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1 Before You Start

Errors detected by Math 330 students, Spring 2017:

Date Topic
2017-01-26 Error in def.4.2. Incorrect version: A relation is symmetric if x1Rx2 implies

x1Rx2 for all x1, x2 ∈ X . Correct version: A relation is symmetric if x1Rx2

implies x2Rx1 for all x1, x2 ∈ X . Detected by Brad Whistance.

History of Updates:

Date Topic
2017-01-30 Mainly reformatting: increased use of tables. Significant additions to ch.16

(Appendix: Addenda to Beck/Geoghegan’s “The Art of Proof”).
2017-01-10 Many updates during Fall 2016. Significant streamlining and reorg of ch.8

(liminf, limsup, ...) through ch.13 (Zorn’s Lemma).

1.1 About This Document

Remark 1.1 (The purpose of this document). This write-up was originally written in 2005 under
the title “Introduction to Abstract Math – A Journey to Approximation Theory” and parts of it now
serve as lecture notes for the course “Math 330: Number systems” which is held at the Department
of Mathematical Sciences at Binghamton University.

These notes serve at least two purposes:

a. They provide background material on topics that cannot found in sufficient detail in [1] B/G
(Beck/Geoghegan): The Art of Proof. This document will often be simply referred to as “B/G”. It
serves as the primary reference for the first two thirds of the Math 330 course.

b. They cover material which is beyond the scope of [1] B/G such as

• material on lim inf and lim sup
• convergence, continuity and compactness in metric spaces
• applications of Zorn’s lemma

These topics are usually covered in the last third of my Math 330 class. �

Remark 1.2 (Acknowledgements). The early chapters of this document draw on the following chap-
ters of [4] Bryant, Kirby Course Notes for MAD 2104:

Ch.1, section 1: Introduction to Sets
Ch.1, section 2: Introduction to Functions
Ch.2: Logic
Ch.3: Methods of Proofs
Ch.4, section 1: Set Operations
Ch.4, section 2: Properties of Functions
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Moreover such a document cannot be written with the intent to supplement the [1] B/G book with-
out strongly borrowing from it. �

Remark 1.3 (How to navigate this document I). Scrutinize the table of contents, including the head-
ings for the subchapters. You will find many entries there tagged with a directive.

For example, the reference to ch.8 (The Completeness of the Real Numbers System) has been tagged
with (Understand this!),
the first subchapter ch.8.1 (Minima, Maxima, Infima and Suprema) has been tagged with (Study
this!),
the s subchapter ch.8.2 (Sequences of Sets and Indicator functions and their liminf and limsup) has
no tag.

All directives apply to the entire subtree and a lower level directive overrides the “parent
directives”. Example: the “Understand this!” directive of subsection 10.2.4: Continuity of
Polynomials overrides the “Study this!” directive of subsection 10.2 on Continuity.
Accordingly, when you do not see any comment, back up in the table of contents: first to the
parent entry, then to its parent entry . . . until you find one.

a. “Study this” directive: When you read “Study this”, you must understand the material in depth.
You will need to do this with paper and pencil in hand and make an effort not only to understand
what the definitions and theorems are all about – not a minor undertaking because some of the
subject matter is quite abstract – but aso make an effort to follow the proofs at least from a birds eye
perspective.

b. “Understand this” directive: When you read “Understand this”, you should know the defini-
tions, propositions and theorems without worrying about proofs. Chances are that the material
will be referred to from truly important sections of this write-up and is primarily needed for their
understanding.

b. “Skim this” directive: When you read “Skim this”, you should understand how the material
is structured. You may find it easier to do some of your homework. A good example is chapter
3 on logic. It has been marked as “Skim this” but some of the later subchapters override this as
“Understand this” and you will have problems doing so unless you can find your way around in
the material that precedes them.

b. “Skip this” directive: When you read “Skip this”, you need not worry about the content.

