of sequences and you should immediately see that (7.55) implies, for any given
x ∈ A, ordinary convergence f(x) = lim

n→∞
fn(x) because the number n0 = n0(ε) chosen in (7.55) will

also satisfy (7.27) (p.70) for xn = fn(x) and a = f(x).

In other words, unform convergence implies pointwise convergence. But what is the difference
between pointwise and uniform convergence? The difference is that, for poinwise convergence, the
number n0 will depend on both ε and x: n0 = n0(ε, x). In the case of uniform convergence, the
number n0 will still depend on ε but can be chosen independently of the argument x ∈ A.

Example 7.12 (a. Constant sequence of functions). Let X be a set and let
f(·) : X → R be a real function on X which may or may not be continuous anywhere. Define a
sequence of functions

fn(·) : X → R (n ∈ N) as f1(·) = f2(·) = · · · = f(·)

which is just a shorthand of writing that

f1(x) = f2(x) = · · · = f(x) ∀n ∈ N, ∀x ∈ X.

In other words, we are looking at a constant sequence of functions (not to be confused with a se-
quence of constant functions – seriously!).

Then fn(·) uc→ f(·)

Proof of the example a: This is trivial. No matter how small an ε and n0 we choose and no matter what
argument x ∈ X we are looking at, we have

|fn(x)− f(x)| = 0 < ε for all x ∈ A and n > n0

�

Example 7.13 (b. Pointwise but not uniformly convergent sequence of functions). Let X = [0, 1],
i.e., X is the closed unit interval {x ∈ R : 0 5 x 5 1} . Let the functions fn(·) be defined as follows
on X :

fn(x) =

{
n2x for 0 5 x 5 1

n
1
x for 1

n 5 x 5 1

Note that both pieces fit together in the point a = 1/n because the “ 1
x definition” gives fn(a) = 1

1/n = n

and the “n2x definition” gives the same value n = n2 1
n . We do not give a formal proof that each

fn(·) is continuous in every point of [0, 1]. Just accept it from the fact that the two graphs flow into
each other at the “splicing point” 1/n.

Now we define the function f(·) : [0, 1]→ R as

f(x) =

{
1
x for 0 < x 5 1

0 for x = 0

Then the functions fn(·) converge pointwise but not uniformly to f(·) on the entire unit interval.
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Proof of example b, pointwise convergence:
first we look separately at the point a = 0. We have f(0) = 0 = n20 = fn(0) and the constant sequence
of zeroes certainly converges against zero. Now assume a > 0. If n > 1/a then fn(a) = 1

a for all such n.
Again, we have a constant sequence (1/a) except for finitely many n and it converges against 1/a = f(a).
We have thus proved pointwise convergence.

Proof of example b, no uniform convergence:
To prove that (7.55) is not satisfied, we must find ε > 0 and points xN so that for no matter how big a natural
number N we choose, there will be at least one n > N such that |fn(x) − f(x)| = ε. Let N ∈ N be any
natural number. Then

fN (
1

N2
) =

N2

N2
= 1

and

f2N (
1

N2
) =

(2N)2

N2
= 4

So
|f2N (

1

N2
)− fN (

1

N2
)| = 3

To recap: We found ε > 0 so that for each N ∈ N we were able to find an n = N and xN ∈ [0, 1] such that
|fn(XN )− fN (xN )| > ε : we chose

ε = 2, n = 2N, xN =
1

N2

We have thus prove that the pointwise convergence is not uniform. �

7.3.2 Infinite Series (Understand this!)

We start by repeating the definition of a sequence given in section 3.2 on p.9: A sequence (xj) is nothing
but a family of things xj which are indexed by integers, usually the natural numbers or the non-negative
integers. We make throughout this entire document the following

Assumption 7.1 (indices of sequences). Unless explicitly stated otherwise, sequences are always
indexed 1, 2, 3, . . . , i.e., the first index is 1 and, given any index, you obtain the next one by adding
1 to it.

The simplest things that a mathematician deals with are numbers. One nice thing that is always possible with
numbers, is that you can add them. Here is a very simple definition:

Definition 7.27 (Numeric Sequences and Series). A sequence (aj) of real numbers is called a nu-
meric sequence if each aj is a real number. For any such sequence, we can build another sequence
(sn) as follows:

(7.56) s1 := a1; s2 := a1 + a2; s3 := a1 + a2 + a3; · · · sn :=

n∑
k=1

ak

We call (sn) the sequence of partial sums associated with the sequence (ak). We also write this more
compactly as

(7.57) a1 + a2 + a3 + · · · =

∞∑
k=1

ak
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and we call any such object, which represents a sequence of partial sums, a series. Loosely speaking,
a series is an infinite sum. We say that the series converges to a real number x and we write

(7.58) x =

∞∑
k=1

ak

. if this is true for associated sequence of finite partial sums (7.56). We say that the series has limit
∞ (has limit −∞) if this true for the associated partial sums and we write

(7.59)
∞∑
k=1

ak =∞ (
∞∑
k=1

ak = −∞)

Proposition 7.13 (Convergence criteria for series). A series sn :=
∑n

k=1 ak of real numbers possess a
limit a ∈ R if and only if either of the following two is true:∣∣∣ ∞∑

k=n

ak

∣∣∣ < ε for all n = n0(7.60a)

∣∣∣ m∑
k=n

ak

∣∣∣ < ε for all m,n = n0(7.60b)

Proof: Write

(7.61) a :=
∞∑
k=1

ak =
n∑
k=1

ak +
∞∑

k=n+1

ak = sn +
∞∑

k=n+1

ak

Remember the convergence criteria for numeric sequences. Convergence of a sequence (sn) to a real number
a means that for any ε > 0, no matter how small it may be, all but finitely many members sn will be inside
the ε–neighborhood Bε(a) of a. Written in terms of the distance to a this means there exists a suitable n0 ∈ N
such that

|a− sn| < ε for all n = n0

(see (7.15) on p.70). According to (7.61) we can write that as∣∣∣ ∞∑
k=n+1

ak

∣∣∣ < ε for all n = n0

which is the same as (7.60.a) because it does not matter whether we we look at the sum of all terms bigger
than n or n+ 1.

Alternatively, there was the Cauchy criterion

|xi − xj | < δ for all i, j = n0

(see (7.19) on p.73) which ensures convergence to some number a without specifying what it might actually
be. Again we use (7.61) and obtain, assuming without loss of generality that i < j,

∣∣∣ j∑
k=i+1

∣∣∣ < δ for all j > i = n0
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It is very important to understand that a series either converges to a finite number or it diverges. If it diverges

it may be the case that
∞∑
k=1

ak =∞ or
∞∑
k=1

ak = −∞ or there is no limit at all. As an example for a series

which has no limit, look at the oscillating sequence and associated partial sums

(7.62) a0 = 1; a1 = −1; a2 = 1; a3 = −1; · · · sn =
n∑
k=0

(−1)n

This also is an example of a series that starts with an index other than 1 (zero). sn obviously does not have limit
+∞ or−∞ because sn is 1 for all even n and 0 for all odd n. Do not make the mistake of saying that the limit
of the series is zero because your imagination disregards the odd indices and s0 = s2 = s4 = · · · = s2j = 0.
Note that for any j ∈ N we have |sj − sj−1| = 1 because at each step we either add or subtract 1. This
means that no matter what real number a and how big a number n0 ∈ N we choose, it will never be true that
|a− sj | < 1 for all j ∈ N and a cannot be a limit of the series.

Just so you understand the difference between limits and contact points (see (7.17) on p.72): Even though
neither aj nor sj has a limit, both have two contact points each. aj has the contact points {1,−1} and sj has
the contact points {0, 1}.

We now turn our attention to convergence properties of series.

Definition 7.28 (Finite permutations). Let N ∈ N and let XN := {1, 2, 3, . . . , N} denote the set of
the first N integers. A permutation of XN is a mapping

π(·) : XN → XN ; j 7→ π(j)

which is both surjective: each element k of XN is the image π(j) for a suitable j ∈ XN and injec-
tive: different arguments i 6= j ∈ XN will always map to different images π(i) 6= π(j) ∈ XN (see
(3.6) on p.11). You may remember that

surjective + injective = bijective

and that under our assumptions the inverse mapping

π−1(·) : XN → XN ; π(j) 7→ π−1π(j) = j,

which associates with each image π(j) the unique argument j which maps into π(j), exists (see
def. 3.6 on p.11 for properties of the inverse mapping).

It is customary to write

i1 instead of π(1), i2 instead of π(2), . . . , ij instead of π(j), . . .

Definition 7.29 (Permutations of N). A permutation of N is a mapping

π(·) : N→ N; j 7→ π(j)

which is both surjective: each element k of N is the image π(j) for a suitable j ∈ N and injective:
different arguments i 6= j ∈ N will always map to different images π(i) 6= π(j) ∈ N .
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Permutations are the means of describing a reordering of the members of a finite or infinite sequence. Look at
any sequence (aj). Given a permutation π(·) of the natural numbers, we can form the sequence (bk) := (aπ(k)),
i.e.,

b1 = aπ(1), b2 = aπ(2), . . . , bk = aπ(k), . . .

We can use the inverse permutation, π−1(·), to regain the aj from the bj because

bπ−1(k) = aπ−1(π(k)) = ak

Proposition 7.14 (Absolute Convergence of series with non–negative members). Let (an) be a se-
quence of non–negative members: an = 0 for all n ∈ N. Then one of the following will be true:

AAA: the series
∞∑
n=1

an converges to a (finite) number a ∈ R. In that case

∞∑
n=1

an =
∞∑
n=1

aπ(n) for any permutation π(·)of N.

BBB: the series
∞∑
n=1

an has limit ∞. In that case it is true for any permutation π(·) of N that the reordered

series
∞∑
n=1

aπ(n) also has limit∞.

Proof ofAAA: Let bj := aπ(j) and, hence, ak = bπ−1(j). Let N ∈ N . Let

(7.63) α := max{π(j) : j 5 N} and β := max{π−1(k) : k 5 N}.

