Math 330 Section 2 - Spring 2017 - Homework 08

Published: Friday, February 17, 2017
Last submission: Wednesday, March 8, 2017
Note: Wednesday, March 8 is the first day after winter break.

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:

- all of ch. 1 - ch.7; (ch. 7 carefully until before thm.7.17)

MF lecture notes:

- ch. 1 - ch. 2, ch. 4 - ch. 6
- ch. 16 (addenda to B/G text)
B / K lecture notes (optional reading - good for examples, improved understanding):
- ch. 1 - section 1, ch.4.1, ch.4.2

New reading assignments:

Reading assignment 1 - due Monday, February 20:

- Read carefully B/G ch.8.1-ch.8.3.

Reading assignment 2 - due: Tuesday, February 21:

- Compare B/G ch.8.1 and ch.8.2 to the results for \mathbb{Z} in B/G ch. 1 and ch. 2

Reading assignment 3 - due Wednesday, February 22:

- Read carefully the remainder of B/G ch.8.

Reading assignment 4 - due Friday, February 24:

- Read carefully B/G ch.9.1. You have basically seen all of it in MF ch.4.

Written assignments:

Do not use induction for any of those assignments. It would only make your task more difficult!
$\# 1$ and \#2 are about proving B/G thm.6.13 (Division algorithm for integers): Let $n \in \mathbb{N}$ and $m \in \mathbb{Z}$. There exists a unique combination of two integers q ("quotient") and r ("remainder") such that

$$
m=n \cdot q+r \quad \text { and } 0 \leq r<n
$$

Written assignment 1 :

Prove uniqueness of the "decomposition" $m=q n+r$: If you have a second such decomposition $m=\tilde{q} n+\tilde{r}$ then show that this implies $q=\tilde{q}$ and $r=\tilde{r}$. Start by assuming that $r \neq \tilde{r}$ which means that one of them is smaller than the other and take it from there.

Written assignment 2:

Much harder than \#1: Prove the existence of q and r.

Hints: Review the Well-Ordering principle from ch.2. It will give the easiest way to prove this theorem. Remember we extended the well-ordering principle as follows: Let $A \subseteq \mathbb{Z}$ have lower bounds (which is especially true if $A \subseteq \mathbb{N}$ or $A \subseteq \mathbb{Z}_{\geq 0}$). If $A \neq \emptyset$ then A has a minimum.

Apply the above to the set $A:=A(m, n):=\left\{x \in \mathbb{Z}_{\geq 0}: x=m-k n\right.$ for some $\left.k \in \mathbb{Z}\right\}$.

Written assignment 3:

Prove Thm.6.16, p. 59 of B / G : Let $m \in \mathbb{Z}$. Then either m is even or $m+1$ is even.
Hint: Apply the division algorithm with $n=2$.

