Math 330 Section 1 - Fall 2016 - Homework 08

Published: Friday, September 30, 2016
Last submission: Friday, September 14, 2016

Running total: 39 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
ch. 1 - ch. 8 (skim 7.2)
ch.9.1

MF lecture notes:
ch.1, ch.2, ch.4-ch. 6
B/K lecture notes (optional reading - good for examples, improved understanding):
ch.1.1, ch.4.1, ch.4.2

New reading assignments:

No new reading assignments but use the time to reread the old stuff!

Written assignments:

Do not use induction for any of those assignments. It would only make your task more difficult!
$\# 1$ and $\# 2$ are about proving B/G thm.6.13 (Division algorithm for integers): Let $n \in \mathbb{N}$ and $m \in \mathbb{Z}$. There exists a unique combination of two integers q ("quotient") and r ("remainder") such that

$$
m=n \cdot q+r \quad \text { and } 0 \leq r<n .
$$

Written assignment 1:

Prove uniqueness of the "decomposition" $m=q n+r$: If you have a second such decomposition $m=\tilde{q} n+\tilde{r}$ then show that this implies $q=\tilde{q}$ and $r=\tilde{r}$. Start by assuming that $r \neq \tilde{r}$ which means that one of them is smaller than the other and take it from there.

Written assignment 2:

Much harder than \#1: Prove the existence of q and r.
Hints: Review the Well-Ordering principle from ch.2. It will give the easiest way to prove this theorem. Remember we extended the well-ordering principle as follows: Let $A \subseteq \mathbb{Z}$ have lower bounds (which is especially true if $A \subseteq \mathbb{N}$ or $A \subseteq \mathbb{Z}_{\geq 0}$). If $A \neq \emptyset$ then A has a minimum.

Apply the above to the set $A:=A(m, n):=\left\{x \in \mathbb{Z}_{\geq 0}: x=m-k n\right.$ for some $\left.k \in \mathbb{Z}\right\}$.

Written assignment 3:

Prove Thm.6.16, p. 59 of B / G : Let $m \in \mathbb{Z}$. Then either m is even or $m+1$ is even.
Hint: Apply the division algorithm with $n=2$.