Note that α = N and β = N . Because all terms aj , bk are non–negative it follows that

N∑
j=1

bj =
N∑
j=1

aπ(j) 5
α∑
k=1

ak 5
α∑
k=1

ak +

∞∑
k=α+1

ak =

∞∑
k=1

ak,

N∑
k=1

ak =

N∑
k=1

bπ−1(k) 5
β∑
j=1

bj 5
β∑
j=1

bj +

∞∑
j=β+1

bj =

∞∑
j=1

bj .

We take limits as N →∞ and it follows that
∞∑
j=1

bj ≤
∞∑
k=1

ak and
∞∑
k=1

ak 5
∞∑
j=1

bj .

This proves the lemma. �

Definition 7.30 (absolutely convergent series). A series is absolutely convergent if it converges
and its limit is unchanged if the indices are permuted.

The last proposition then states that a convergent series of non-negative terms converges absolutely. The next
proposition says that any series which converges if you replace its members by their absolute values will in
fact converge absolutely.

Proposition 7.15. Let
∞∑
n=1

an be a series such that
∞∑
n=1

|an| converges. Then
∞∑
n=1

an converges absolutely.
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7.4 Appendix: Addenda to chapter 7

7.4.1 Convergence (Study this!)

Theorem 7.9 (Limits in metric spaces are uniquely determined). Let (X, d) be a metric space .
Let (xn)n be a convergent sequence in X Then its limit is uniquely determined.

Proof: Otherwise there would be two different pointsL1, L2 ∈ X such that both lim
n→∞

xn = L1 and lim
n→∞

xn = L2

Let ε := d(L1, L2)/2. There will be N1, N2 ∈ N such that

d(xn, L1) < ε ∀n = N1 andd(xn, L2) < ε ∀n = N2.

It follows that, for n = N1 +N2,

d(L1, L2) 5 d(L1, xn) + d(xn, L2) < 2ε = d(L1, L2)

and we have reached a contradiction. �

7.4.2 Completeness (Study this!)

The following is the reverse of thm.7.7.

Theorem 7.10 (Closed subsets of a complete space are complete). Given is a complete metric space
(X, d).
Let A ⊆ X be closed. Then A is complete.

Proof: Let (xn)n be a Cauchy sequence in A. We must show that there is a ∈ A such that xn → a.
(xn) also is Cauchy in X . Because X is complete there exists x ∈ X such that xn → x. If we can show that
x is a contact point of A then we are done: As the set A is assumed to be closed, it contains all its contact
points. It follows that x ∈ A, i.e., the arbitrary Cauchy sequence (xn) in A converges to an element of A. We
conclude that A is complete. �

Theorem 7.11 (Convergent sequences are Cauchy). Let (xnj )n be a convergent sequence in a subset A
of a metric space (X, d). Then (xnj )n is a Cauchy sequence (in A).

Proof: Let xn → L (L ∈ A). Let ε > 0. There exists N ∈ N such that

k = N ⇒ d(xk, L) < ε/2. (?)(7.64)

It follows from (?) that, for any i, j = N ,

i, j = N ⇒ d(xi, xj) leqq d(xi, L) + d(L, xj) < ε/2 + ε/2 = ε.(7.65)

It follows that the sequence satisfies (7.33) of the definition 7.19 on p.73 of a Cauchy sequence. �
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7.4.3 Uniform convergence and metric subspaces (Study unif conv, understand subspaces!)

Theorem 7.12 (Uniform limits of continuous functions are continuous). Let (X, d1) and (Y, d2) be
metric spaces and let fn(·) : X → Y and f(·) : X → Y be functions on X (n ∈ N) . Let x0 ∈ X and
let V ⊆ X be a neighborhood of x0. Assume a) that the functions fn(·) are continuous at x0 for all n and b)
that fn(·) uc→ f(·) on V . Then f is continuous at x0

Proof: Let ε > 0.

A. Uniform convergence fn(·) uc→ f(·) on V guarantees the existence of some N = N(ε) such that

d2
(
fn(x), f(x)

)
<
ε

3
for all x ∈ V and n = N.

In particular, for n = N ,

d2
(
fN (x), f(x)

)
<
ε

3
for all x ∈ V .(7.66)

B. All functions fn and in particular fN are continuous in V . There is δ̃ > 0 such that

d2(fN (x), fN (x0)) <
ε

3
for all x ∈ Bδ̃(x0).(7.67)

C. As x0 is an interior point of V , there exists δ̂ > 0 such that Bδ̂(x0) ⊆ V . Let δ be the smaller of δ̂ and δ̃.

Then (7.66) and (7.67) both hold for x ∈ Bδ(x0). We note that x0 ∈ Bδ(x0) and obtain

d(f(x), f(x0)) 5 d(f(x), fN (x)) + d(fN (x), fN (x0)) + d(fN (x0), f(x0)) <
ε

3
+

ε

3
+

ε

3
= ε.

The proof is finished. �

Definition 7.31 (Restriction/Extension of a function). Given are three non-empty sets A ⊆ X and
Y . Let f : X → Y a function with domain X . We define the restriction of f to A as the function

f
∣∣
A

: A→ Y defined as f
∣∣
A

(x) := f(x) (x ∈ A)(7.68)

Conversely let f : A → Y and ϕ : X → Y be functions such that f = ϕ
∣∣
A

. We then call ϕ an
extension of f to X .

Notation 7.1. As the only difference between f and f
∣∣
A

is the domain, it is customary to write f
instead of f

∣∣
A

to make formulas look simpler if doing so does not give rise to confusions.

Definition 7.32 (Metric subspaces). Given is a metric space (X, d) and a non–empty A ⊆ (X, d). Let
d
∣∣
A×A : A×A→ R≥0 be the restriction d

∣∣
A×A(x, y) := d(x, y)(x, y ∈ A) of the metric d to A×A. It is

trivial to verify that (A, d
∣∣
A×A) is a metric space in the sense of def.7.1 on p.59. We call (A, d

∣∣
A×A) a

metric subspace of (X, d) and we call d
∣∣
A×A the metric induced by d or the metric inherited from

(X, d) .
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Remark 7.6. Such a metric subspace comes with its own collections of open and closed sets, neigh-
borhoods, ε-neighborhoods, convergent sequences, ... and you must watch out when looking at
statements and their proofs whether those concepts refer to the entire space (X, d) or to the sub-
space (A, d

∣∣
AxA

).

Notation 7.2. a) As the only difference between d and dA×A is the domain, it is customary to write
d instead of dA×A to make formulas look simpler if doing so does not give rise to confusions.

b) We often shorten “open in (A, d
∣∣
A×A)” to “open in A”, “closed in (A, d

∣∣
A×A)” to “closed in A”,

“convergent in (A, d
∣∣
A×A)” to “convergent in A”, .....

Proposition 7.16 (ε-neighborhoods are a topology basis). Let (X, d) be a metric space. Then the set
B1 := {Bε(x) : x ∈ X, ε > 0} is a basis for the topology of (X, d) (see 7.12 on p.69) and the same is true
for the “thinner” set B2 := {B1/n(x) : x ∈ X,n ∈ N}.

Proof: To show that B1 (resp., B2) is a basis we must prove that any open subset of X can be written as a
union of (open) sets all of which belong to B1 (resp., B2). We shall prove this for B2.

Let U ⊆ X be open. As any x ∈ U is an interior point of U we can find some ε = ε(x) > 0 such that
Bε(x)(x) ⊆ U . We note that for any such ε(x) there is n(x) ∈ N such that 1/n(x) 5 ε(x). We observe that
U ⊆

⋃[
B1/n(x)(x) : x ∈ U

]
⊆ U . The first inclusion follows from the fact that {x} ⊆ B1/n(x)(x) for all

x ∈ U and the second inclusion follows from B1/n(x)(x) ⊆ U and the inclusion lemma (lemma 4.1 on p.22).
It follows that U =

⋃[
B1/n(x)(x) : x ∈ U

]
and we have managed to represent our open U as a union of

elements of B2. This proves that B2 is a basis for the topology of X, d. As B2 ⊆ B1 it follows that B1 also
is such a basis. �

Proposition 7.17 (Open sets in A as traces of open sets in X). Let (X, d) be a metric space and A ⊆ X
a nonempty subset of X , viewed as a metric subspace (A, d

∣∣
A×A) of (X, d) (see def.7.32 on p.92). For ε > 0

and a ∈ A let BA
ε (a) denote the ε-neighborhood of a in the subspace (A, d

∣∣
A×A). In other words,

BA
ε (a) = {x ∈ A : d

∣∣
A×A(x, a) < ε}.(7.69)

Then

BA
ε (a) = Bε(a) ∩A.(7.70)

More generally, a set U ⊆ A is open in A if and only if there is an open V ⊆ in (X, d) such that

U = V ∩A,(7.71)

i.e., U is the trace of an open set V in X .

Proof: First we shall prove (7.70). As d
∣∣
A×A is the restriction of d to A×A it follows that

BA
ε (a) = {x ∈ A : d(x, a) < ε} = {x ∈ A : d(x, a) < ε} ∩A

= {x ∈ X : d(x, a) < ε} ∩A = BA
ε (a) ∩A

Next we prove that if V is open in X then U := V ∩A is open in the subspace A: Let x ∈ U . We must prove
that x is an interior point of U with respect to (A, d

∣∣
A×A) of (X, d). x ∈ V and V is open in X . Hence there
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is ε > 0 such that Bε(x) ⊆ V . It follows that BA
ε (x) = Bε(x) ∩ A ⊆ u and BA

ε (x) is open in A, hence x is
interior point of U .

Finally we prove that if U is open in the subspace A then we can find V ⊆ X which is open in X such that
U = V ∩ A: We can write U =

⋃[
BA
ε(x)(x) : x ∈ U

]
for suitable ε(x) > 0 (see the proof of prop.7.16 on

p.93). Let V :=
⋃[

Bε(x)(x) : x ∈ U
]

we have

V ∩A = A ∩
⋃[

Bε(x)(x) : x ∈ U
]

=
⋃[

Bε(x)(x) ∩A : x ∈ U
]

=
⋃[

BA
ε(x)(x) : x ∈ U

]
= U

and this finishes the proof. �

Proposition 7.18 (Distributivity of unions and intersections). Let (Ai)i∈I be an arbitrary family of sets
and let B be a set. Then ⋃

i∈I
(B ∩Ai) = B ∩

⋃
i∈I

Ai,(7.72) ⋂
i∈I

(B ∪Ai) = B ∪
⋂
i∈I

Ai.(7.73)

Proof: We only prove (7.72).
Proof of “⊆”: It follows from B ∩ Ai ⊆ Ai for all i that

⋃
i(B ∩ Ai) ⊆

⋃
iAi. Moreover, B ∩ Ai ⊆ B for

all i implies
⋃
i(B ∩Ai) ⊆

⋃
iB which equals B. It follows that

⋃
i(B ∩Ai) is contained in the intersection(⋃

iAi

)
∩B.