You will find almost every week reading assignments as part of your homework. The reading is due
prior to when it is needed in class, both for this document and the Beck/Geoghegan text. I assume
that you did your reading and I will assume in particular that you have learned the definitions
so that I can move along at a fast pace except for some topics that I will focus on in detail. For
this document it means that you should do the “Study this” and “Understand this” material as I
indicated above. �

Remark 1.4 (How to navigate this document II). My theory is that, particularly in Math, more
words take a lot less time to understand than a skeletal write-up like the one given in the course
text. Accordingly, almost all of the “Study this” and “Understand this”material provided in this
document comes with quite detailed proofs. Those proofs are there for you to study.
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Some of those proofs, notably those in prop. 6.2, make use of “⇔” to show that two sets are equal.
You should study this technique but, as you will hear me say many times in class, I recommend that
you abstain from using “⇔” between statements in your proofs. Chances are that you very likely
lack the experience to do so without error.

Some of the material was written from scratch, other material was pulled in from a document that
was written as early as 10 years ago. I have make an attempt to make the entire document more
homogeneous but there will be some inconsistencies. Your help in pointing out to me the most
notable trouble spots would be deeply appreciated.

There are differences in style: the original document was written in a much more colloquial style as
it was addressed to talented high school students who had expressed a special interest in studying
college level math. �

This is a living document: material will be added as I find the time to do so. Be sure to check the latest PDF
frequently. You certainly should do so when an announcement was made that this document contains new
additions and/or corrections.

1.2 How to Properly Write a Proof (Study this!)

Study this brief chapter to understand some of the dos and don’ts when submitting your homework.

To prove an equation such as A = Z you are asked to do one of the following:

a.

A = B (use ....)
= C (use ....)
= D (use ....)

.....................
= Z (use ....)

You then conclude from the transitivity of equality that A = Z is indeed true.

b. You transform the left side (L.S.) and the right side (R.S.) separately and show that in each case you obtain
the same item, say M :

Left side:

A = B (use ....)
= C (use ....)
= D (use ....)

.....................
= M (use ....)
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Right side:

Z = Y (use ....)
= X (use ....)
= W (use ....)

.....................
= M (use ....)

and you rightfully conclude that the proof is done because it follows from A = M and Z = M that A = Z.

c. Instead you may choose to proceed as follows

A = Z (that’s what you want to prove)
B = Y (you do with both A and Z the same operation ...... )
C = X (you do with both B and Y the same operation ...... )
D = W (you do with both C and X the same operation ...... )

.....................
M = M (you do with both L and N the same operation ...... )

What is potentially wrong with that last approach?

In the abstract the issue is that when using method a or b you take in each step an equation that is known
to be true or that you assume to be true and you rightfully conclude by the use of transitivity that you have
proved what you wanted to be true.

When you use method c you take an equation that you want to be true (A = Z) but have not yet proved to be
so. If you are wrong then doing the same thing to both sides may potentially lead to two things that are equal.

Here is a simple example that demonstrates why method c is not allowed for a mathematical proof. This
method will be used in two different ways to prove that −2 = 2.

First proof:

−2 = 2 (want to prove)
−2 · 0 = 2 · 0 (multiply both sides from the right w. 0)

0 = 0 (B/G ax.1.2 (additive neutral element)

We are done. �

Second proof:

−2 = 2 (want to prove)

(−2)2 = 22 (square both sides)
4 = 4 (obvious)

9



We are done. �

Now you know why you must never use method c. 1

1 You will learn later in this chapter about injective functions which guarantee that if you do an operation (apply a
function) to two different items then the results will also be different. If method c was restricted to only such operations
then there would not be a problem. In the two “proofs” that show −2 = 2 we use operations that are not injective: In
the first proof the assignment x 7→ 0 · x throws everything into the same result zero. The second proof employs the
assignment x 7→ x2 which maps two numbers x, y that differ by sign only to the same squared value x2 = y2.
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2 Preliminaries about Sets, Numbers and Functions (Understand this!)

2.1 Sets and Basic Set Operations

Ask a mathematician how her or his Math is different from the kind of Math you learn in high school, in fact,
from any kind of Math you find outside textbooks for mathematicians and theoretical physicists. One of the
answers you are likely to get is that Math is not so much about numbers but also about other objects, among
them sets and functions. Once you know about those, you can tackle sets of functions, set functions, sets of
set functions, . . .

