Math 330 Section 1 - Spring 2016 - Homework 16

Due date: Mon, May 2, 2016
Last submission Wednesday, May 11, 2016(!!)

Running total: 55 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
all of ch. 1 - ch. 6
all of ch.7.1; ch.7.2 until before thm.7.15
all of ch. 8 - ch. 12
ch. 13.1 and 13.2 without looking at the proofs
ch.13.3, 13.4 and 13.5 including proofs
Appendix A "Continuity and Uniform Continuity"
"MF additional material":
ch. 2 - ch. 6 (prop. 5.3 through prop. 5.5 without proofs)
ch. 6
all of ch. 7 but see this footnote ${ }^{1}$.
ch.8.1-8.3, omit the proof of prop.8.2.
Other course material:
"Logic part 1"
"Sets part 1", "Sets part 2",
"Functions part 1", "Functions part 2"
Stewart Calculus 7ed - ch.1.7: "The Precise Definition of a Limit"

New reading assignments:

Reading assignment 1 - due: Monday, May 2 Review MF ch.8.1-8.3, especially the definition of compactness that uses finite subcovers of open sets.

Reading assignment 2 - due: Wednesday, May 4 Read carefully MF ch.8.4: Sequence compactness
Reading assignment 3 - due: Thursday, May 5
a. Read carefully MF ch.8.5: Continuous functions and compact spaces.
b. Read carefully MF ch.8.6: Heine Borel theorem but skip ch.8.6.1.

Reading assignment 4 - due: Friday, May 6

a. Read MF ch.9.1.1 (Partially ordered sets). Be sure to learn Zorn's lemma.
b. Read MF ch.9.1.2 (Partially ordered sets). up to and including lemma 9.2.

Assignment 1:

MF Proposition 7.12 does NOT have a proof of the following: Let (X, d) be a metric space and $f, g: X \longrightarrow \mathbb{R}$ both be continuous at $x_{0} \in X$. Prove that if $g\left(x_{0}\right) \neq 0$ then f / g is continuous at x_{0} in two stages.
a. prove that $h(x):=1 / g(x)$ is continuous at x_{0}. Hint: Use sequence continuity and results in B/G ch.10.4 concerning sequences of real numbers. Don't attempt to use the $\varepsilon-\delta$ characterization of continuity.

[^0]b. Now rewrite f / g as a \qquad and use a result in MF ch.7.2.2 to conclude that f / g is continuous at x_{0}

Assignment 2:

Let $f(x)=x^{2}$. Prove by use of " $\varepsilon-\delta$ continuity" that f is continous at $x_{0}=1$.

Hint \#1: What does $d\left(x, x_{0}\right)<\delta$ and $d\left(f(x), f\left(x_{0}\right)<\varepsilon\right.$ translate to?
Hint \#2: $x^{2}-1=(x+1)(x-1)$.
Hint \#3: Only small neighborhoods matter: You may assume (but must state this reason!) that $\varepsilon<1$ and $\delta<1$. What kind of bounds do you get for $\left|x^{2}-1\right|,|x+1|,|x-1|$?
Hint \#4: Put all the above together. Can you see why, for "small" δ, you obtain $\left|f(x)-f\left(x_{0}\right)\right| \leq 3 \delta$?

[^0]: ${ }^{1}$ Ch.7.1.3: Read carefully only until def.7.10 (Basis and neighborhood basis) and skim through the remainder of ch.7.1.3.