Proof of “⊇”: Let x ∈ B ∩
⋃
iAi. Then x ∈ B and x ∈ Ai? for some i? ∈ I , hence x ∈ B ∩ Ai? , hence

x ∈
⋃
i (B ∩Ai). �

7.4.4 The Hahn-Banach separation theorem 24 - Skip this!

Theorem 7.13 (Hahn-Banach). Let V be a vector space over R and p : V → R a sublinear mapping.
Suppose F is a (linear) subspace of V and f : F → R is a linear mapping with f 5 p on F . Then there is an
extension of f to a linear map f̃ : V → R such that f̃ 5 p on V .

Before proving this theorem, first we shall prove two lemmata.

Lemma 7.1. Suppose F is a subspace of V and a ∈ V \ F .
Let k ∈ R and f̃(x+ λa) := f(x) + λk, i.e., k = f̃(a). Then

k 5 inf
u∈F
{p(u+ a)− f(u)} ⇐⇒ f̃(x+ λa) 5 p(x+ λa) for all λ > 0 and x ∈ F,(7.74)

k = sup
v∈F
{f(v)− p(v − a)} ⇐⇒ f̃(x+ λa) 5 p(x+ λa) for all λ < 0 and x ∈ F.(7.75)

Proof of 7.74,⇒): Let us assume that λ > 0. Then, on account of the left side of (7.74),

f̃(x+ λa) = f(x) + λk = λ
(
f(x/λ) + k

)
5 λ

(
f(x/λ) +

(
p(x/λ+ a)− f(x/λ)

))
= λp(x/λ+ a)

24 This chapter is optional. The proof given here is a more detailed version of the one found in [2] Choquet.
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We use the positive homogeneity of p: λp(x/λ+ a) = p(x+ λa) to obtain f̃(x+ λa) 5 p(x+ λa).

Proof of 7.75, ⇒): Let us assume that λ < 0. Because of the left side of (7.75) and λ < 0 and positive
homogeneity of p,

k = f(v)− p(v − a) ⇒ λk 5 f(λv)− λp(v − a)

⇒ − f(λv) + λk 5 (−λ)p(v − a) = p
(
(−λ)(v − a)

)
= p((−λ)v + λa).

We substitute v := x/λ ∈ F :

−f(x) + λk 5 p(−x+ λa), hence f̃(−x+ λa) = f(−x) + λk 5 p(−x+ λa)

We can switch from −x to x as the above holds for all x in the subspace F and because −x ∈ F iff x ∈ F . It
follows that p indeed dominates f̃ for all x ∈ F and λ < 0.

Proof of 7.74, ⇐): we assume f̃(x + λa) 5 p(x + λa) for all λ > 0 and x ∈ F . We shall show that
k = f̃(a) 5 p(u+ a)− f(u) for all u ∈ F .

p(u+ a)− f(u) = f̃(u+ a)− f(u) = f̃(u) + f̃(a)− f(u) = f(u) + f̃(a)− f(u) = f̃(a) = k.

Proof of 7.75, ⇐): we assume f̃(x + λa) 5 p(x + λa) for all λ < 0 and x ∈ F . We shall show that
k = f̃(a) = f(v)− p(v − a) for all v ∈ F .

−p(v − a) + f(v) 5 − f̃(v − a) + f(v) = f̃(a− v) + f(v) = f̃(a)− f̃(v) + f(v) = f̃(a) = k.

�

Lemma 7.2. Let F ⊂ V be a genuine subspace of V and a ∈ V \F . Let G := span(F ]{a} be the subspace
of all linear combinations that can be created by a and or vectors in F . Then there exists an extension f̃ of f
to G.

Proof. For u, v ∈ F we have

f(u) + f(v) = f(u+ v) 5 p(u+ v) = p
(
(u+ a) + (v − a)

)
5 p(u+ a) + p(v − a)

and hence f(v)− p(v − a) 5 p(u+ a)− f(u). Therefore

sup
v∈F
{f(v)− p(v − a)} 5 inf

u∈F
{p(u+ a)− f(u)}.

Now for a fixed k ∈ R, we let f̃(x+ λa) = f(x) + λk. We claim that f̃ 5 p iff we have

sup
v∈F
{f(v)− p(v − a)} 5 k 5 inf

u∈F
{p(u+ a)− f(u)}(7.76)

which will conclude the proof since such a k exists by the above work. Our claim holds because f(x) +λk =
f̃(x+ λa) 5 p(x+ λa) for all λ iff

k 5 p(u+ a)− f(u) for all u ∈ F
and k = f(v)− p(v − a) for all v ∈ F
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(the cases λ > 0 and λ < 0 respectively). This is proved above in lemma 7.1. �

From this we also deduce that the extension f̃ is unique iff supv∈E{f(v)−p(v−a)} = infu∈E{p(u+a)−
f(u)} (the case in which k in the proof is uniquely determined (see (7.76)).

Proof:

�
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8 Compactness (Study this!)

8.1 Introduction: Closed and bounded sets in Euclidian space (Understand this!)

One of the results that are true forN -dimensional space is the “sequence compactness” of closed and bounded
subsets: Any sequence that lives in such a set has a convergent subsequence. We shall discuss that next.

Theorem 8.1 (Convergent subsequences in closed and bounded sets of R). Let A be a bounded and
closed set of real numbers and let (zn) be an arbitrary sequence in A. Then there exists z ∈ A and a subset

n1 < n2 < . . . < nj < . . . of indices such that z = lim
j→∞

znj

i.e., the subsequence (znj ) converges to z.

Proof: Let m be the midpoint between a := inf(A) and b := sup(A). Because A is bounded, a and b must
exist as finite numbers. Let

(8.1) A?1 := A ∩ [a,m]; A?1 := A ∩ [m, b].

Then at least one of A?1, A?1 must contain infinitely many of the zn because A?1 and A?1 form a “covering”
of A (the formal definition will be given later in def.8.5 on p.106), i.e., A?1 ∪ A?1 ⊇ A. We pick such a one
and call it A1. In case both sets contain infinitely many of the zn, it does not matter which one we pick. Do
you see that diam(A1) 5 diam(A)/2?

Let m1 be the midpoint between a1 := inf(A1) and b1 := sup(A1). Let

(8.2) A?2 := A1 ∩ [a1,m1]; A?2 := A ∩ [m1, b1].

Then at least one of A?2, A?2 must contain infinitely many of the zn. We pick such a one and call it A2. In
case both sets contain infinitely many of the zn, it does not matter which one we pick. Note that

diam(A2) 5 diam(A1)/2 5 diam(A)/22

We keep picking the midpoints mj of the sets Aj each of which has at most half the diameter of the previous
one. (Why?) In other words, we have constructed a sequence

A ⊃ A1 ⊃ A2 ⊃ . . . ⊃ An ⊃ . . . such that

diam(A) = 2diam(A1) = 22diam(A2)/ . . . = 2ndiam(An)/ . . .
(8.3)

which means that diam(An) 5 diam(A)/2n → 0 as n→∞.

We pick a subsequence (xj) = (znj ) of the original sequence (zn) such that znj ∈ Aj for all j ∈ N. This is
not too hard because the sets Aj were picked in such a way that each one of them contains infinitely many of
the zk.

The following inequality is true because the sequence of sets (Aj) is “nested”: each Aj is contained in its
predecessor Aj−1. It follows that Am contains all Ak for any k > m and this implies that Am contains all
members xk = znk

, for all k > m. Thus

|xm − xk| 5 diam(Am) 5
diam(A)

2m
for all m and k such that k > m.
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This means that (xn) is a Cauchy sequence (p.73). According to theorem 7.5 about the completeness of R
(p.74) there is a contact point x such that xn → x for n→∞.
Because A is a closed set it contains all its contact points. It follows that x ∈ A and we have found a
subsequence of the original sequence (zn) which converges to an element of A. �

Theorem 8.2 (Convergent subsequences in closed and bounded sets of RN ). Let A be a bounded and
closed set of RN and let (~zn) be an arbitrary sequence of N–dimensional vectors in A. Then there exists
~z ∈ A and a subset

n1 < n2 < . . . < nj < . . . of indices such that ~z = lim
j→∞

~znj

i.e., the subsequence (~znj ) converges to ~z.

Proof (outline): We review the above proof for R:

The base idea was to chop A in half during each step to obtain a sequence of sets An which become smaller
and smaller in diameter but yet contain infinitely many points. of the original sequence zn.

In higher dimensions we would still find the center point ~mn which is determined by the fact that it is
the center of a γ–neighborhood (N–dimensional ball) that contains An and does so with the smallest radius
possible. We then take the minimal square (in R2) or the minimalN–dimensional cube (in RN ) that is parallel
to the coordinate axes and still contains that sphere or ball.

We then divide that N–dimensional cube (a square in 2 dimensions, a cube in 3 dimensions) into 2N sectors
(4 quadrants in R2, 8 sectors in R3) and partition An into at most 2N pieces by intersecting it with those 2N

sectors). The set An+1 would then be chosen from one of those pieces of An which contain infinitely many
of the zn. Again, we get a nested sequence An whose diameters contract towards 0. You’ll find more detail
about the messy calculations required in the proof of prop.8.2 on p.100. Each An contains infinitely many of
the (~zk). Now pick ~xk := ~znk

where ~znk
is one of the infinitely many members of the original sequence (~zn)

which are contained in Ak. Because Aj ⊆ AK for j = K and lim
K→∞

= 0, we do the following for a given

ε > 0: choose K so big that diam(AK) 5 ε/2. Note that

if i, j = K then d(~xi, ~xj) = d(~zni , ~xnj ) 5 diam(AK) 5 ε/2

because ni = i (and nj = j), hence ~xi, ~xj ∈ AK . It follows that the sequence ~xj is Cauchy. We have seen in
thm.7.6 on p.74 that RN is complete, and it follows that ~L := limj→∞ ~xj exists in RN . The proof is complete
if it can be shown that ~L ∈ A. But we know that all ~xi = ~zni belong to A. ~L must be a contact point of A
because any neighborhood Bε(~L) contains an entire tail set of the sequence (~xi)i. As the closed set A owns
all its contact points, it follows that L ∈ A and the theorem is proved. �

Theorem 8.3. Let A be a bounded and closed set of real numbers and let f(·) : A→ R be a continuous
function on A. Then f(·) is a bounded function.

