Math 330 Section 1 - Spring 2016 - Homework 15

Due date: Wed, April 27, 2016
Last submission Monday, May 9, 2016

Running total: nn points

Updated on 2016-04-28: a hint was given to assignment 1.

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
all of ch. 1 - ch. 6
all of ch.7.1; ch.7.2 until before thm.7.15
all of ch. 8 - ch. 12
ch. 13.1 and 13.2 without looking at the proofs
ch.13.3, 13.4 and 13.5 including proofs
"MF additional material":
ch. 2 - ch. 6 (prop. 5.3 through prop. 5.5 without proofs)
ch. 6
all of ch.7.1-7.3 but see this footnote. ${ }^{1}$
Other course material:
"Logic part 1"
"Sets part 1", "Sets part 2",
"Functions part 1", "Functions part 2"
Stewart Calculus 7ed - ch.1.7: "The Precise Definition of a Limit"

New reading assignments:

Reading assignment 1 - due: Wednesday, April 27 Read carefully ch.7.4: Addenda to ch. 7 (Convergence and continuity). This contains a single proposition and proof: uniform convergence of functions is convergence with respect to the sup norm.

Read carefully B/G appendix A "Continuity and Uniform Continuity"
Reading assignment 2 - due: Friday, April 29 Read carefully MF ch. 8 until the end of ch.8.3 (ε-nets and total boundedness). Note that you can skip the proof of prop. 8.2 which constitutes the major part of ch.8.3.

Assignment 1:

MF Prop.7.2 (Metric properties of the distance between real functions):
Let X be an arbitrary, non-empty set.
Let $\mathscr{B}(X, \mathbb{R}):=\{h(\cdot): h(\cdot)$ is a bounded real function on $X\}$.
Let $f(\cdot), g(\cdot), h(\cdot) \in \mathscr{B}(X, \mathbb{R})$ Then the distance function

$$
d(\cdot): \mathscr{B}(X, \mathbb{R}) \times \mathscr{B}(X, \mathbb{R}) \longrightarrow \mathbb{R}_{+} \quad\left(h_{1}, h_{2}\right) \longmapsto d\left(h_{1}, h_{2}\right):=\left\|h_{1}-h_{2}\right\|_{\infty}
$$

[^0]satisfies the three properties of a metric:
(0.1a) $\quad d(f, g) \geqq 0 \quad \forall f(\cdot), g(\cdot) \in \mathscr{B}(X, \mathbb{R})$ and $\quad d(f, g)=0 \Longleftrightarrow f(\cdot)=g(\cdot) \quad$ positive definite
(0.1b) $\quad d(f, g)=d(g, f) \quad \forall f(\cdot), g(\cdot) \in \mathscr{B}(X, \mathbb{R}) \quad$ symmetry
(0.1c) $\quad d(f, h) \leqq d(f, g)+d(g, h) \quad \forall f, g, h \in \mathscr{B}(X, \mathbb{R}) \quad$ triangle inequality

Hint for the proof of the triangle inequality: Use prop. 5.9 in ch.5.4 (Appendix: Addenda to chapter 5). Apply it with $\varphi(x):=f(x)-g(x)$, etc. I won't allow this unless you reference that proposition in your homework!

Assignment 2:

Let $A:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}>0, x_{2}>0\right\}$ be the first quadrant in the plane (the points on the coordinate axes are excluded). Prove that each element of A is an inner point, i.e., A is open in \mathbb{R}^{2}.

[^0]: ${ }^{1}$ Ch.7.1.3: Read carefully only until def.7.10 (Basis and neighborhood basis) and skim through the remainder of ch.7.1.3.

