Math 330 Section 1 - Fall 2016 - Homework 11

Published: Friday, October 21, 2016
Last submission: Friday, November 4, 2016

Running total: 48 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
ch. 1 - ch. 10 (skim 7.2)

MF lecture notes:
ch.1, ch.2, ch.4-ch.6, ch. 8 ch. 9 up to and including example 9.20
B / K lecture notes (optional reading - good for examples, improved understanding): ch.1.1, ch.4.1, ch.4.2

New reading assignments:

Reading assignment 1 - due Monday, October 24:

a. Finish up MF ch.9.1.
b. Read carefully the remainder of MF ch.9. (ch.9.2, Normed vector spaces).

This material will be new to you even if you have completed a linear algebra course.
c. Read carefully MF ch. 10 up to the beginning of ch.10.1.1 (Measuring the distance of real functions).

Reading assignment 2 - due: Tuesday, October 25:

Read carefully MF ch.10.1.1.

Reading assignment 3 - due Wednesday, October 26:

Read carefully MF ch.10.1.2.

Reading assignment 4 - due Friday, October 28:

Read carefully MF ch.10.1.3 and ch.10.1.4; skim ch.10.1.5.

Written assignment 1 :

Prove B/G prop.10.10(iv): $x, y \in \mathbb{R} \Rightarrow|x-y| \geq||x|-|y||$.
Hint: To show this use the following proposition:
Proposition. Let $a, b \in \mathbb{R}$ such that both \#1) $-a \leqq b$ and \#2) $a \leqq b$. Then $|a| \leqq b$.
Proof of proposition:
Case 1) $a \geqq 0$: It follows from \#2 that $|a|=a \leqq b$ which is what we had to show.
Case 2) $a<0$: It follows from \#1 that $|a|=-a \leqq b$ which is what we had to show.
Hint f. assignment 1: first use the triangle inequality on $|x|=|(x-y)+y|$ and then on $|y|=|(y-x)+x|$. See what you get for $a:=|x|-|y|$ and $b:=|x-y|$.

Written assignment 2:

Prove B/G prop.10.21(ii): Let $\lim _{k \rightarrow \infty} x_{k}=L$. If $\left(x_{k}\right)_{k=0}^{\infty}$ is decreasing then $x_{k} \geq L$ for all $k \geq 0$.

Written assignment 3:

Prove B/G prop.10.16: $\lim _{k \rightarrow \infty} x_{k}=L \Rightarrow \lim _{k \rightarrow \infty} x_{k+1}=L$.
Hint: For a clean proof define $y_{k}:=x_{k+1}$.