Proof: Let us assume that f(·) is not bounded and conclude something that is impossible.
An unbounded function is not bounded from above, from below, or both. We might as well assume that f(·)
is not bounded from above because otherwise it is not bounded from below and we can work with−f(·) which
then is not bounded from above. This means that there must be a sequence (zn) ∈ A such that

(8.4) f(zn) > n for all n ∈ N.
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According to the just proved thm.8.1 on “Convergent subsequences in closed and bounded sets” there exists a
subsequence (xj) = (znj ) and x0 ∈ A such that xn → x0 as n→∞. In particular, f(x0) exists as a finite
value and f(xn)→ f(x0) because f(·) is continuous in x0. But the xn were constructed as a subsequence of
the zj which have the property that f(zj) > j for all j and the subsequence (f(xn)) cannot converge against
f(x0) because f(xj) = f(znj ) > nj , i.e., lim

j→∞
f(znj ) =∞. We have reached a contradiction and it follows

that f(·) is bounded. �

Corollary 8.1. Let a < b be two real numbers and let f(·) : [a, b]→ R be a continuous function on [a, b].
Then f(·) is a bounded function.

Proof: The interval interval [a, b] is closed and bounded (diam([a, b]) = b− a). and the proof follows from
theorem 8.3. �

8.2 Four definitions of compactness

We shall now look at ways to extend those results to general metric spaces by looking at the concept of
compactness.

Compact sets are a wonderful thing to deal with because they allow you in some sense to go from dealing with
“arbitrarily many” to dealing with “countably many” and even “finitely many”. There are three different
ways to define compactness of a subset K of a metric space (X, d). You can say that compactness means

A. any sequence in K has a convergent subsequence
B. K is complete and contains only finitely many point of a grid of length ε
C. any open covering of K has a finite subcovering
D. K is bounded and closed - ONLY works in RN !

When you take a course on real analysis you will probably be given the definition of compactness as that
in C: any open covering of K has a finite subcovering. In this document this definition is pushed into the
background as it is the most difficult to understand. Instead full proofs will be given of the equivalence of
sequence compactness (def.A) on the one hand and completeness plus “total boundedness” (def.B) on the
other hand.

The most important result of this chapter on compactness will be that, if you look at RN with the Euclidean
norm and its associated metric

d(~x, ~y) =

√√√√ n∑
j=1

(xj − yj)2 ( ~x = (x1, x2, . . . ), ~y = (y1, y2, . . . ) ∈ RN )

(see (6.3) on p.46) then the first three definitions coincide. Matter of fact, all four coincide in finite dimensional
Euclidian space but “covering compactness” has been moved to the sub-chapter 8.6, p.106.

8.3 ε-nets and total boundedness

We now briefly discuss ε–nets and decreasing sequences of closed sets which contract to a single point.
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Definition 8.1 (ε–nets). Let ε > 0. Let (X, d) be a metric space and A ∈ X . let G ⊆ A be a subset of
A with the following property:

For each x ∈ A there exists g ∈ G such that x ∈ Bε(g).

In other words, the points of G form a “grid” or “net” fine enough so that no matter what point x
of A you choose, you can always find a “grid point” g with distance less than ε to x, because that is
precisely the meaning of x ∈ Bε(g).

We call G an ε–net or ε–grid of A and we call g ∈ G a grid point of the net.

Proposition 8.1 (ε–nets and coverings). Let ε > 0. Let (X, d) be a metric space andA ∈ X . LetG ⊆ A be
an ε–grid for A. Then {Bε(g)}g∈G is an open covering of A in the sense of def.8.5 on p.106: It is a collection
of open sets the union of which “covers”, i.e., contains, A.

Proof: Let x ∈ A. We can choose a point g = g(x) ∈ G such that x ∈ Bε
(
g(x)

)
. It follows from

{x} ⊆ Bε
(
g(x)

)
and g(x) ∈ G for all x ∈ A that

A =
⋃
x∈A
{x} ⊆

⋃
x∈A

Bε
(
g(x)

)
⊆
⋃
g∈G

Bε(g). �

Proposition 8.2 (ε–nets in RN ). Let (X, d) be RN with the Euclidean metric.

A.A.A. Let
ZN = {~z = (z1, z2, . . . zN ) : z ∈ Z}

In other words, ZN is all points of RN with integer coordinates. That’s as intuitive a grid as I can think of,
provided you look at the 2–dimensional plane or 3–dimensional space.

Then ZN is a
√
N–net of RN .

B.B.B. Let ε > 0 and GRN

ε := {ε~z : ~z ∈ ZN}.

Then GRN

ε is an ε
√
N–net of RN .

C.C.C. Let A be a bounded set in RN and ε > 0. Then A will be covered by finitely many

Bε(g1) ∪ Bε(g2) ∪ . . . , ∪ Bε(gn) (n ∈ N, g1, . . . gn ∈ GRN

ε ).

(Skip this proof!) (all three parts A, B, C)

Proof of A.
Let ~x = (x1, x2, . . . xN ) ∈ RN . For each xj let x?j be it’s integer part, i.e., we simply throw away all digits
after the decimal point.

Before we continue, let’s have an example, if N = 5 and ~x = (12.35,−12.35, 1/3, 9,−π) then its associated
grid point is ~x? = (12,−12, 0, 9,−3). Let’s compute the distance:

d(~x, ~x?) =

√
.352 + .352 + 1/32 + 0 + (π − 3)2 5

√
(1 + 1 + 1 + 0 + 1) 5

√
N

and we see that partAAA of the lemma is true for this specific example.
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Now to the real proof. It is not really more complicated if you notice that |xj − x?j | < 1 for all 1 5 j 5 N .
We get

d(~x, ~x?) =

√√√√ N∑
j=1

(xj − x?j )
2 <

√
N · 1 =

√
N

So, for each point you can find a grid point with integer coordinates at a distance of less than
√
N . That

proves that ZN is a
√
N–net of RN .

Proof of B.
Let ~y ∈ RN . Let ~x := (1/ε)~y and let ~x? be the vector where we discarded the decimal parts. According to
partA.A.A. we know that d( ~x?, ~x) <

√
N . Thus

d(~y, ε ~x?) = d(ε~x, ~εx?) =

√√√√ N∑
j=1

(εxj − εx?j )
2 =

√√√√ N∑
j=1

ε2(xj − x?j )
2

= ε

√√√√ N∑
j=1

(xj − x?j )
2 = εd( ~x?, ~x) < ε

√
N · 1 = ε

√
N

In other words, for any ~y ∈ RN there is a vector ~z ∈ ZN such that d(~y, ε~z) < ε
√
N (choose ~z = ~x? ).

Rephrase that: For any ~y ∈ RN there is a vector ~g ∈ GRN

ε = {ε~z : ~z ∈ ZN} such that d(~y,~g) < ε
√
N

(choose ~g = ε~z = ~x? ).

So, for each point you can find a grid point in GRN

ε at a distance of less than ε
√
N . That proves that GRN

ε is
an ε
√
N–net of RN .

Proof of C.
Intuitively clear but very messy. Here is an outline.
a.a.a. You can choose a radius R1 so big that A ⊆ BR1(~0) (see prop.7.3 on p.64).
b.b.b. We enlarge the radius by ε: Let R := R1 + ε. The enlarged “N -dimensional ball” of radius R BR(~0) is
contained in the “N -dimensional cube”

QR := {~x = (x1, x2, . . . xn) : −R 5 xj 5 R for all 1 5 j 5 N}.

c.c.c. Let ~z = (z1, z2, . . . zn) be a grid point, i.e., zj = mjε for the j-th coordinate (mj ∈ Z). There are only
finitely many integers m, say K, for which −R 5 ε ·m 5 R.
d.d.d. Hence there are only K possible values for the first coordinate z1 = m1ε. For each one of those there are
only K possible values for z2, so there are at most K2 possible combinations (z1, z2) for which ~z ∈ A. We
keep going and find that there are at most KN possible grid points ~z ∈ QR.
e.e.e. Any point in RN with distance less than ε from some point in A must belong to BR(~0) (now you know
why we chose augment R1 by ε). In particular, all grid points g ∈ GRN

ε whose neighborhoods Bε(g) intersect
A belong to BR(~0) and hence to QR. We conclude that A ∩Bε(g) = ∅ for all grid points outside QR.
f.f.f. We know from part B. which was already proved that A ⊆ RN =

⋃
[ Bε(g) : g ∈ GRN

ε ]. Hence,

A = A ∩
⋃

[ Bε(g) : g ∈ GRN

ε ] =
⋃

[ A ∩Bε(g) : g ∈ GRN

ε ] =
⋃

[ A ∩Bε(g) : g ∈ GRN

ε ∩QR ].

It follows that A ⊆
⋃

[Bε(g) : g ∈ GRN

ε ∩QR ] and C. is proved as there are only finitely many grid points
in QR. �
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Remark 8.1. The observant reader will have noted that, in part C. of the previous proposition, it
was not stated that the gridpoints belong to the subsetA of RN . Here is a trivial example that shows
you why this might not be possible. Look at the “standard” ε–grid GRN

ε = {ε~z : ~z ∈ ZN} defined in
prop.8.2, part B. Take any A ⊆ RN you like and look at B := A \GRN

ε , i.e., we have removed all grid
points. It is clear that B cannot be covered by ε balls belonging to grid points in B.

Definition 8.2 (Total boundedness). Let (X, d) be a metric space and let A be a subset of X . We say
that A is totally bounded if for each ε > 0 there is a finite collection Gε := {g1, . . . gn} of points in A
whose ε–balls Bε(gj) cover A: For any a ∈ A there is j = j(a) such that d(a, gj) < ε.

We shall use this definition in connection with sequence compactness which is defined in the next section.

