Math 330 Section 1 - Fall 2016 - Homework 05

Published: Saturday, September 17, 2016 Running total: 26 points

Last submission: Friday, September 23, 2016 NO RESUBMISSIONS

This homework is worth 8 points!

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
ch. 1 - ch.3, ch.4.1-4.4, ch. 5
MF lecture notes:
ch.1, ch.2, ch.4-ch. 6
B / K lecture notes (optional reading - good for examples, improved understanding):
ch.1.1, ch.4.1, ch.4.2
New reading assignments: None: They will come with homework 6.

Written assignment 1:

Injectivity and Surjectivity

- Let $f: \mathbb{R} \longrightarrow\left[0, \infty\left[; \quad x \mapsto x^{2}\right.\right.$.
- Let $g:\left[0, \infty\left[\longrightarrow\left[0, \infty\left[; \quad x \mapsto x^{2}\right.\right.\right.\right.$.

In other words, g is same function as f as far as assigning function values is concerned, but that its domain was downsized to $[0, \infty[$.

Answer the following with true or false.
a. $\quad f$ is surjective
b. $\quad f$ is injective
c. g is surjective
d. g is injective

If your answer is false then give a specific counterexample.

Written assignment 2:

Let $A \subseteq \mathbb{R}$.

- Let $F_{1}: A \longrightarrow\left[-2,20\left[; \quad x \mapsto x^{2}\right.\right.$.
- Let $F_{2}: A \longrightarrow\left[2,20\left[; \quad x \mapsto x^{2}\right.\right.$.
- Let $G_{1}: A \longrightarrow[-2,20[; \quad x \mapsto \sqrt{x}$.
- Let $G_{2}: A \longrightarrow[2,20[; \quad x \mapsto \sqrt{x}$.
- Let $G_{3}: A \longrightarrow[-20,2[; \quad x \mapsto \sqrt{x}$.
- Let $G_{4}: A \longrightarrow[-20,-2[; \quad x \mapsto \sqrt{x}$.

What choice of A makes
a. $\quad F_{1}$ surjective?
b. $\quad F_{1}$ injective?
c. $\quad F_{2}$ surjective?
d. $\quad F_{2}$ injective?
e. $\quad G_{1}$ surjective?
f. $\quad G_{1}$ injective?
g. $\quad G_{2}$ surjective?
h. $\quad G_{2}$ injective?
i. $\quad G_{3}$ surjective?
j. $\quad G_{3}$ injective?
k. $\quad G_{4}$ surjective?

1. G_{4} injective?

For the questions above

- Write impossible if no choice of $A \subseteq \mathbb{R}$ exists.
- Write NAF for any of $F_{1}, F_{2}, G_{1}, G_{2}, G_{3}, G_{4}$ which does not define a function.

Written assignment 3:

Find $f: X \longrightarrow Y$ and $A \subseteq X$ such that $f\left(A^{\complement}\right) \neq f(A)^{\complement}$. Hint: use $f(x)=x^{2}$ and choose Y as a one element only set (which does not leave you a whole lot of choices for X). See example 4.17 on p.78.

Written assignment 4:

You will learn later in this course that injective \circ injective $=$ injective, surjective \circ surjective $=$ surjective.

The following illustrates that the reverse is not necessarily true.
Find functions $f:\{a\} \longrightarrow\left\{b_{1}, b_{2}\right\}$ and $g:\left\{b_{1}, b_{2}\right\} \longrightarrow\{a\}$ such that $h:=g \circ f:\{a\}$ is bijective but such that it is not true that both f, g are injective and it is also not true that both f, g are surjective.

Hint: There are not a whole lot of possibilities. Draw possible candidates for f and g in arrow notation as on p.118. You should easily be able to figure out some examples. Again, think simple and look at example 4.17 on p. 78 .

