Math 330 Section 2 - Spring 2017 - Homework 11

Published: Friday, March 10, 2017

Last submission: March, February 24, 2017

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:

- all of ch. 1 - ch. 10 (ch. 7 carefully until before thm.7.17)

MF lecture notes:

- ch. 1 - ch. $2, \mathrm{ch} .4$ - ch. 6
- ch.8.1 up to and including prop.8.3
- ch. 16 (addenda to B/G text)

Other material:

- B/K lecture notes ch. 1 - section 1, ch.4.1, ch.4.2
(optional reading - good for examples, improved understanding)
- Stewart Calculus: "The Precise Definition of a Limit" (ch.1.7 in the 7th edition).

New reading assignments:

Reading assignment 1 - due Monday, March 13:

a. Read carefully B/G ch. 11 up to and including cor.11.23. Skip the remainder.
b. Read carefully B/G ch.12.1. Think back to what you learned about series when taking calculus.

Reading assignment 2 - due Tuesday, March 14:

a. Read carefully the remainder of B/G ch.12.

Reading assignment 3 - due Wednesday, March 15:

a. Continue MF ch.8.1 until before prop.8.8. Read this carefully!
b. While reading about liminf and limsup, look at what happens for the sequences
$x_{n}:=(-1)^{n}, y_{n}:=(-1)^{n}\left(1+\frac{1}{n}\right)$ (both not convergent) and $z_{n}:=1+\frac{1}{n}$ (converges to 1).

Reading assignment 4 - due: Friday, March 17:

a. Continue MF ch.8.1 until before thm.8.1. Skip all proofs but draw some pictures
b. Read carefully the remainder of MF ch.8.1.

Written assignment 1:

Let $x, y \in \mathbb{R}$ such that $x<y$. Let $z:=(x+y) / 2$. Prove that $x<z<y$.
Hint: Prove first that $2 x<x+y<2 y$. Then use B/G prop.8.37(ii): $[\alpha>0$ and $\alpha u<\alpha v \Rightarrow u<v]$ to show that $x<z<y$. Be sure to indicate explicitly your choice of α !

Written assignment 2:

Prove the following part of B/G prop.8.49:
Let $A \subseteq \mathbb{R}$ such that $A \neq \emptyset$. If $\sup (A)$ exists and if $\sup (A) \in A$ then $\max (A)$ exists and $\max (A)=\sup (A)$.

Written assignment 3:

Use everything up to and including B / G prop. 8.45 to prove B / G prop.8.47: $\mathbb{R}_{>0}$ has no upper bounds. Hint: 1) First prove that if $x \notin \mathbb{R}_{>0}, i . e ., x=0$ or $x<0$, then x is not an upper bound of $\mathbb{R}_{>0}$. 2) Then prove that if $x \in \mathbb{R}_{>0}$ then x is not an upper bound of $\mathbb{R}_{>0}$.

