Math 330 Section 1 - Fall 2016 - Homework 12

Published: Friday, October 28, 2016
Last submission: Friday, November 11, 2016
A hint for written assignment \#3 was added on 11/07.

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
ch. 1 - ch. 10 (skim 7.2)
MF lecture notes:
ch.1, ch.2, ch.4-ch.6, ch.8-ch. 9 (ch.9.2 carefully)
ch.10.1-ch.10.4; skim ch.10.1.5.
B / K lecture notes (optional reading - good for examples, improved understanding): ch.1.1, ch.4.1, ch.4.2

New reading assignments:

Reading assignment 1 - due Monday, October 31:

Read carefully MF ch.10.1.6.-10.1.8

Reading assignment 2 - due: Tuesday, November 1:

Read carefully MF ch.10.1.9. (Finish ch.10.1)

Reading assignment 3 - due Wednesday, November 2:

Read carefully MF ch.10.2.1.-10.2.2

Reading assignment 4 - due Friday, November 4:

Read carefully MF ch.10.2.3-ch.10.2.5

Written assignment 1 :

Prove that the sequence $x_{n}:=\cos (n \pi)+1 / n$ does not have a limit.

Written assignment 2:

Let (X, d) be a metric space and let $u, u^{\prime}, v, v^{\prime} \in X$. Prove that

$$
\left|d\left(u, u^{\prime}\right)-d\left(v, v^{\prime}\right)\right| \leqq d(u, v)+d\left(u^{\prime}, v^{\prime}\right) .
$$

Written assignment 3 (added on 10/29/2016). Prove MF prop.9.10 from the axioms of a norm in def.9.13 (Normed vector spaces): If $x \mapsto\|x\|$ is a norm on a vector space V then so is $x \mapsto p(x):=\gamma\|x\|(\gamma>0)$.
Hint: I introduced " $p(\cdot)$ " for the new norm to help you structure your proofs correctly. Example: The proof of the triangle inequality should look like this:
$x, y \in V \Rightarrow p(x+y)=\cdots \leqq \cdots=p(x)+p(y)$. Somewhere in the middle you should make use of the fact that $\|x+y\| \leqq\|x\|+\|y\|$ because the norm $\|\cdot\|$ satisfies the triangle inequality.

