Math 330 Section 1 - Fall 2016 - Homework 06

Published: Saturday, September 17, 2016
Last submission: Friday, September 30, 2016

Running total: 30 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
ch. 1 - ch.3, ch.4.1-4.4, ch. 5
MF lecture notes:
ch.1, ch.2, ch.4-ch. 6
B / K lecture notes (optional reading - good for examples, improved understanding): ch.1.1, ch.4.1, ch.4.2

New reading assignments:

Reading assignment 1 - due Monday, September 19:

Read carefully the remainder of B/G ch.4. (ch.4.5 and 4.6) Binomial Thm and Strong Induction) Read carefully B/G ch.6.1 (Equivalence Relations)

Reading assignment 2 - due: Tuesday, September 20:

Read carefully B/G ch.6.2 (The Division Algorithm)

Reading assignment 3 - due Wednesday, September 21:

Read carefully B/G ch.6.3 (The Integers Modulo n)
Reading assignment 4 - due Friday, September 23:
Read carefully the remainder of B/G ch.6, i.e., ch.6.4 (Prime Numbers)

Written assignment 1:

Given are four sets A, B, C, D. prove that
a. $(A \times B) \cap(C \times D) \subseteq(A \cap C) \times(B \cap D)$,
b. $(A \times B) \cap(C \times D) \supseteq(A \cap C) \times(B \cap D)$.

You'll get one point each for \mathbf{a} and \mathbf{b}.

Written assignment 2:

Prove (5.5) of MF Example 5.1 (p.89): Let $a, b \in \mathbb{R}$. Then

> a. $\quad] a, b\left[\subseteq \bigcup_{n \in \mathbb{N}}[a+1 / n, b-1 / n]\right.$,
> b. $\quad] a, b\left[\supseteq \bigcup_{n \in \mathbb{N}}[a+1 / n, b-1 / n]\right.$.

Note for the above that $[u, v]=\emptyset$ for $u>v$ and $] u, v[=\emptyset$ for $u \geqq v$.
You'll get one point each for \mathbf{a} and \mathbf{b}.

Hints for assignment 2 added on 9/27/2016:

1. One direction is completely trivial. Which one?
2. For the other direction: You may use the following property of the real numbers if you refer to it as "(Hwk $7 \star$)":

If $u, v \in \mathbb{R}$ and $u<v$ then there exist some (possibly very large) $n \in \mathbb{N}$ such that $u+1 / n<v$ (and hence also $u<v-1 / n$).

What values to use for u and v ? That's for you to figure out.

