Math 330 Section 2 - Spring 2017 - Homework 18

Published: Thursday, April 27, 2017
Last submission: Tuesday, May 9, 2017

Running total: 60 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:

- all of ch. 1 - ch. 13 (ch. 7 carefully until before thm.7.17, ch. 11 until cor.11.23)
- B/G Appendix A: Continuity and Uniform Continuity

MF lecture notes:

- ch. 1 - ch.2, ch. 4 - ch. 10 (skip the proof of prop.7.3 and Riemann's Rearrangement Theorem)
- MF ch. 11 through thm. 11.6 (Compact metric spaces are sequence compact).
- ch. 16 (addenda to B/G text)

Other material:

- B/K lecture notes ch. 1 - section 1, ch.4.1, ch.4.2
(optional reading - good for examples, improved understanding)
- Stewart Calculus: "The Precise Definition of a Limit" (ch.1.7 in the 7th edition).

New reading assignments:

Reading assignment 1 - due Monday, May 1:

a. Read carefully the remainder of MF ch.11.

Reading assignment 2 - due Tuesday, May 2:

a. Go back to B/G Appendix A: Continuity and Uniform Continuity and try to find for each proposition and theorem the often more general vesion in MF ch. 10 and ch.11.

Reading assignment 3 - due Wednesday, May 3:

a. Read carefully MF ch.12.1 and 12.2. Those who have not taken linear algebra will have to go back to ch. 9 and reread ch.9.2.1 (Vector spaces: Definition and Examples) about subspaces, linear spans, independence, bases, ...

Reading assignment 4 - due Friday, May 5:

a. Read carefully MF ch.12.3 but SKIP lemmata 12.4 and 12.5 .

Written assignment 1:

Let $f(x)=x^{2}$. Prove by use of " $\varepsilon-\delta$ continuity" that f is continous at $x_{0}=1$.

Hints:

a. What does $d\left(x, x_{0}\right)<\delta$ and $d\left(f(x), f\left(x_{0}\right)<\varepsilon\right.$ translate to?
b. $\quad x^{2}-1=(x+1)(x-1)$.
c. Only small neighborhoods matter: Given $\varepsilon>0$ try to find δ that works for $\min (\varepsilon, 1)$ and restrict your search to $\delta<1$. What kind of bounds do you then get for $\left|x^{2}-1\right|,|x+1|,|x-1|$?
d. Put all the above together. Can you see why, for "small" δ, you obtain $\left|f(x)-f\left(x_{0}\right)\right| \leq 3 \delta$?

Written assignment 2:

Prove MF prop.10.15 (Opposite of continuity) (ch.10.2.2: Continuity of Constants and Sums and Products)
A sequence $\left(x_{k}\right)_{k}$ with values in (X, d) does not have $L \in X$ as its limit if and only if there exists some $\varepsilon>0$ and $n_{1}<n_{2}<n_{3}<\cdots \in \mathbb{N}$ such that $d\left(x_{n_{j}}, L\right) \geq \varepsilon$ for all j.

