Math 330 Section 2 - Spring 2017 - Homework 14

Published: Friday, March 30, 2017
Last submission: Friday, April 21, 2017

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:

- all of ch. 1 - ch. 13 (ch. 7 carefully until before thm.7.17, ch. 11 until cor.11.23)

MF lecture notes:

- ch. 1 - ch.2, ch. 4 - ch. 8 (skipped the proof of prop.7.3)
- all of ch. 9 except ch.9.2.2
- ch. 16 (addenda to B/G text)

Other material:

- B/K lecture notes ch. 1 - section 1, ch.4.1, ch.4.2
(optional reading - good for examples, improved understanding)
- Stewart Calculus: "The Precise Definition of a Limit" (ch.1.7 in the 7th edition).

New reading assignments:

Reading assignment 1 - due Monday, April 3:

a. Read carefully the remainder of MF ch.9. Note that I will not systematically lecture about vector spaces but I will use the material when it is useful in the context of metric spaces. Ch.9.2.2 (normed vector spaces) is an exception: I will talk about all of it but only in the context of ch.10.1.1 and 10.1.2.
b. Read carefully MF ch. 10 until before ch.10.1.5 (abstract topological spaces).

Reading assignment 2 - due Tuesday, April 4:

a. Read carefully MF ch.10.1.5, 10.1.7, 10.1.8.

Reading assignment 3 - due Wednesday, April 5:

a. Read carefully the remainder of MF ch.10.1.

Reading assignment 4 - due: Friday, April 7:

a. Read carefully MF ch.10.2 until before ch.10.2.5 (uniform continuity).

Written assignment 1:

Prove B/G Prop.13.3: Let $k, n \in \mathbb{N}$ such that $1 \leq k<n$. Then the function

$$
g_{k}:[n-1] \longrightarrow[n] \backslash\{k\} \quad \text { defined by } \quad g_{k}(j):= \begin{cases}j & \text { if } j<k \\ j+1 & \text { if } j \geq k\end{cases}
$$

is bijective. Hint: Computing the inverse might be easiest, but be sure to prove that both $g_{k} \circ g_{k}^{-1}=i d_{[n] \backslash\{k\}}$ and $g_{k}^{-1} \circ g_{k}=i d_{[n-1]}$!

Written assignment 2:

Use anything up-to and including MF thm.7.1 and anything in B/G ch. 13 to prove MF cor.7.3:
Let the set X not be countable and let $A \subseteq X$ be countable. Then its complement $A^{\text {C }}$ is not countable.

