Math 330 Section 2 - Spring 2017 - Homework 12

Published: Saturday, March 18, 2017
Last submission: Extended to Monday, April 3, 2017
Updated on Monday, 2017-03-27 with new hints for \#1!

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:

- all of ch. 1 - ch. 12 (ch. 7 carefully until before thm.7.17, ch. 11 until cor.11.23)

MF lecture notes:

- ch. 1 - ch. 2, ch. 4 - ch. 6
- all of ch.8.1
- ch. 16 (addenda to B/G text)

Other material:

- B/K lecture notes ch. 1 - section 1, ch.4.1, ch.4.2
(optional reading - good for examples, improved understanding)
- Stewart Calculus: "The Precise Definition of a Limit" (ch.1.7 in the 7th edition).

New reading assignments:

Due to the loss of two lectures because of the snow storm most of the reading for this week is repetition of previous assignments.

Reading assignment 1 - due Monday, March 20:

a. Reread B/G ch.10. I will skip in lecture most of ch.10.1 and 10.2.

Be sure to learn by heart the definition of convergence of a sequence of real numbers and the important laws and formulas on that subject.

Reading assignment 2 - due Tuesday, March 21:

a. Reread MF ch. 8 until before def.8.10 (Tail sets of a sequence).

Again, be sure to learn by heart the definition of convergence of a sequence of real numbers and the important laws and formulas on that subject.

Reading assignment 3 - due Wednesday, March 22:

a. Important for those who did not/are not currently taken a linear algebra class: Read carefully MF ch.9.1 (\mathbb{R}^{N} : Euclidean Space) and ch.9.2.1 (Vector spaces: Definition and Examples).

Reading assignment 4 - due: Friday, March 24:

a. Read carefully MF ch. 8.2 and the addenda to ch. 8 (ver 2017-03-28).

Written assignment 1:

Prove B/G prop.10.10(iv): $x, y \in \mathbb{R} \Rightarrow|x-y| \geq||x|-|y||$.

Hints:

a. Use the triangle inequality on $|x|=|(x-y)+y|$ and then again on $|y|=|(y-x)+x|$. See what you get for $|x|-|y|$ and for $|x-y|$.
b. Examine separately the cases $|x| \geqq|y|$ and $|x|<|y|$. It's easy now!

Written assignment 2:

Prove B/G prop.10.21(ii):
Let $\lim _{k \rightarrow \infty} x_{k}=L$. If $\left(x_{k}\right)_{k=0}^{\infty}$ is decreasing then $x_{k} \geq L$ for all $k \geq 0$.
Hint:

- Inspect carefully the proof of B/G prop.10.19: increasing bounded sequence converges. It gives you the argument for increasing sequences.

Written assignment 3:

Prove MF prop.8.6.a: Let $\alpha \in \mathbb{R}$ and $x_{n}=\alpha$ for all $n \in \mathbb{N}$. Then $\lim _{k \rightarrow \infty} x_{k}=\alpha$.
Prove this using the formal $\varepsilon-N$ definition of the limit of a sequence (B/G def. at the beginning of ch.10.4 or MF def.8.9)