An entire book can be filled with a mathematically precise theory of sets. 2 For our purposes the following
“naive” definition suffices:

Definition 2.1 (Sets). A set is a collection of stuff called members or elements which satisfies the
following rules: The order in which you write the elements does not matter and if you list an
element two or more times then it only counts once.

We write a set by enclosing within curly braces the elements of the set. This can be done by listing
all those elements or giving instructions that describe those elements. For example, to denote by X
the set of all integer numbers between 18 and 24 we can write either of the following:

X := {18, 19, 20, 21, 22, 23, 24} or X := {n : n is an integer and 18 5 n 5 24}

Both formulas clearly define the same collection of all integers between 18 and 24. On the left the
elements of X are given by a complete list, on the right setbuilder notation, i.e., instructions that
specify what belongs to the set, is used instead.

It is customary to denote sets by capital letters and their elements by small letters but this is not a
hard and fast rule. You will see many exceptions to this rule in this document.

We write x1 ∈ X to denote that an item x1 is an element of the set X and x2 /∈ X to denote that an
item x2 is not an element of the set X

For the above example we have 20 ∈ X , 27− 6 ∈ X , 38 /∈ X , ’Jimmy’ /∈ X . �

Example 2.1 (No duplicates in sets). The following collection of alphabetic letters is a set:

S1 = {a, e, i, o, u}

and so is this one:
S2 = {a, e, e, i, i, i, o, o, o, o, u, u, u, u, u}

Did you notice that those two sets are equal? �

Remark 2.1. The symbol n in the definition of X = {n : n is an integer and 18 5 n 5 24} is a
dummy variable in the sense that it does not matter what symbol you use. The following sets all
are equal to X :

{x : x is an integer and 18 5 x 5 24},
{α : α is an integer and 18 5 α 5 24},
{Z : Z is an integer and 18 5 Z 5 24}

2 See remark 2.2 (“Russell’s Antinomy”) below.
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Remark 2.2 (Russell’s Antinomy). Care must be taken so that, if you define a set with the use of
setbuilder notation, no inconsistencies occur. Here is an example of a definition of a set that leads
to contradictions.

A := {B : B is a set and B /∈ B}(2.1)

What is wrong with this definition? To answer this question let us find out whether or not this set
A is a member of A. Assume that A belongs to A. The condition to the right of the colon states that
A /∈ A is required for membership in A, so our assumption A ∈ A must be wrong. In other words,
we have established “by contradiction” that A /∈ A is true. But this is not the end of it: Now that we
know that A /∈ A it follows that A ∈ A because A contains all sets that do not contain themselves.

In other words, we have proved the impossible: both A ∈ A and A /∈ A are true! There is no
way out of this logical impossibility other than excluding definitions for sets such as the one given
above. It is very important for mathematicians that their theories do not lead to such inconsistencies.
Therefore, examples as the one above have spawned very complicated theories about “good sets”.
It is possible for a mathematician to specialize in the field of axiomatic set theory (actually, there
are several set theories) which endeavors to show that the sets are of any relevance in mathematical
theories do not lead to any logical contradictions.

The great majority of mathematicians take the “naive” approach to sets which is not to worry about
accidentally defining sets that lead to contradictions and we will take that point of view in this
document. �

Definition 2.2 (empty set). ∅ or {} denotes the empty set. It is the one set that does not contain any
elements. �

Remark 2.3 (Elements of the empty set and their properties). You can state anything you like about
the elements of the empty sets as there are none. The following statements all are true:

a: If x ∈ ∅ then x is a positive number.
b: If x ∈ ∅ then x is a negative number.
c: Define a ∼ b if and only if both are integers and a − b is an even number.

For any x, y, z ∈ ∅ it is true that
c1: x ∼ x,
c2: if x ∼ y then y ∼ x,
c3: if x ∼ y and y ∼ z then x ∼ z.

d: Let A be any set. If x ∈ ∅ then x ∈ A.

