Math 330 Section 1 - Fall 2016 - Homework 14

Published: Friday, November 11, 2016
Last submission: Monday(!!), November 28, 2016

Running total: 56 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
ch. 1 - ch. 10 (skim 7.2)
MF lecture notes:
ch.1, ch.2, ch. 4 -ch.6, ch. 8 -ch. 10
B / K lecture notes (optional reading - good for examples, improved understanding): ch.1.1, ch.4.1, ch.4. 2

New reading assignments:

Reading assignment 1 - due Monday, November 14:

Read carefully B/G Appendix A: Continuity \& Uniform Continuity
Reread carefully MF ch.10.2 and relate this to B/G Appendix A
Reading assignment 2 - due: Tuesday, November 15:
Reread carefully MF ch.10.3

Reading assignment 3 - due Wednesday, November 16:

Read carefully B/G(!!) ch. 11 (Rational \& Irrational \#s)
Reading assignment 4 - due Friday, November 18:
Read carefully B/G(!!) ch. 12 (Decimal Expansions)

Written assignment 1:

Let $A:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}>0, x_{2}>0\right\}$ be the first quadrant in the plane (the points on the coordinate axes are excluded). Prove that each element of A is an inner point, i.e., A is open in \mathbb{R}^{2}.

Written assignment 2:

Let $f(x)=x^{2}$. Prove by use of " $\varepsilon-\delta$ continuity" that f is continous at $x_{0}=1$.

Hint \#1: What does $d\left(x, x_{0}\right)<\delta$ and $d\left(f(x), f\left(x_{0}\right)<\varepsilon\right.$ translate to?
Hint \#2: $x^{2}-1=(x+1)(x-1)$.
Hint \#3: Only small neighborhoods matter: You may assume (but must state this reason!) that $\varepsilon<1$ and $\delta<1$. What kind of bounds do you get for $\left|x^{2}-1\right|,|x+1|,|x-1|$?
Hint \#4: Put all the above together. Can you see why, for "small" δ, you obtain $\left|f(x)-f\left(x_{0}\right)\right| \leq 3 \delta$?

