Math 330 Section 1 - Spring 2016 - Homework 12

Due date: April 4, 2016 Last submission April 20, 2016 Running total: 44 points

Updated on April 13, 2016: A massive hint has been given for solving assignment 1. The last submission date was moved from April 18 to April 20.

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.

B/G (Beck/Geoghegan) Textbook: all of ch.1 - ch.6 all of ch.7.1; ch.7.2 until before thm.7.15 all of ch.8 - ch.10 ch.13.1 and 13.2 **without looking at the proofs** ch.13.3, 13.4 and 13.5 **including proofs**

"MF additional material":

ch.2 - ch.4 ch.5 up to and including def.5.12 (Tail sets of a sequence): ch.6 ch.7 until before def.7.10 "Basis and neighborhood basis" in ch.7,1,3 ch.7.1.4 and 7.1.5

Other course material: "Logic part 1" "Sets part 1", "Sets part 2", "Functions part 1", "Functions part 2" Stewart Calculus 7ed - ch.1.7: "The Precise Definition of a Limit"

New reading assignments:

Reading assignment 1 - due: Wednesday, April 6 Read carefully B/G ch.11.

Reading assignment 2 - due: Friday, April 8 Finish MF ch.5 as follows: Skim through the material from prop.5.3 through prop.5.5 but read everything else carefully. Memorize thm 5.1 and 5.2.

Assignment 1:

Prove B/G prop.10.10(iv): $x, y \in \mathbb{R} \Rightarrow |x - y| \ge ||x| - |y||$.

To show this use the following proposition:

Proposition. Let $a, b \in \mathbb{R}$ such that both #1) $-a \leq b$ and #2) $a \leq b$. Then $|a| \leq b$.

Proof of proposition: Case 1) $a \ge 0$: It follows from #2 that $|a| = a \le b$ which is what we had to show. Case 2) a < 0: It follows from #1 that $|a| = -a \le b$ which is what we had to show. \blacksquare .

Hint f. assignment 1: first use the triangle inequality on |x| = |(x - y) + y| and then on |y| = |(y - x) + x|. See what you get for a := |x| - |y| and b := |x - y|.

Assignment 2:

Prove B/G prop.10.16: $\lim_{k\to\infty} x_k = L \Rightarrow \lim_{k\to\infty} x_{k+1} = L$. Hint: For a clean proof define $y_k := x_{k+1}$.

Assignment 3:

Prove B/G prop.10.21(ii): Let $\lim_{k\to\infty} x_k = L$. If $(x_k)_{k=0}^{\infty}$ is decreasing then $x_k \ge L$ for all $k \ge 0$.