As you will learn later, c: means that “∼” is an equivalence relation (see def.4.3 on p.73) and d:
means that the empty set is a subset (see the next definition) of any other set. �

Definition 2.3 (subsets and supersets). We say that a set A is a subset of the set B and we write
A ⊆ B if any element of A also belongs to B. Equivalently we say that B is a superset of the set A
and we write B ⊇ A . We also say that B includes A or A is included by B. Note that A ⊆ A and
∅ ⊆ A is true for any set A.

12
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AAA

Figure 2.1: Set inclusion: A ⊆ B, B ⊇ A

If A ⊆ B but A 6= B, i.e., there is at least one x ∈ B such that x /∈ A, then we say that A is a strict
subset of B. We write “A ( B” or “A ⊂ B”. Alternatively we say that B is a strict superset of A
and we write “B ) A”) or “B ⊃ A”. �

Two sets A and B are equal means that they both contain the same elements. In other words, A = B iff
A ⊆ B and B ⊆ A.

“iff” is a short for “if and only if”: P iff Q for two statements P and Q means that
if P is valid then Q is valid and vice versa. 3

To show that two sets A and B are equal you show that a. if x ∈ A then x ∈ B,
and b. if x ∈ B then x ∈ A.

Definition 2.4 (unions, intersections and disjoint unions). Given are two arbitrary sets A and B.
No assumption is made that either one is contained in the other or that either one contains any
elements!

The union A ∪ B (pronounced "A union B") is defined as the set of all elements which belong to A
or B or both.

The intersection A ∩ B (pronounced "A intersection B") is defined as the set of all elements which
belong to both A and B.

We callA andB disjoint if A ∩B = ∅. We then usually writeA]B (pronounced “A disjoint union
B”) rather than A ∪B. �

Definition 2.5 (set differences and symmetric differences). Given are two arbitrary sets A and B.
No assumption is made that either one is contained in the other or that either one contains any
elements!

The difference set or set difference A \ B (pronounced "A minus B") is defined as the set of all
elements which belong to A but not to B:

(2.2) A \B := {x ∈ A : x /∈ B}
3A formal definition of “if and only if” will be given in def.3.12 on p.35 where we will also introduce the symbolic

notation P ⇔ Q. Informally speaking, a statement is something that is either true or false.
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A ∪B: A ∪B ∪ C: A ∩B: A ∩B ∩ C:

A B A B

C

A B A B

C

Figure 2.2: Union and intersection of sets

The symmetric differenceA4B (pronounced "A delta B") is defined as the set of all elements which
belong to either A or B but not to both A and B:

(2.3) A4B := (A ∪B) \ (A ∩B) �

Definition 2.6 (Universal set). Usually there always is a big set Ω that contains everything we are
interested in and we then deal with all kinds of subsets A ⊆ Ω. Such a set is called a “universal”
set. �

For example, in this document, we often deal with real numbers and our universal set will then be R.

If there is a universal set, it makes perfect sense to talk about the complement of a set:

Definition 2.7 (Complement of a set). The complement of a setA consists of all elements of Ω which
do not belong to A. We write A{. or {A In other words:

(2.4) A{ := {A := Ω \A = {ω ∈ Ω : x /∈ A} �

A \B: A4B: Univeral set: A{:

A B A B
ΩΩΩ AAA

A{A{A{

Figure 2.3: Difference, symmetric difference, universal set, complement

Remark 2.4 (Complement of empty, all). Note that for any kind of universal set Ω it is true that

Ω{ = ∅, ∅{ = Ω. �(2.5)
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Example 2.2 (Complement of a set relative to the unit interval). Assume we are exclusively dealing
with the unit interval, i.e., Ω = [0, 1] = {x ∈ R : 0 5 x 5 1}. 4 Let a ∈ [0, 1] and δ > 0 and

(2.6) A = {x ∈ [0, 1] : a− δ < x < a+ δ}

the δ–neighborhood 5 of a (with respect to [0, 1] because numbers outside the unit interval are not
considered part of our universe). Then the complement of A is

A{ = {x ∈ [0, 1] : x 5 a− δ or x = a+ δ}. �

Draw some Venn diagrams to visualize the following formulas.

