Math 330 Section 1 - Spring 2016 - Homework 05

This assignment sheet was updated on $2 / 16$ with additional hints.
Due date: February 17, 2016
Running total: 24 points
Last submission February 17, 2016(!!)
The written assignments will be GRADED ONLY ONCE!

Status - Reading Assignments:

Here is the status of the reading assignments you were previously asked to complete:
B/G (Beck/Geoghegan) Textbook:
all of ch. 1 - ch. 4
Other course material:
"Logic part 1"
"Sets part 1", "Sets part 2",
"Functions part 1", "Functions part 2"

New reading assignments:

Reading assignment 1 - due: Monday, February 15: Read carefully B/G ch.5.
Reading assignment 2 - due: Wednesday, February 17: Click on the latest link (" $01 / 24 / 2016$ version") of the "Math 330 - Additional Material" document (from now referred to as the "MF" document and read ch.2.1 - 2.5. Read carefully the subsections tagged as "Study this". Be aware that subsection 2.4.2 on families is a tough read.

Reading assignment 3 - due: Thursday, February 18: Read MF ch. 2.6 and 2.7 (the remainder of ch.2).
Reading assignment 4 - due: Friday, February 19: Read carefully MF ch.3.
Written assignments: The proofs need not be as exact as doing proofs from B/G but your reasoning must be concise and without gaps. Draw some pictures to illustrate! Alltogether those 4 assignments are worth 6 points!

Written assignment 1:

Do exercise 2.2.1 in "Functions part $2^{\prime \prime}:$ Let $f: \mathbb{R} \longrightarrow\left[0, \infty\left[\right.\right.$ be the function $x \mapsto x^{2}$. Is this function injective? Is it surjective? Hint: Be sure to first work through examples 2.2.5 and 2.2.6.

If you decide that f is NOT injective then demonstrate with a specific counterexample of two numbers that illustrate why. If you decide that f is NOT surjective then demonstrate with a specific counterexample of a number in the codomain that does not belong to the range f (domain).

Written assignment 2:

Do exercise 2.2.2 in "Functions part 2". Let $g:\left[0, \infty\left[\longrightarrow\left[0, \infty\left[\right.\right.\right.\right.$ be the function $x \mapsto x^{2}$. In other words, we have the same function as in assignment 1 except that we downsized its domain from \mathbb{R} to $[0, \infty[$. Is this function injective? Is it surjective?

Same instructions as in the previous assignment!

Written assignment 3:

Do exercise 2.8.1 in "Functions part 2": Find $f: A \longrightarrow B$ and $S \subseteq A$ such that $f\left(S^{\complement}\right) \neq f(S)^{\complement}$. Hint: use $f(x)=x^{2}$ and choose B as a one element only set (which does not leave you a whole lot of choices for A).

Written assignment 4:

Example 2.10.1 and exercise 2.10.1 in "Functions part 2" together state that injective \circ injective $=$ injective, surjective \circ surjective $=$ surjective

The following assignment is part of exercises 2.10.2 and 2.10.3 in "Functions part 2".
Find functions $f:\{a\} \longrightarrow\left\{b_{1}, b_{2}\right\}$ and $g:\left\{b_{1}, b_{2}\right\} \longrightarrow\{a\}$ such that $h:=g \circ f:\{a\}$ is bijective but such that it is not true that both f, g are injective and it is also not true that both f, g are surjective.

Hint: There are not a whole lot of possibilities. Draw possible candidates for f and g in arrow notation as on p.118. You should easily be able to figure out some examples. Think simple!

To get full credit, indicate clearly where injectivity or surjectivity is not obtained.