8.4 Sequence compactness

We saw in the introductory section that, for the space RN with the Euclidean metric, closed and bounded sets
have the property that any sequence contains a convergent subsequence. We named this property in section
8.2, p.99 on Four definitions of compactness “sequence compactness” and we shall examine that property in
this chapter.

Definition 8.3 (Sequence compactness). Let (X, d) be a metric space and let A be a subset of X . We
say that A is sequence compact or sequentially compact if it has the following property: Given
any sequence (xn) of elements of A, there exists L ∈ A and a subset

n1 < n2 < . . . < nj < . . . of indices such that L = lim
n→∞

xnj ,

i.e., there exists a subsequence (xnj ) which converges to L.

Proposition 8.3 (Sequence compactness implies total boundedness). Let (X, d) be a metric space and
let A be a sequentially compact subset of X . Then A is totally bounded.

Proof: Nothing needs to be shown if A is empty, so we may assume that A 6= ∅. The proof will be done by
contradiction.
a.a.a. Assume that A is not totally bounded. Then there is ε > 0 such that for any finite collection of points
z1, z2, . . . zn ∈ A the union

⋃
1≤j≤nBε(zj) does not cover A: There exists z ∈ A outside any one of those

ε–neighborhoods, i.e., z ∈ A \
⋃ [

Bε(zj) : j 5 n
]
. This allows us to create an infinite sequence (xj)j∈N

such that d(xj , xn) = ε for all j, n ∈ N such that j 6= n as follows: We pick

x1 ∈ A; x2 ∈ A \Bε(x1); x3 ∈ A \
(
Bε(x1) ∪Bε(x2)

)
; . . . xn ∈ A \

⋃
j<n

Bε(xj); . . .

b.b.b. The proof is done if we can show that (xj)j∈N does not possess a convergent subsequence. Assume to the
contrary that there is L ∈ A and n1 < n2 < . . . such that limj→∞xnj = L. We pick the number ε > 0 that
was used in part a of the proof. There exists N = N(ε) such that d(xnm , L) < ε/2 for all m = N . It follows
for all i, j = N that d(xni , xnj ) 5 d(xni , L) + d(L, xnj ) < ε/2 + ε/2 = ε. But the xn were constructed in
such a fashion that d(xm, xk) = ε for all m 6= k, in particular for m := ni 6= k := nj . We have arrived at a
contradiction because ni 6= nj whenever i 6= j. �
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Proposition 8.4 (Sequence compact implies complete). Let (X, d) be a metric space and let A be a
sequence compact subset of X . Then A is complete, i.e., any Cauchy sequence (xnj ) in A converges to a limit
L ∈ A.

Proof: Let (xn) be a Cauchy sequence in A and let ε > 0. There exists N1 ∈ N such that

k, l = N1 ⇒ d(xk, xl) < ε/2. (?)(8.5)

Because A is sequence compact, we can extract a subsequence zj := xnj and find L ∈ A such that zj → L as
j →∞. It follows that for ε chosen above there exists N2 ∈ N such that

j = N2 ⇒ d(xnj , L) < ε/2. (??)(8.6)

We observe that nj = j for all j, hence nj = N if j = N . Let N := max(N1, N2) and j = N . Then j = N1

and nj = j = N = N2 It follows from (?) that d(xj , xnj ) < ε/2 and from (??) that d(xnj , L) < ε/2, hence
d(xj , L) < ε for all j = N . We have proved that the arbitrarily chosen Cauchy sequence (xn) converges. �

The last two propositions have proved that any sequence compact set in a metric space is both totally bounded
and complete. The reverse is also true:

Theorem 8.4 (Sequence compact iff totally bounded and complete). Let A be a subset of a metric space
(X, d). Then A is sequence compact if and only if A is totally bounded and complete.

Proof: We have already seen in prop.8.3 on p.102 and prop.8.4 on p.103 that if A is sequentially compact
then A is totally bounded and complete. We now shall show the other direction. Let A be totally bounded and
complete and let (xn)n∈N be a sequence in A. All we need to show is the existence of a subsequence zj = xnj

which is Cauchy: As A is complete, such a Cauchy sequence must converge to a limit L ∈ A, i.e., xnj → L
as n→∞ and we have extracted a convergent subsequence (xnj )j from (xn)n.

a.a.a. Because A is totally bounded, there will be a net for ε = 1/2: there exists G1 = {g1,1, g1,2, . . . , g1,k1} ⊆ A
such that A ⊆ U1 :=

⋃[
B1/2(g1,j) : j 5 k1

]
. It follows that xk ∈ U1 for each k. There are inifinitely

many indices k for our sequence but only finitely many points in G1. Hence there must be at least one of those
which we name g1, such that B1 := B1/2(g1) contains x1,j := xnj for an entire (infinite) subsequence nj . 25

b.b.b. Because A is totally bounded, there will be a net for ε = 1/3: there exists G2 = {g2,1, g2,2, . . . , g2,k2} ⊆ A
such that A ⊆ U2 :=

⋃[
B1/3(g2,j) : j 5 k2

]
. It follows that x1,k ∈ U2 for each k. There are inifinitely

many indices k for our sequence but only finitely many points in G2. Hence there must be at least one
of those which we name g2, such that B1/3(g2) contains x2,j := x1,nj for an entire subsequence nj . As
the entire sequence (x1,k) belongs to B1, it follows that our new subsequence (x2,j) of (x1,k) belongs to
B2 := B1 ∩B1/3(g2).

c.c.c. Having constructed a subsequence (xn−1,j) of the original sequence (xk) which lives in a set Bn−1 con-
tained in B1/n(gn−1) for a suitable gn−1 ∈ A, total boundedness of A, guarantees the existence of a net for
ε = 1/(n + 1): there exists Gn = {gn,1, gn,2, . . . , gn,kn} ⊆ A such that A ⊆ Un :=

⋃[
B1/(n+1)(gn,j) :

j 5 kn
]
. It follows that xn,k ∈ Un for each k. There are inifinitely many indices k for our sequence but

only finitely many points in Gn. Hence there must be at least one of those which we name gn, such that
B1/(n+1)(gn) contains xn,j := xn−1,nj for an entire subsequence nj . As the entire sequence (xn−1,k) belongs

25 Note that it is not claimed that there would be infinitely many different points xnj , only infinitely many indices nj .
Indeed, what would you do if the original Cauchy sequence was chosen to be x1 = x2 = · · · = a for some a ∈ A?
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to Bn−1, it follows that our new subsequence (xn,j) of (xn−1,k) belongs to Bn := Bn−1 ∩B1/(n+1)(gn). We
note that the maximal distance d(xn,i, xn,j) between any two members of that new subsequence is bounded
by 2/(n+ 1) as that is the diameter of B1/(n+1).

d.d.d. Diagonalization procedure: The following trick is employed quite frequently in real analysis. We now
create the “diagonal sequence” z1 := x1,1, z2 := x2,2, . . . which is a subsequence of the original sequence
(xn). If we can show that it is Cauchy then the proof is complete. By construction, if j = n then

zj ∈ Bj ⊆ Bn ⊆ Bn−1 ⊆ · · · ⊆ B2 ⊆ B1 and diam(Bj) ≤
2

j + 1
.

Let ε > 0. We can find N ∈ N such that 1
N+1 < ε

2 . We remember from part c of this proof that Bj =
Bj−1∩B1/(j+1)(gj) ⊆ B1/(j+1)(gj) for a suitable gj ∈ A, hence all its points have distance from gj bounded
by (j + 1)−1. We obtain for any i, j = N that

d(zi, zj) ≤ d(zi, gN ) + d(gN , zj) 5
1

N + 1
+

1

N + 1
< ε.

It follows that (zn)n is indeed Cauchy and the proof is completed. �

Corollary 8.2 (Sequence compact sets are complete). Let (X, d) be a metric space and letK be a sequence
compact subset of X . Then K is complete.

Proof: Immediate from the last theorem.

Theorem 8.5 (Sequence compact sets are bounded). Let (X, d) be a metric space and let K be a sequence
compact subset of X . Then K is bounded, i.e., diam(K) = sup{d(x, y) : x, y ∈ K} <∞.

Proof: Is also given in thm.8.13 on p.114. �

Remark 8.2. It follows from the results of this chapter and the introductory chapter on Closed and
bounded sets in Euclidian space (8.1 on p.97) that, in RN , three of the definitions of compactness
given in section 8.2 on Four definitions of compactness (p.99 are equivalent:

A subset of RN is sequentially compact iff it is totally bounded and complete iff it is bounded and
closed.

We shalls see later that any metric space is sequentially compact iff it is compact, i.e., covering
compact (thm.8.7 on p.thm-x:compact-iff-seq-compact).

In other words, in RN all four of the definition given in section 8.2 on p.99 coincide.

8.5 Uniform continuity

Continuous real functions on the compact set [0, 1] are uniformly continuous in the sense of the following
definition which you should compare, for the special case of (X, d) = (R, d|·|) where d|·|(x, y) = |y − x|, to
[1] Beck/Geoghegan, Appendix A.3, “Uniform continuity”.
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Definition 8.4 (Uniform continuity of functions). Let (X, d1), (Y, d2) be metric spaces and let A be a
subset of X . A function

f(·) : A→ Y is called uniformly continuous

if for any ε > 0 there exists a (possibly very small) δ > 0 such that

(8.7) d2(f(x)− f(y)) < ε for any x, y ∈ A such that d1(x, y) < δ

Remark 8.3 (Uniform continuity vs. continuity). Note the following:

A.A.A. Condition (8.7) for uniform continuity looks very close to the ε–δ characterization of ordinary
continuity (7.39) on p.77. Can you spot the difference? Uniform continuity is more demanding
than plain continuity because when dealing with the latter you can ask for specific values of both ε
and x0 according to which you had to find a suitable δ. In other words, for plain continuity

δ = δ(ε, x0).

But in the case of uniform continuity all you get is ε and you must come up with a suitable δ
regardless of what arguments are thrown at you. To write that one in functional notation,

δ = δ(ε).

B.B.B. In case you missed the point, uniform continuity implies continuity but the opposite need not
be true.