Proposition 2.1. Let A, B, X be sets and assume A ⊆ X . Then

A ∪ ∅ = A; A ∩ ∅ = ∅(2.7a)
A ∪ Ω = Ω; A ∩ Ω = A(2.7b)

A ∪A{ = Ω; A ∩A{ = ∅(2.7c)
A4B = (A \B) ] (B \A)(2.7d)
A \A = ∅(2.7e)
A4∅ = A; A4A = ∅(2.7f)
X4A = X \A(2.7g)
A ∪B = (A4B) ] (A ∩B)(2.7h)
A ∩B = (A ∪B) \ (A4B)(2.7i)
A4B = ∅ if and only if B = A(2.7j)

Proof: Left as an exercise.

�

Definition 2.8 (Power set). The power set

2Ω := P(Ω) := {A : A ⊆ Ω}

of a set Ω is the set of all its subsets. �

Remark 2.5. Note that ∅ ∈ 2Ω for any set Ω, even if Ω = ∅: 2∅ = {∅}. It follows that the power set of
the empty set is not empty. �

A lot more will be said about sets once families are defined.

4 R is the set of all real numbers, i.e., the kind of numbers that make up the x-axis and y-axis in a beginner’s calculus
course (see remark 2.6 (“Classification of numbers”) on p.16).

5 Neighborhoods of a point will be discussed in the chapter on the topology of Rn (see (10.5) on p.177) In short, the
δ–neighborhood of a is the set of all points with distance less than δ from a.
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2.2 Numbers

Remark 2.6 (Classification of numbers). 6

We call numbers without decimal points such as 3,−29, 0, 3000000, 3 · 106,−1, . . . integers and we
write Z for the set of all integers.

Numbers in the set N = {1, 2, 3, . . . } of all strictly positive integers are called natural numbers.

A number that is an integer or can be written as a fraction is called a rational number and we write
Q for the set of all rational numbers. Examples of rational numbers are

3
4 , −0.75, −1

3 , .3̄,
13
4 , −5, 2.999̄, −372

7 .

The bar on top of the rightmost part of a decimal such as “.3̄” means that this part should be
repeated over and over again, e.g., .3̄ = 0.33333333333 . . . and 1.234567 = 1.234567567567 . . . .

Note that a mathematician does not care whether a rational number is written as a fraction
" numerator
denominator " or as a decimal. The following all are representations of one third

(2.8) 0.3̄ = .3̄ = 0.33333333333 . . . =
1

3
=

2

6

and here are several equivalent ways of expressing the number minus four:

(2.9) − 4 = −4.000 = −3.9̄ = −12

3
= −400

100

We call the barred portion of the decimal digits the period of the number and we also talk about
repeating decimals. The number of digits in the barred portion is called the period length. This
period length can be bigger than one. For example, the number 1.234567 from above has period
length 3 and the number 0.145 has period length 2.

You may have heard that there are numbers which cannot be expressed as integers or fractions or
numbers with a finite amount of decimals to the right of the decimal point. Examples for that are√

2 and π. Those “irrational numbers” (really, that what we call them) fill the gaps between the
rational numbers. In fact, there is a simple way (but not easy to prove) of characterizing irrational
numbers: Rational numbers are those that can be expressed with at most finitely many digits to
the right of the decimal point, including repeating decimals. You can find the underlying theory
and exact proofs in B/G ch.12. Irrational numbers must then be those with infinitely many decimal
digits without any continually repeating patterns.

