Math 330 Section 1 - Fall 2016 - Homework 09

Published: Saturday, October 8, 2016
Last submission: Friday, October 21, 2016

Running total: 42 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
ch. 1 - ch. 8 (skim 7.2)
ch.9.1
MF lecture notes:
ch.1, ch.2, ch.4-ch. 6
B / K lecture notes (optional reading - good for examples, improved understanding): ch.1.1, ch.4.1, ch.4.2

New reading assignments:

Reading assignment 1 - due Monday, October 10:

Read carefully B/G ch.9.2
Read carefully B/G ch. 10 until the start of ch. 10.4 (Limits)

Reading assignment 2 - due: Tuesday, October 11:

Read carefully ch.10.4 of B/G through prop. 10.22.

Reading assignment 3 - due Friday, October 14:

Read carefully the remainder of B/G ch.10.

Written assignment 1 :

Prove B/G Prop.7.1 using induction: If $n \in \mathbb{N}$ then $n<10^{n}$. You may use the fact that 10 (defined as $9+1$) satisfies $0<1<2<10$. Justify your inequalities referring to B/G prop. 2.7(i)-2.7(iv).

Written assignment 2:

Define $\nu: \mathbb{Z}_{\geqq 0} \longrightarrow \mathbb{Z}_{\geqq 0}$ as follows: $\nu(0):=0$. For $n \in \mathbb{N}$ proceed as follows: Let

$$
A:=A(n):=\left\{t \in \mathbb{N}: n<10^{t}\right\} ; \quad \text { define } \nu(n):=\min (A) .
$$

B/G prop.7.3 states that, for all $n \in \mathbb{N}, \nu(n)=k \Longleftrightarrow 10^{k-1} \leqq n<10^{k}$.
Prove " \Rightarrow " of B/G prop.7.3.
Written assignment 3 :
Prove " κ " of B/G prop.7.3.

The math for assignments 2 and 3 is easy but you may find it hard to write down a proof that meets my demands for precision.

Hints for \#2 and \#3: 1) I gave the set a name (A) on purpose: this allows you to express with minimal effort fragments such as " $x \in A$ ", " $x \notin A$ ", "because $\nu(m)=\min (A)^{\prime \prime}, \ldots$
2) You may use without proof the "no gaps property" of A : if $x, y \in \mathbb{N}$ and $x \in A$ and $y>x$ then $y \in A$. (would you be able to figure out why?)

