Math 330 Section 1 - Spring 2016 - Homework 11

Due date: March 21, 2016
Last submission April 8, 2016 (Fri!)

Running total: 41 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
all of ch. 1 - ch. 6
all of ch.7.1; ch.7.2 until before thm.7.15
all of ch. 8 - ch. 9
ch.10.1-10.3.
ch. 13.1 and 13.2 without looking at the proofs
ch. 13.3 and 13.4 including proofs
"MF additional material":
ch. 2 - ch. 4
ch. 5 up to and including def. 5.12 (Tail sets of a sequence): ch. 6
ch. 7 until before def.7.10 "Basis and neighborhood basis" in ch.7,1,3
ch.7.1.4 and 7.1.5
Other course material:
"Logic part 1"
"Sets part 1", "Sets part 2",
"Functions part 1", "Functions part 2"
Stewart Calculus 7ed - ch.1.7: "The Precise Definition of a Limit"

New reading assignments:

Reading assignment 1 - due: Monday, March 21 Read B/G ch. 13.5 (nondescribable numbers: this was handled in lecture on Fri, March 18).

Reread B/G ch.10.1-10.3

Reading assignment 2 - due: Wednesday, March 23

Read carefully B/G ch.10.4-10.5 and reread Stewart Calculus 7ed - ch.1.7: "The Precise Definition of a Limit".

Reading assignment 3 - due: Thursday, March 24

Reread MF ch. 6 (just for understanding).
Reread carefully the material of MF ch. 7 that was already assigned.

OPTIONAL Reading assignment 4 - due: Friday, March 25

On Friday I shall talk about an alternate approach of construction the real numbers. The methods used will be those used in B/G project 6.9 (which I talked about in class) and in B/G prop.6.25, 6.26. You will find it easier to follow that lecture if you take another look how one can extend a set with algebraic operations such as $(\mathbb{Z},+, \cdot)$ to a larger one such as the rational numbers by forming equivalence classes and extending the operations to those classes.

Assignment 1:

Prove B/G Prop.13.3: Let $k, n \in \mathbb{N}$ such that $1 \leq k<n$. Then the function

$$
g_{k}:[n-1] \longrightarrow[n] \backslash\{k\} \quad \text { defined by } \quad g_{k}(j):= \begin{cases}j & \text { if } j<k \tag{0.1}\\ j+1 & \text { if } j \geq k\end{cases}
$$

is bijective. Hint: Computing the inverse might be easiest, but be sure to prove that both $g_{k} \circ g_{k}^{-1}=i d_{[n] \backslash\{k\}}$ and $g_{k}^{-1} \circ g_{k}=i d_{[n-1]}$!

Assignment 2:
Prove B/G Cor.13.18: \mathbb{Q} is countable. You may use all of B / G ch. 13 up to thm.13.12 plus thm.13.19 (a countable union of countable sets is countable).
Hint: For $n \in \mathbb{N}$ let $Q_{n}:=\left\{m / n: m \in \mathbb{Z}\right.$ and $\left.-n^{2} \leq m \leq n^{2}\right\}$. They might come in handy!