Example 8.1 (Uniform continuity of the identity mapping). Have another look at proposition(7.9)
where we proved the continuity of the identity mapping on a metric space. We chose δ = ε no
matter what value of x we were dealing with and it follows that the identity mapping is always
uniformly continuous.

Theorem 8.6 (Uniform continuity on sequence compact spaces). Let (X, d1), (Y, d2) be metric spaces
and let A be a sequence compact subset of X . Any continuous real function on A is uniformly continuous on
A.

Proof: Let us assume that f(·) is continuous but not uniformly continuous and find a contradiction. Because
f(·) is not uniformly continuous, you can find ε > 0 such that no δ > 0 , however small, will satisfy (8.7)
for all pairs x, y such that d1(x, y) < δ. Looking specifically at δ := 1/j for all j ∈ N, we can find
xj , x

′
j ∈ A such that

(8.8) d1(xj , x
′
j) <

1

j
but d2(f(x), f(x′)) = ε.

But A is sequence compact and we can find a subsequence (xjk) of the xj which converges to an element
x ∈ A We have

(8.9) d1(x
′
jk
, x) 5 d1(x

′
jk
, xjk) + d1(xjk , x) 5

1

jk
+ d1(xjk , x)

and each right hand term will converge to zero as k →∞. It’s obvious for 1/jk because jk = k for all k and
it is true for d1(xjk , x) because xjk converges to x. It follows from (8.9) that (x′jk) also converges to x. It
follows from the ordinary continuity of f(·) that

f(x) = lim
k→∞

f(x′jk) = lim
k→∞

f(xjk)
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and it follows from the “ordinary” (non-uniform) convergence of sequences that there exist N,N ′ ∈ N such
that

d2(f(x), f(xjk)) <
ε

2
for k > N ; d2(f(x), f(x′jk)) <

ε

2
for k > N ′

and both inequalities will hold for all k > N +N ′. Why? It follows for all such k that

d2(f(xjk), f(x′jk)) < d2(f(xjk), f(x)) + d2(f(x), f(x′jk)) <
ε

2
+
ε

2
= ε(8.10)

and we have a contradiction to (8.8). �

Corollary 8.3 (Uniform continuity on closed intervals). Let a, b be two real numbers such that a 5 b.
Any continuous real function on the closed interval [a, b] is uniformly continuous on [a, b], which means
that, given any whatever small ε > 0, there exists a number δ > 0, possibly a lot smaller, such that

(8.11) d(f(x)− f(y)) < ε for all x, y ∈ [a, b] such that d(f(x)− f(y)) < δ

Proof: This follows from the previous theorem (8.6) because closed intervals [a, b] are closed and bounded sets
and, in R, any closed and bounded set is sequence compact . �

8.6 Open coverings and the Heine–Borel theorem

We shall now discuss families of open sets called “ open coverings” and you should review the concept of an
indexed family and how it differs from that of a set (see (3.7) on p.12).

Definition 8.5 (Open coverings). Let X be an arbitrary non–empty set and A ⊆ X . Let (Ui)i∈I be
an indexed family of subsets of X such that A ⊆

⋃
i∈I

Ui. Then we call (Ui)i∈I a covering of A.

A finite subcovering of a covering (Ui)i∈I of the set A is a finite collection

(8.12) Ui1 , Ui2 , Ui3 , . . . , Uin (ij ∈ I for 1 5 j 5 n) such that A ⊆ Ui1 ∪ Ui2 ∪ . . . ∪ Uin .

If X is a metric space and all members Ui of the family are open then (Ui)i∈I is called an open
covering of A.

Definition 8.6 (Compact sets in metric spaces). Let (X, d) be a metric space andK ⊆ X . We say that
K is compact if it has the “extract finite subcovering” property: Given any open covering (Ui)i∈I
ofK, you can extract a finite subcovering. In other words, there is a (possibly very large n ∈ N and
indices

i1, i2, . . . , in ∈ I such that A ⊆
n⋃
j=1

Uij .

Theorem 8.7 (Sequence compact is same as compact). Let (X, d) be a metric space and let A be a subset
of X . Then A is sequence compact if and only if A is compact, i.e., every open covering of A has a finite
subcovering.

Proof will be given in the following optional sub-chapter 8.6.1

Next comes the Heine–Borel theorem which states that, for the metric space RN with the Euclidean norm, a
set is compact if and only if it is bounded and closed.
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Theorem 8.8 (Heine–Borel). Let (X, d) be RN with the Euclidean norm and its associated metric. A subset
K ⊆ RN is compact if and only if it is closed and bounded. For a general metric space it is still true that any
compact subset is closed and bounded.

Proof will be given in the following optional sub-chapter 8.6.1

Theorem 8.9 (Compact sets are complete). Let (X, d) be a metric space and let K be a compact subset of
X . Then K is complete.

Proof will be given in the following optional sub-chapter 8.6.1

8.6.1 Appendix: Proofs for (open covering) compactness (Skip this!)

This entire sub-chapter can be skipped. What you need to know about covering compact-
ness is contained in the parent chapter.
This chapter repeats the theorems from the last chapter together with proofs. I have decided
to leave the proofs in here even though they can be significantly shortened just as to not
leave any gaps in this presentation. If this subject matter truly interests you then you
should look at a textbook on real analysis and study the proofs in there instead.

The next lemma is complete nonsense in that its assumptions will never be valid. But still it serves its purpose
to absorb most of the work to be done for the subsequent Heine Borel theorem.

Lemma 8.1 (Contracting sequences of closed sets in RN ). Let (X, d) be RN with the Euclidean norm
and its associated metric. Let K ⊆ RN be a bounded and closed set. Assume that there is an open covering
(Uα)α∈I of K from which you cannot extract a finite subcovering.

Then there exists a sequence K1 ⊃ K2 ⊃ . . . ⊃ of closed subsets of K with the following properties:

diam(Kn) 5
1

2n−1
(see (7.7) on p.64)(8.13a)

None of the Kn can be covered by finitely many of the Uα(8.13b) ⋂
j∈N

Kj contains exactly one element ~x? ∈ RN(8.13c)

Any sequence (~xn) such that ~xn ∈ Kn for each n ∈ N converges to ~x?.(8.13d)

Proof: We start with n = 1.
Let ε = 1/2. Lemma (8.2) on ε–nets shows that there are finitely many (the unproved part C of the lemma)
points ~g1,1, ~g1,2, . . . , ~g1,N1 , such that their 1/2–neighborhoods B1/2(~g1,j) ( 1 5 j 5 N1 ) are a covering of
K. So we have

(8.14) B1/2(~g1,1) ∪ B1/2(~g1,2) ∪ . . . ∪ B1/2(~g1,N1) ⊃ K

and

(8.15) (B1/2(~g1,1) ∩K) ∪ (B1/2(~g1,2) ∩K) ∪ . . . ∪ (B1/2(~g1,N1) ∩K) = K
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I claim that there must be at least one j such that the set B1/2(~g1,j) ∩K cannot be covered by finitely many
Uα of the original open covering of K. Why? Well, if that was true, you would find index sets I1 ⊆ I , I2 ⊆ I
and finally IN1 ⊆ I all of which are finite such that⋃

α∈I1

Uα ⊃ B1/2(~g1,1) ∩K⋃
α∈I2

Uα ⊃ B1/2(~g1,2) ∩K

. . .⋃
α∈IN1

Uα ⊃ B1/2(~g1,N1) ∩K

Let us abbreviate I? := I1 ∪ I2 ∪ . . . ∪ IN1 . Then I? is finite as a finite union of finite sets. We take unions
over all left sides and all right sides of the above and obtain⋃

α∈I?
Uα = (

⋃
α∈I1

Uα) ∪ (
⋃
α∈I2

Uα) ∪ . . . ∪ (
⋃

α∈IN1

Uα)

⊃ (B1/2(~g1,1) ∩K) ∪ (B1/2(~g1,2) ∩K) ∪ . . . ∪ (B1/2(~g1,N1) ∩K) ⊃ K
(8.16)

In other words, K is covered by the finitely many Uα where α ∈ I?. But this is contrary to our original
assumption (8.20) at the beginning of this proof. Now we know that there is at least one index, let’s call it
j? such that the set B1/2(~g1,j?) ∩K cannot be covered by finitely many Uα of the original open covering of
K. I hope you understand that this set is not empty. Otherwise, how could it not be possible to find a finite
subcovering for it? We define

(8.17) K1 := B1/2(~g1,j?) ∩K

In case you forgot, B1/2(~g1,j?) is the closure of B1/2(~g1,j?) which is obtained by augmenting it with its
contact points (see (7.18) on p.72). Note that K1 is bounded because it is contained in the bounded set K.
Matter of fact,

diam(K1) 5 diam(B1/2(~g1,j?)) = 2 · 1

2
= 1 = 21−1

and K1 is closed as the intersection of two closed sets. We finally found the first member of a sequence of sets
with the properties (8.13a) and (8.13b).

Now look at n = 2.
Let ε = 1/4 = 2−2. Lemma (8.1) on ε–nets shows that there are finitely many points ~g2,1, ~g2,2, . . . , ~g2,N2 ,
such that their 1/4–neighborhoods B1/4(~g2,j) ( 1 5 j 5 N2 ) are a covering of K1. We use the same rea-
soning as we did for n = 1 to deduce that there is at least one index, let’s call it again j?, such that the set
B1/4(~g2,j?) ∩K1 cannot be covered by finitely many Uα of the original open covering of K which again
means that it is not empty. Now we define

(8.18) K2 := B1/4(~g2,j?) ∩K1

Clearly K2 ⊆ K1. it is bounded with diameter

diam(K2) 5 diam(B1/4(~g2,j?)) = 2 · 1

4
=

1

2
= 22−1

108



and it is closed as the intersection of two closed sets. So we found the second member of the sequence of sets
with the properties (8.13a) and (8.13b).

