Math 330 Section 2 - Spring 2017 - Homework 06

Published: Friday, February 3, 2017
Last submission: Friday, February 17, 2017

Running total: 28 points

Status - Reading Assignments:

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
all of ch. 1 - ch.3, ch. 5 and ch.4.1-4.4.
MF lecture notes:
a. ch. 1 - ch. 2, ch. 4 - ch. 6
b. Read carefully MF ch.16.1 (addenda to B/G ch.1) and ch.16.4 (addenda to B/G ch.4).

B/K lecture notes (optional reading - good for examples, improved understanding):
ch. 1 - section 1, ch.4.1, ch.4.2

New reading assignments:

Reading assignment 1 - due Monday, February 6:

a. Finish up B/G ch.4: read carefully ch. 4.5 and 4.6
b. MF doc: Read carefully everything in ch. 16 (Addenda to the B / G text) you have not read so far (very little). Important is that you understand the definitions that are not in B/G like upper/lower bounds and those that are more general like the recursive definitions of $\sum x_{j}$ and $\prod x_{j}$ (not required to start at index 1). As far as the addenda to B/G ch. 3 (logic) are concerned: you can get by with what is written in the B / G text. MF ch. 16.3 is there to help you focus on what is particularly important B/G ch.3.
c. Re-read MF ch.4.1, and MF ch.4.2.1-4.2.5. Be sure to have understood what it means when one says that a function can be characterized as a relation from its domain to its codomain. Dig into some of the more complicated examples!

Reading assignment 2 - due: Tuesday, February 7:

Re-read extra carefully MF ch.4.2.6.

Reading assignment 3 - due Wednesday, February 8:

Re-read extra carefully MF ch.5.

Reading assignment 4 - due Friday, February 10:

Re-read extra carefully MF ch.6.

Written assignment 1:

Given are four sets A, B, C, D. prove that
a. $(A \times B) \cap(C \times D) \subseteq(A \cap C) \times(B \cap D)$,
b. $(A \times B) \cap(C \times D) \supseteq(A \cap C) \times(B \cap D)$.

You'll get one point each for \mathbf{a} and \mathbf{b}.

Written assignment 2:

Prove (5.4) of MF Example 5.1 (p.96): Let $a, b \in \mathbb{R}$. Then

> a. $\quad] a, b\left[\subseteq \bigcup_{n \in \mathbb{N}}[a+1 / n, b-1 / n]\right.$,
> b. $\quad] a, b\left[\supseteq \bigcup_{n \in \mathbb{N}}[a+1 / n, b-1 / n]\right.$.

Note for the above that $[u, v]=\emptyset$ for $u>v$ and $] u, v[=\emptyset$ for $u \geqq v$.
You'll get one point each for \mathbf{a} and \mathbf{b}.

Hints for assignment 2:

1. One direction is completely trivial. Which one?
2. For the other direction: You may use the following property of the real numbers (which be discussed in ch. 8 of B/G) if you refer to it as " $(H w k 6 \star)$ ":

If $u, v \in \mathbb{R}$ and $u<v$ then there exist $m, n \in \mathbb{N}$ such that $u+1 / m<v$ and $u<v-1 / n)$. If you have a problem visualize this, here is an example: if $u=3.123456$ and $v=3.123458$ then $n=m=10^{9}$ or any larger natural number will certainly do the required.

What values in the exercise play the role of u and v ? That's for you to figure out.

