Math 330 Section 1 - Fall 2016 - Homework 15

Published: Friday, November 18, 2016
Last submission: Friday, December 2, 2016

Running total: 59 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
ch. 1 - ch. 12 (skim 7.2)
Appendix A: Continuity \& Uniform Continuity

MF lecture notes:
ch.1, ch.2, ch.4-ch.6, ch.8-ch. 10
B/K lecture notes (optional reading - good for examples, improved understanding):
ch.1.1, ch.4.1, ch.4.2
New reading assignments:
Reading assignment 1 - due Monday, November 21:
Reread MF ch.5.3 (Countable sets)
Read carefully B/G ch. 13 (Cardinality)

Reading assignment 2 - due: Tuesday, November 22:

Read carefully MF ch. 7 (Cardinality)

Reading assignment 3 - OPTIONAL - due Wednesday, November 23:

Read MF ch.14: The better you are prepared, the more you will get out of that optional lecture.
Also recommended: take a look at B / G prop. $6.25,6.26$ (constructing \mathbb{Z}_{n} from \mathbb{Z} via equivalence classes). You will find it easier to follow that lecture if you get a feeling for how one can take a set with algebraic operations such as $(\mathbb{Z},+, \cdot)$ and create from it a new one by forming equivalence classes and adapting the operations to those classes.

Reading assignment 4 - due Monday(!!), November 28:

Read carefully MF ch. 11 up to and including ch.11.4, prop 11.4
(Sequence compact implies completeness)
Written assignment 1: Prove B/G Thm.11.12, p.110: If $r \in \mathbb{N}$ is not a perfect square, then \sqrt{r} is irrational. Hint: Study the proof of prop. 11.10 carefully and you'll see that you can use it with small alterations.

Written assignment 2: Use everything up-to and including B/G prop.11.10 PLUS all of B/G prop.11.20 and B/G prop.11.21 to prove the following: Let $m, n \in \mathbb{Z} \backslash\{0\}$. Then $(m / n) \sqrt{2}$ is irrational.

Written assignment 3: Prove B/G Prop.13.3: Let $k, n \in \mathbb{N}$ such that $1 \leq k<n$. Then the function

$$
g_{k}:[n-1] \longrightarrow[n] \backslash\{k\} \quad \text { defined by } \quad g_{k}(j):= \begin{cases}j & \text { if } j<k \\ j+1 & \text { if } j \geq k\end{cases}
$$

is bijective. Hint: Computing the inverse might be easiest, but be sure to prove that both $g_{k} \circ g_{k}^{-1}=i d_{[n] \backslash\{k\}}$ and $g_{k}^{-1} \circ g_{k}=i d_{[n-1]}$!