Now look at an arbitrary n.
We can assume that Kn−1 has already been constructed. Let ε = 1/2−n = 2−n. Lemma (8.1) on ε–nets
shows that there are finitely many points ~gn,1, ~gn,2, . . . , ~gn,Nn , with ~gn,j ∈ Gε = εZ such that their 2−n–
neighborhoods B2−n(~gn,j) ( 1 5 j 5 Nn ) are a covering of Kn−1. We use the same reasoning as we did for
n = 1 to deduce that there is at least one index, let’s call it again j?, such that the set B2−n(~gn,j?) ∩Kn−1
cannot be covered by finitely many Uα of the original open covering of K which again means that it is not
empty. Now we define

(8.19) Kn := B2−n(~gn,j?) ∩Kn−1

Clearly Kn ⊆ Kn−1. It is bounded with diameter

diam(Kn) 5 diam(B2−n(~gn,j?)) = 2 · 1

2n
= 2n−1

and it is closed as the intersection of two closed sets. We have found the nth member of the sequence of sets
with the properties (8.13a) and (8.13b).

Parts c and d will be shown together now. Lets us pick ~xn ∈ Kn for each n ∈ N. Why is the sequence (~xn)
Cauchy? Actually, that’s easy. Let j, k,N0 ∈ N and assume that j, k = N0. Look at the members ~xj and
~xk. Both are contained in K2−N0+1 whose diameter does not exceed 2N0−1. In other words,

d(~xj , ~xk) 5
1

2N0−1 ↘ 0 (j, k = N0)

and this proves the sequence is Cauchy. But RN is complete (see (7.6) on p.74) and the sequence converges
against an element ~x? ∈ RN Given any n ∈ N, all elements ~xk belong to Kn for big enough k. This means
~x? ∈ Kn because it is a contact point of those ~xk and the closed set Kn contains all its contact points. But
this is true for any n ∈ N and we deduce that ~x? ∈

⋂
n∈N

Kn.

The last thing to show is that
⋂
n∈N

Kn does not contain a second element. But if it did contain another one,

say ~y, there would be a certain distance δ := d(~x?, ~y) > 0 between them. That’s kind of hard to do because

diam(
⋂
j∈N

Kj) 5 diam(Kn) 5 2n−1 for all n ∈ N

which means that the diameter of the intersection of all Kj is zero. This implies that d(~x, ~y) = 0 for any two
elements in that intersection and that means ~x = ~y �

Theorem 8.10 (Heine–Borel). Let (X, d) be RN with the Euclidean norm and its associated metric. A
subset K ⊆ RN is compact if and only if it is closed and bounded. For a general metric space it is still true
that any compact subset is closed and bounded.

Proof of “⇐=”: A closed and bounded set in RN is compact:
We shall give an indirect proof. So let us assume that the set K ⊆ RN is closed and bounded and

(8.20) there is an open covering (Uα)α∈I of K from which you cannot extract a finite subcovering.
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We shall see that this leads to a contradiction.

Our assumption of not being able to obtain a finite subcovering of the Uα is precisely what we need to employ
lemma (8.1) and obtain the sequence (Kn).

Now what shall we do with that sequence? First we pick an element ~xj ∈ Kj for each j ∈ N. This sequence
converges to the only element ~x? ∈

⋂
j∈N

Kj .

Eventually, we get back to the original open covering (Uα) of K from which we assume that no finite sub-
covering for K can be extracted. Because it is a covering of K and ~x? ∈ K , there must be an index, say α0,
such that ~x? ∈ Uα0 . and it is an interior point of Uα0 because this is an open set. This means that we can
find a (sufficiently small) δ > 0 such that Bδ(~x?) ⊆ Uα0 . Let us pick n ∈ N so big that 2n−1 < δ. Pick any
~y ∈ Kn. Then

d(~y, ~x?) 5 diam(Kn) 5 2n−1 =⇒ ~y ∈ Bδ(~x?) ⊆ Uα0

That’s a moment to savor. We have just shown that Kn ⊆ Uα0 . What’s the big deal about that? This means
that the set Kn which was constructed in such a way that no finite subcovering of the Uα can cover it, is in
fact covered by a single member, Uα0 . We can happily conclude that any closed and bounded set in RN is
compact.

Proof of “⇐=”: A compact set is closed and bounded:
We needed the special properties of RN with the Euclidean norm to prove that any closed and bounded set is
compact. The proof that you see here to show the opposite direction needs nothing other than the properties of
a metric space.

So let (X, d) be a metric space and assume that K ⊆ X is compact, i.e., any open covering of K has a finite
subcovering. We must show that any contact point of K belongs to K. Let x ∈ X . For n ∈ N let

Fn(x) := B1/n(x) = closure-of(B1/n(x)) = {y ∈ X : d(y, x) 5
1

n
.

The complement Un(x) := {Fn(x) = {y ∈ X : d(y, x) > 1/n} is open and we have
⋃
j∈N

Uj(x) = X \ {x}.

(Why?)

Now assume that a ∈ X is a contact point of K. If a /∈ K then

(8.21)
⋃
j∈N

Uj(a) = X \ {a} ⊃ K \ {a} = K

In the above chain the “⊃” part is true simply because X ⊃ K and the last equality follows from the defini-
tion of the set difference (see (3.12) on p.14). (8.21) shows that (Uj(a))j∈N is an open covering of K. But K
is assumed to be compact and this guarantees the existence of finitely many j1 < j2 < . . . < jN such that

{y ∈ X : d(y, a) > 1/jN} = UjN (a) = Uj1(a) ∪ Uj2(a) ∪ . . . ∪ UjN (a) ⊃ K

In other words, if y ∈ K then d(y, a) > 1/N . This makes it impossible for a to be a contact point of K
because there is an entire neighborhood B1/N (a) which does not contain a single element of K. But we had
assumed that a is a contact point of K and we have reached a contradiction. We have proved that K contains
all its contact points, i.e., K is closed.

We are not done yet. We still must prove that K is bounded. But K not being bounded means that there
is no a ∈ X and γ > 0 such that K ⊆ Bγ(a). To phrase it differently, let us pick some arbitrary a ∈ X
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and let us look at the j–neighborhoods Bj(a)(j ∈ N). No matter what point y ∈ X we choose, if j is big
enough then j > d(y, a) and that means y ∈ Bj(a). In other words,

⋃
Bj(a) = X ⊃ K and the sets

Bj(a) are an open covering of any set in X , so they are most certainly an open covering of the set K. But K
is compact and we can extract a finite subcovering of those Bj(a). This guarantees the existence of finitely
many j1 < j2 < . . . < jN such that

{y ∈ X : d(y, a) < jN} = BjN (a) = Bj1(a) ∪Bj2(a) ∪ . . . ∪BjN (a) ⊃ K

Let’s read that one backwards: There is a γ–neighborhood of some point a which contains all of K (set
γ := jN . But that means precisely that K is bounded. �

Theorem 8.11 (Compact sets are complete). Let (X, d) be a metric space and let K be a compact subset
of X . Then K is complete.

Proof: We prove this indirectly and show the assumption that K is compact but not complete leads to a
contradiction. Let K be compact but not complete. Then there is a Cauchy sequence (xn) in K which does
not converge to an element of K. For a given j ∈ N let

(8.22) Fj := {xj} ∪ {xj + 1} ∪ {xj + 2} ∪ . . .

Take any finite intersection of the Fj , i.e., choose finitely many

(8.23) j1 < j2 < . . . , jN . Then
jN⋂
k=1

Fjk = FjN 6= ∅

For convenience, let us set F := FjN . Our goal is to show that F is closed, i.e., it contains all its contact
points. Note that because F ⊆ K and K is closed we have F ⊆ K = K and any potential contact point of
F must belong to K.

To prove that F is closed, we first rule out the case that there could be two different elements z1, z2 ∈ X which
both are contact points of F . Why? First, because z1 6= z2, we can find sufficiently small ε such that

(8.24) d(z1, z2) > 3ε

(xn) is Cauchy, so we can find N0 ∈ N such that

(8.25) d(xj , xk) < ε for all j, k = N0.

Because z1, z2 are contact points of F and this set exclusively consists of members of the sequence (xn), there
must be elements of F which, indexed as a sequence, converge to z1 and (other) elements of F which, indexed
as a sequence, converge to z2. In other words, we have sequences

(xnj )j∈N and (xmk
)k∈N such that xnj → z1, xmk

→ z2.

Because the full sequence x1, x2, . . . is Cauchy you can find N1 ∈ N and N2 ∈ N such that

(8.26) d(xnj , xmk
) < ε for all j = N1, k = N2.
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Set N? := max(N0, N1, N2) Then, on account of (8.25) and (8.26), we obtain

d(z1, z2) 5 d(z1, xnj ) + d(xnj , xmk
) + d(xmk

, z2) < 3ε

for all j, k = N? and this contradicts (8.24).

Now we know that there cannot be more than one contact point of F . Next we show that if there is one contact
point, say z, then z cannot be an element of F . We show that assuming otherwise leads to a contradiction too.
We reuse N0 from (8.25). Because z is a contact point of F and this set exclusively consists of members of the
sequence (xn), there must be elements of F which, indexed as a sequence, converge to z. In other words, we
have a sequence

(xnj )j∈N such that xnj → z.

This in turn means that you can find N1 ∈ N such that

(8.27) d(xnj , z) < 2ε for all j = N1.

Then
d(xm, z) 5 d(xm, xnj ) + d(xnj , z) < 2ε

for m = N0 and j so big that both j = N1 and nj = j = N0. (think: why is j 5 nj?). In other words,
z = lim

n→∞
xn. Again, we must have z ∈ K because F ⊆ K and K is closed. We have arrived at our

contradiction because at the beginning of the proof we had assumed that the Cauchy sequence (xn) does not
have a limit in K.

The only possibility remaining is that F has no contact points outside F . Rephrase this: F contains all its
contact point, so it is closed. Remember that because they are sets there are no duplicate elements in the sets
Fj . But of course the original sequence (xn) might have duplicate members. Question: can it have members
that reoccur infinitely often? Here is why that is impossible: Let there be an x ∈ X and an infinite sequence
n1 < n2 < . . . of indices such that xnj = x for all j ∈ N. Then for any m ∈ N

d(xm, x) 5 d(xm, xnj ) + d(xnj , x) = d(xm, xnj ) + 0

will become arbitrarily small as m,nj both become big because (xn) is Cauchy. Hence the full sequence (xm)
converges to x ∈ K (actually x even belongs to Fn1 ⊆ K because x = xn1 ). We have a contradiction
because at the beginning of the proof we had assumed that the Cauchy sequence (xn) does not have a limit in
K.