Example 2.3. To illustrate that repeating decimals are in fact rational numbers we convert x = 0.145
into a fraction:

99x = 100x− x = 14.545− 0.145 = 14.4

It follows that x = 144/990 and that’s definitely a fraction which you can simplify if you like. �

6 The classification of numbers in this section is not meant to be mathematically exact. For this consult, e.g., [1] B/G
(Beck/Geoghegan).
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Now we can finally give an informal definition of the most important kind of numbers: We call
any kind of number, either rational or irrational, a real number and we write R for the set of all
real numbers. It can be shown that there are a lot more irrational numbers than rational numbers,
even though Q is a dense subset in R in the following sense: No matter how small an interval
(a, b) = {x ∈ R : a < x < b} of real numbers you choose, it will contain infinitely many rational
numbers. �

Definition 2.9 (Types of numbers). We summarize what was said sofar about the classification of
numbers:

N := {1, 2, 3, . . . } denotes the set of natural numbers.

Z := {0,±1,±2,±3, . . . } denotes the set of all integers.

Q := {n/d : n ∈ Z, d ∈ N} denotes the set of all rational numbers.

R := {all integers or decimal numbers with finitely or infinitely many decimal digits} denotes the
set of all real numbers.

R \ Q = {all real numbers which cannot be written as fractions of integers} denotes the set of all
irrational numbers. There is no special symbol for irrational numbers. Example:

√
2 and π are

irrational.

Here are some customary abbreviations about often referenced sets of numbers:

N0 := Z+ := Z≥0 := {0, 1, 2, 3, . . . } denotes the set of non–negative integers,

R+ := R≥0 := {x ∈ R : x = 0} denotes the set of all non–negative real numbers,

R+ := R>0 := {x ∈ R : x > 0} denotes the set of all positive real numbers,

R? := R 6=0 := {x ∈ R : x 6= 0}. �

Definition 2.10 (Intervals of real numbers). We use the following notation for intervals of real num-
bers a, b:

[a, b] := {x ∈ R : a 5 x 5 b} is called the closed interval with endpoints a and b.

]a, b[ := {x ∈ R : a < x < b} is called the open interval with endpoints a and b.

[a, b[ := {x ∈ R : a 5 x < b} and ]a, b] := {x ∈ R : a < x 5 b} are called half-open intervals with
endpoints a and b.

We further define the following intervals of “infinite length”:

]−∞, a] :={x ∈ R : x 5 a}, ]−∞, a[ := {x ∈ R : x < a},
]a,∞[ :={x ∈ R : x > a}, [a,∞[ := {x ∈ R : x = a}, [−∞,∞[ := R

(2.10)

Finally we define [a, b[ := ]a, b[ := ]a, b] := ∅ for a = b and [a, b] := ∅ for a > b. �

Assumption 2.1 (Square roots are always assumed non–negative). Remember that for any number
a it is true that

a · a = (−a)(−a) = a2 e.g., 22 = (−2)2 = 4
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or that, expressed in form of square roots, for any number b = 0

(+
√
b)(+
√
b) = (−

√
b)(−
√
b) = b.

We will always assume that “
√
b” is the positive value unless the opposite is explicitly stated. Ex-

ample:
√

9 = +3, not −3. �

Proposition 2.2 (The Triangle Inequality for real numbers). The following inequality is used all the time
in mathematical analysis to show that the size of a certain expression is limited from above:

(2.11) Triangle Inequality : |a+ b| 555 |a|+ |b|

This inequality is true for any two real numbers a and b.

It is easy to prove this: just look separately at the three cases where both numbers are non-negative, both are
negative or where one of each is positive and negative. �

Proposition 2.3 (The Triangle Inequality for n real numbers). The above inequality also holds true for
more than two real numbers: Let n ∈ N such that n = 2. Let a1, a2, . . . , an ∈ N. Then

(2.12) |a1 + a2 + . . .+ an| 5 |a1|+ |a2|+ . . .+ |an|

The proof will be done by induction, a principle which is defined first:

Definition 2.11 (Principle of proof by mathematical induction). Actually, "definition" is a misnomer.
This principle is a mathematical statement that follows from the structure of the natural numbers
which have a starting point to the "left" (a smallest element 1) and then progress in the well under-
stood sequence 7

2, 3, 4, . . . , k − 1, k, k + 1, . . .

