Math 330 Section 2 - Spring 2017 - Homework 03

Published: Thursday, January 26, 2017 Last submission: Wednesday, February 1, 2017 (that is two days before the last submission date for hwk 2!) *Running total:* 15 *points* **NO RESUBMISSIONS**

This homework is published concurrently with homework 4

Updated on Jan 31, 2017 with clarifications about set membership.

Clarification:

- a. Correct: No matter what A stands for, it is never true that A = {A}. Not even if A = Ø (the empty set): {Ø} is a set: it is of the form {.....}. But {Ø} contains an element (exactly one): The empty set! So {Ø} ≠ Ø. By the way: It is true that Ø ⊆ {Ø}!
- **b.** Correct: No matter what *A* stands for, it is never true that $A \in A$. Again, not even if $A = \emptyset$ (the empty set): The empty set contains nothing at all; in particular, it does not contain any set; in particular, it does not contain the set that has no elements, i.e., the empty set.
- c. CAREFUL HERE: If I told anyone of you that it is impossible to have both $a \in U$ and $\{a\} \in U$ then I made a mistake. Matter of fact, the first assignment of hwk 3 has an example that this is possible.

Written assignments 1-4

Do the four exercises of MF ch. 2.3.2: Examples and exercises for sets. Each one is worth two points!

In the MF doc refer to example 4.4 for the preliminary definition of cardinality of a set and to def.4.1 (Cartesian Product of two sets) for the definition of Cartesian product. You find both in ch.4.1 (Cartesian products and relations) on approx. p.68. Reminder: this chapter was part of the assigned reading for Friday, September 9, 2016.

Written assignment 1 (exercise 2.1):

Let $X = \{x, y, \{x\}, \{x, y\}\}$. True or false?

a. $\{x\} \in X$ **c.** $\{\{x\}\} \in X$ **e.** $y \in X$ **g.** $\{y\} \in X$ **b.** $\{x\} \subseteq X$ **d.** $\{\{x\}\} \subseteq X$ **f.** $y \subseteq X$ **h.** $\{y\} \subseteq X$

Written assignment 2 (exercise 2.2):

Find the cardinality of each of the following sets:

a. $A = \{x, y, \{x\}, \{x, y\}\}$ **b.** $B = \{1, \{0\}, \{1\}\}\}$ **c.** $C = \{u, v, v, v, u\}$ **d.** $D = \{3z - 10 : z \in \mathbb{Z}\}$ **f.** $F = \{\pi x : x \in \mathbb{R}\}$

Written assignment 3 (exercise 2.3):

Let $X = \{x, y, \{x\}, \{x, y\}\}$ and $Y = \{x, \{y\}\}$. True or false?

Written assignment 4: Written assignment 4 (exercise 2.4):

Let $X = \{1, 2, 3, 4\}$ and let $Y = \{x, y\}$.

a. What is $X \times Y$?	c. What is $card(X \times Y)$?	e. Is $(x,3) \in X \times Y$?	g. Is $3 \cdot x \in X \times Y$?
b. What is $Y \times X$?	d. What is $\operatorname{card}(Y \times X)$?	f. Is $(x,3) \in Y \times X$?	h. Is $2 \cdot y \in Y \times X$?