Math 330 Section 1 - Spring 2016 - Homework 08

Due date: Monday, February 29, 2016
Last submission Monday, March 14, 2016

Running total: 33 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
all of ch. 1 - ch. 6
Other course material:
"Logic part 1"
"Sets part 1", "Sets part 2",
"Functions part 1", "Functions part 2"
"MF additional material", ch. 2 - ch. 3 (including the new appendices).

New reading assignments:

Reading assignment 1 - due: Monday, February 29, 2016

B/G book: Read carefully ch.7.1 and the part of ch.7.2 before thm.7.15, i.e., the algorithm for the addition of two integers. The remainder of ch. 7 will be ignored.

Read carefully ch.9.1(!) in the B/G book. It contains additional material on injectivity, surjectivity and bijectivity. some of which will come in handy in MF ch. 4 on cardinality which is due on Thursday.

Reading assignment 2 - due: Thursday, March 3, 2016

Read MF ch. 4 (Cardinality - Alternate approach). Skip the proof of prop.4.3 (\mathbb{N}^{2} is countable) and try to understand the subsequent remark 4.1 instead.

Reading assignment 3 - due: Friday, March 4, 2016

B/G book: Read carefully ch.8.1-8.3 Those chapters define axiomatically the set \mathbb{R} of the real numbers (not quite true: the completeness axiom will be added in ch.8.4). Most of the material is a rehash of what you have learned in ch. 1 and 2 but beware: there are new propositions dealing with the quotient of two numbers!
B / G book: Do a first reading of ch.8.4

Written assignments:

Do not use induction for any of those assignments. It would only make your task more difficult!
\#1 and \#2 are about proving B/G thm.6.13 (Division algorithm for integers): Let $n \in \mathbb{N}$ and $m \in \mathbb{Z}$. There exists a unique combination of two integers q ("quotient") and r ("remainder") such that

$$
m=n \cdot q+r \text { and } 0 \leq r<n .
$$

Assignment 1: Uniqueness of q, r :

Prove uniqueness of the "decomposition" $m=q n+r$: If you have a second such decomposition $m=\tilde{q} n+\tilde{r}$
then show that this implies $q=\tilde{q}$ and $r=\tilde{r}$. Start by assuming that $r \neq \tilde{r}$ which means that one of them is smaller than the other and take it from there.

Assignment 2: Existence of q, r :

Much harder than \#1: Prove the existence of q and r.
Hints: Review the Well-Ordering principle from ch.2. It will give the easiest way to prove this theorem. Remember we extended the well-ordering principle as follows: Let $A \subseteq \mathbb{Z}$ have lower bounds (which is especially true if $A \subseteq \mathbb{N}$ or $A \subseteq \mathbb{Z}_{\geq 0}$). If $A \neq \emptyset$ then A has a minimum.

Apply the above to the set $A:=A(m, n):=\left\{x \in \mathbb{Z}_{\geq 0}: x=m-k n\right.$ for some $\left.k \in \mathbb{Z}\right\}$.

Assignment 3:

Prove Thm.6.16, p. 59 of B / G : Let $n \in \mathbb{Z}$. Then either n is even or $n+1$ is even.
Hint: Apply the division algorithm with $n=2$.