The remainder of the proof is quick: Let’s go back to the original definition (8.22) of the sets Fj . Obviously

(8.28)
⋂
j∈N

Fj = ∅

because the last thing we figured out is that any member of (xn) only occurs finitely often and cannot belong to
Fj if j just is big enough. Let Uj := {Fj . Note that if m < n then Fm ⊃ Fn , hence Um ⊆ Un. According
to De Morgan’s law, (8.28) becomes ⋃

j∈N

Uj = {∅ = X
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and the Uj are an open covering of X , hence of the compact set K. So we can extract finitely many indices
i1 < i2 < . . . < iM for a suitable M ∈ N such that

UiM = Ui1 ∩ Ui2 ∩ . . . ∩ UiM ⊃ K.

Because any x ∈ K belongs to UiM , it cannot belong to its complement FiM . Rephrase that: none of the
xiM , xiM+1, xiM+2, . . . is an element of K. But we had assumed from the outset that all xj belong to K and
this final contradiction proves that it is impossible for a compact set to host a Cauchy sequence which does not
converge to an element of K. �

Theorem 8.12 (Sequence compact is same as compact). Let (X, d) be a metric space and let A be a
subset ofX . ThenA is sequence compact if and only ifA is compact, i.e., every open covering ofA has a finite
subcovering.

Proof of “⇐=”: A compact set is sequence compact:
All we need to show is that the set

C1 := {x1} ∪ {x2} ∪ . . .

(the members of (xn) with all duplicates removed) has a contact point a (i.e., any whatever small ε–neigborhood
Bε(a) contains infinitely many members of (xn) (see (7.17) on p.72). Let Fn be the closure of the tail set

Cn := {xn} ∪ {xn+1} ∪ . . . (see def. 5.12, p.37).

Then any finite intersection of this non–increasing sequence Cj of sets is of course non–empty.

I claim that

(8.29) F :=
⋂
j∈N

Fj must contain at least one member of A.

Why? Otherwise we would have
A ⊆ {F =

⋃
j∈N

{Fj

(De Morgan’s law, (3.1) on p.15). But Uj := {Fj is open as the complement of a closed set. Hence the Uj
are an open covering of the compact set A. So there exist finitely many indices

n1 < n2 < . . . < nj < . . . such that Unj =
⋃

j=n1,n2,...nj

Uj ⊃ A.

We take complements on both sides and flip the direction of ⊃ and obtain Fnj ⊆ {A. This is impossible
because all members xj , xj+1, . . . ∈ Fj were supposed to belong to A.

We arrived at a contradiction. Now we know that (8.29) must in fact be true. So there is a ∈ F ∩A . The
way that F was constructed, this means that

a ∈ Cn where Cn = {xn} ∪ {xn+1} ∪ . . . .

That means that any whatever small neighborhood of a contains elements of the sequence (xj). So for k ∈ N
we can pick an index nk such that xnk

∈ B1/k(a). Obviously the xnk
converge to a and we have our

convergent subsequence to an element of A.
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Proof of “=⇒”: A sequence compact set is compact:
Even though this is true for arbitrary metric spaces, the proof is too hard to give here and we limit ourselves
to prove the special case where (X, d) is RN with the Euclidean metric. According to Heine–Borel, we only
need to show that a sequence compact set is closed and bounded.

So let A ∈ RN and assume that A is not closed, say there is a contact point a of A which does not belong to A.
a can be approximated by elements of A and thus you can find for any (1/n)–neighborhood of a an element
xn ∈ B1/n(a), i.e., d(xn, a) < 1/n. The good news is that this sequence does have a as contact point. The
bad news is that it belongs to {A and not to A, and there is nothing else that might qualify as a contact point
for (xn). This proves that a set that is not closed is not sequence compact.

Now let us assume thatA is not bounded. That means that, given an arbitrary x0 ∈ RN , none of the neighbor-
hoods Bj(x0) = {x ∈ RN : d(x, x0) < j} containsA and we can pick xj ∈ A such that d(xj , x0) = j for
all j ∈ N. How can there possibly a subsequence (xjk) that converges to some b anywhere in RN? It would
have a finite distance d(b, x0) from x0, say γ. For big enough k, all xjk would be quite close to b and we can
expect that d(xjk , b) < 1. All together we get

d(xjk , x0) 5 d(xjk , b) + d(b, x0) 5 1 + γ

for big k. On the other hand we had constructed xjk such that d(xjk , x0) = jk = k where the last inequal-
ity is true because the subsequence jk grows faster than just k It follows that d(xjk , x0)→∞ for k →∞.
We have reached a contradiction and conclude that sequence compact sets in RN must be bounded. �

8.7 Appendix: Addenda to chapter 8

8.7.1 Sequence compactness

The following theorem follows indirectly from the fact that sequence compact sets are both totally bounded
and complete but here is a direct proof.

Theorem 8.13 (Sequence compact sets are closed and bounded). Let A be sequence compact subset of a
metric space (X, d). Then A is a bounded and closed set.

a. Proof of boundedness:

We may assume that A is not empty because otherwise there is nothing to prove. We assume that A is not
bounded, i.e., diam(A) = ∞. It will be proved by induction that there exists a sequence xn ∈ A such that
d(xi, xj) = 1 for any i 6= j.

Let x0 ∈ A. There exists x1 ∈ A such that r1 := d(x0, x1) = 1. We now assume that n elements x1, . . . xn
such that d(xi, xj) = 1 for any 1 5 i < j 5 n have aready been chosen. Let

{
k:=max

d(x0,xj):j5n}
}

and r := k + 1.
As A is not bounded, we can pick xn+1 ∈ A \Br(x0). We obtain

k + 1 ≤ d(xn+1, x0) ≤ d(xn+1, xj) + d(xj , x0) ≤ d(xn+1, xj) + k, i.e.,
1 ≤ d(xn+1, xj).

This finishes the proof of the existence of the sequence xn for which any two items have distance no less than 1.
It follows that there is no Cauchy subsequence, hence no convergent subsequence and we have a contradiction.
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b. Proof of closedness: IfA was not closed then we could pick a contact point x ∈ A{ ofA. AsB1/m(x)∩A 6=
∅ we can pick a sequence xm ∈ A such that d(xm, x) < 1/m for all m ∈ N. Clearly xm converges to x /∈ A.
Sequence compactness of A allows us to extract a subsequence zj = xnj which converges to z ∈ A. We have
both z and x as limit of zj . According to thm.7.9 on p.91, x = z and we have both x ∈ A{ and x ∈ A, a
contradiction. This proves that sequence compact sets are closed. �

8.7.2 Continuous functions and compact spaces

Theorem 8.14 (Closed subsets of compact spaces are compact). Let A be a closed subset of a compact
metric space (X, d). Then (A, d

∣∣
A×A is a compact subspace.

Proof:

Let (Uj)j∈J be a family of sets open in A whose union is A. According to prop.7.17 on p.93 there are open
sets Vj in X such that Uj = Vj ∩ A. It follows that

⋃
j∈J

Vj ⊇ A, hence the family (Vj)j∈J , augmented by

the (open!) set A{ is an open cover of (X, d). As X is compact we can extract finitely many members from
that extended family such that they still cover X . If one of them happens to be A{ then we remove it and we
still obtain that the remaining ones, say, Vi1 , Vi2 , . . . , Vin , cover A. But then the traces in A Ui1 = Vi1 ∩ A,
Ui2 = Vi2 ∩A, . . . , Uin = Vin ∩A, cover A and they form an open covering of the subspace A as the A-traces
of open sets in X are open in A. We have proved that the given open covering in A has a finite subcover of A.
�

Theorem 8.15 (Continuous images of compact spaces are compact). Let (X, d1) and (Y, d2) be two
metric spaces. and let f : X −→ Y be continuous on X . If X is compact then the direct image f(X) is
compact, i.e., the metric subspace f(X) of Y is compact.

Proof: Let (Vj)j∈J be a family of sets open in B := f(X) whose union is B. Let Uj := f−1(Vj).⋃
j∈J

Uj =
⋃
j∈J

f−1(Vj) = f−1
( ⋃
j∈J

Vj

)
= f−1(B) = f−1

(
f((X)

)
= X.(8.30)

In the above the second equation follows from prop. 4.2 (f−1 is compatible with all basic set ops) on p.23 and
the last one follows from the fact that f−1

(
f((A)

)
⊇ A for any subset of the domain of f (see cor. 4.1 on p.

26). According to prop.7.8 (“f−1(open) = open” continuity) on p.78, each Uj is open as the inverse image
of an open set under the continuous function f . It follows from (8.30) that (Uj)j∈J is an open covering of the
compact space X . We can extract a finite subcover Ui1 , Ui2 , . . . , Uin It follows from the interchangeability of
unions with direct images (see (4.19) on p.24) that

f(X) = f(Uj1 ∪ · · · ∪ Ujn) = f(Uj1) ∪ · · · ∪ f(Ujn)

= f
(
f−1(Vj1)

)
∪ · · · ∪ f

(
f−1(Vjn)

)
⊆ Vj1 ∪ · · · ∪ Vjn .

The incclusion relation above follows from the fact that f(f−1(B)) = B ∩ f(X) for any subset B of the
codomain of f (see prop.4.6 on p. 27). We have proved that the arbitrary open cover (Vj)j∈J of f(X) contains
a finite subcover Vj1 ∪ · · · ∪ Vjn and it follows that f(X) is indeed a compact metric subspace of Y . �

Read the following remark for an easier way to prove the above theorem.
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Remark 8.4. We could have proved the last two theorems more easily using sequence compactness
instead of covering compactness but the proofs that were given generalize to abstract topological
spaces (missing ingredient: defining topological subspaces (A,UA) of an abstract topological space
(X,U) You do this by defining UA := {U ∩ A : U ∈ U} and proving that UA satisfies the axioms
for the open subsets of a topological space and the proofs above will go through with almost no
alterations.

here is the outline of an alternate proof of theorem 8.15 which uses sequence compactness.

Given a sequence yn ∈ f(X) we construct a convergent subsequence ynj as follows: For each n
there is some xn ∈ X such that yn = f(xn) X is compact, hence sequence compact and it follows
that there is x ∈ X and a subsequence xnj such that xnj converges to x. We now use (sequence)
continuity of f at x to conclude that ynj = f(xnj ) converges to f(x) ∈ f(X). �
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