Math 330 Section 1 - Spring 2016 - Homework 12

Due date: April 4, 2016
Running total: 44 points
Last submission April 20, 2016
Updated on April 13, 2016: A massive hint has been given for solving assignment 1. The last submission date was moved from April 18 to April 20.

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
all of ch. 1 - ch. 6
all of ch.7.1; ch.7.2 until before thm.7.15
all of ch. 8 - ch. 10
ch. 13.1 and 13.2 without looking at the proofs
ch.13.3, 13.4 and 13.5 including proofs
"MF additional material":
ch. 2 - ch. 4
ch. 5 up to and including def. 5.12 (Tail sets of a sequence): ch. 6
ch. 7 until before def.7.10 "Basis and neighborhood basis" in ch.7,1,3
ch.7.1.4 and 7.1.5
Other course material:
"Logic part 1"
"Sets part 1", "Sets part 2",
"Functions part 1", "Functions part 2"
Stewart Calculus 7ed - ch.1.7: "The Precise Definition of a Limit"

New reading assignments:

Reading assignment 1 - due: Wednesday, April 6 Read carefully B/G ch.11.
Reading assignment 2 - due: Friday, April 8 Finish MF ch. 5 as follows: Skim through the material from prop.5.3 through prop. 5.5 but read everything else carefully. Memorize thm 5.1 and 5.2.

Assignment 1:

Prove B/G prop.10.10(iv): $x, y \in \mathbb{R} \Rightarrow|x-y| \geq||x|-|y||$.
To show this use the following proposition:
Proposition. Let $a, b \in \mathbb{R}$ such that both \#1) $-a \leqq b$ and \#2) $a \leqq b$. Then $|a| \leqq b$.
Proof of proposition: Case 1) $a \geqq 0$: It follows from \#2 that $|a|=a \leqq b$ which is what we had to show.
Case 2) $a<0$: It follows from \#1 that $|a|=-a \leqq b$ which is what we had to show.
Hint f. assignment 1: first use the triangle inequality on $|x|=|(x-y)+y|$ and then on $|y|=|(y-x)+x|$. See what you get for $a:=|x|-|y|$ and $b:=|x-y|$.

Assignment 2:

Prove B/G prop.10.16: $\lim _{k \rightarrow \infty} x_{k}=L \Rightarrow \lim _{k \rightarrow \infty} x_{k+1}=L$.
Hint: For a clean proof define $y_{k}:=x_{k+1}$.

Assignment 3:

Prove B/G prop.10.21(ii): Let $\lim _{k \rightarrow \infty} x_{k}=L$. If $\left(x_{k}\right)_{k=0}^{\infty}$ is decreasing then $x_{k} \geq L$ for all $k \geq 0$.

