Math 330 Section 2 - Spring 2017 - Homework 04

Published: Thursday, January 26, 2017

Running total: 18 points

Last submission: Friday, February 10, 2017

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
all of ch. 1 - ch. 3
MF lecture notes:
a. ch. 1 - ch.2,
b. ch. 4 until before ch.4.2.2 (function def.),
b. ch.16.1.2 (formerly ch.16.1.1).
B / K lecture notes (optional reading - good for examples, improved understanding): ch.1, section 1

New reading assignments:

Reading assignment 1 - due Monday, January 30:

a. Read carefully the remainder of MF ch.4. This is important as it covers the definition of a function!
b. Read carefully MF ch. 16.1 (addenda to B/G ch.1) and ch.16.4 (addenda to B/G ch.4).
c. Read carefully B/G ch.5,
d. Suggested (for examples): Read B/K ch.4.1: (Set Ops) and ch.4.2: Properties of Functions.

That's a lot of pages but the MF doc reading is mostly examples.

Reading assignment 2 - due: Tuesday, January 31:

B/G: Read carefully ch.4.1-4.2.

Reading assignment 3 - due Wednesday, February 1:

B/G: Read carefully ch.4.3-4.4.

Reading assignment 4 - due Friday, February 3:

a. MF doc: Read carefully ch.5.1 and read the remainder of ch.5.
b. MF doc: Read carefully ch.6. It is very brief but extremely important and rather terse.

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.

Written assignment 1: Prove B/G Prop. 4.6(iii) using induction: Given the definition of "Power" between props 4.5 and 4.6 , prove that if $b \in \mathbb{Z}$ and $m, k \in \mathbb{Z}_{\geq 0}$ then

$$
\left(b^{m}\right)^{k}=b^{m k}
$$

You may use everything up to and including Prop.4.6(ii). Note that the proof of Prop.4.6(ii) provides an excellent template for your own proofs using induction.

Written assignment 2: Prove B/G Prop. 4.7(i) using induction: Let $k \in \mathbb{N}$. Then $5^{2 k}-1$ is divisible by 24 .
You may use everything up to but not including Prop.4.7.
Written assignment 3: Prove B / G Prop. 4.16(i) by induction on c : Let $\left(x_{j}\right)_{j \in \mathbb{N}}$ be a sequence in \mathbb{Z} and let $a, b, c \in \mathbb{Z}$ such that $a \leq b<c$. Then

$$
\sum_{j=a}^{c} x_{j}=\sum_{j=a}^{b} x_{j}+\sum_{j=b+1}^{c} x_{j}
$$

For this proof use the generalized definition of " Σ " given in MF ch.16.4.1 instead of the one given in B/G p.34, 35!

Hints: Think carefully about the base case.