This is the principle: Let us assume that we know that some statement can be proved to be true in
the following two situations:

A. Base case. The statement is true for some (small) k0; usually that means k0 = 0 or k0 = 1

B. Induction Step. We prove the following for all k ∈ N0 such that k = k0: if the property is true
for k (“Induction Assumption”) then it will also be true for k + 1

C. Conclusion: Then the property is true for any k ∈ N0 such that k = k0. �

Either you have been explained this principle before and say "Oh, that – what’s the big deal?" or you will be
mighty confused. So let me explain how it works by walking you through the proof of the triangle inequality
for n real numbers (2.12).

Proof of the triangle inequality for n real numbers:

A. For k0 = 2, inequality 2.12 was already shown (see 2.11), so we found a k0 for which the property is true.

7 The first two chapters of [1] B/G (Beck/Geoghegan) use the “axiomatic” method to develop the mathematical struc-
ture of integers and natural numbers and give an exact proof of the induction principle.
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B. Let us assume that 2.12 is true for some k = 2. We now must prove the inequality for k + 1 numbers
a1, a2, . . . , ak, ak+1 ∈ N: We abbreviate

A := a1 + a2 + . . .+ ak; B := |a1|+ |a2|+ . . .+ |ak|

then our induction assumption for k numbers is that |A| 5 B. We know the triangle inequality is valid for
the two variables A and ak+1 and it follows that |A+ak+1| 5 |A|+ |ak+1|. Look at both of those inequalities
together and you have

(2.13) |A+ ak+1| 5 |A|+ |ak+1| 5 B + |ak+1|

In other words,

(2.14) |
(
a1 + a2 + . . .+ ak

)
+ ak+1| 5 B + |ak+1| =

(
|a1|+ |a2|+ . . .+ |ak|

)
+ |ak+1|

and this is (2.12) for k + 1 rather than k numbers: We have shown the validity of the triangle inequality for
k + 1 items under the assumption that it is valid for k items. It follows from the induction principle that the
inequality is valid for any k = k0 = 2. �

To summarize what we did in all of part B: We were able to show the validity of the triangle inequality for
k + 1 numbers under the assumption that it was valid for k numbers.

Remark 2.7 (Why induction works). But how can we from all of the above conclude that the triangle
inequality works for all n ∈ N such that n = k0 = 2? That’s much simpler to demonstrate than what
we just did.

Step 1: We know that it is true for k0 = 2 because that was actually proved in A.
Step 2: But according to B, if it is true for k0, it is also true for the successor k0 + 1 = 3.
Step 3: But according to B, if it is true for k0 + 1, it is also true

for the successor (k0 + 1) + 1 = 4.
Step 4: But according to B, if it is true for k0 + 2, it is also true

for the successor (k0 + 2) + 1 = 5.
. . . . . . . . . . . . . . . . . . . . . . . .

Step 53, 920: But according to B, if it is true for k0 + 53, 918, it is also true
for the successor (k0 + 53, 918) + 1 = 53, 921.

. . . . . . . . . . . . . . . . . . . . . . . .

And now you understand why it is true for any natural number n = k0. �

2.2.1 Rings and Algebras of Sets (?)

This section is optional. You will benefit from examining the proof of prop.2.4 on p.20 and learn how to split
a proof which involves 3 or 4 sets can be split into easily dealt with cases.

Definition 2.12 (Rings and Algebras of Sets). A subset R of 2Ω (a set of sets!) is called a ring of sets
if it is closed with respect to the operations “∪” and “\”, i.e.,

R1 ∪R2 ∈ R and R1 \R2 ∈ R whenever R1, R2 ∈ R.(2.15)

A subset A of 2Ω is called an algebra of sets if Ω ∈ A and A is a ring of sets. �
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Proposition 2.4. 1. Let R be a ring of sets and A,B ∈ R. Then A4B ∈ R and A ∩B ∈ R.

2. Let R be a ring of sets and A,B,C ∈ R. Then

a. (A4B)4C = A4(B4C) (associativity of4)
b. A4∅ = ∅4A = A (neutral element ∅ for4)
c. A4A = ∅ (inverse element ∅ for4) 8

d. A4B = B4A (commutativity of4)

Further we have the following for the intersection operation:

e. (A ∩B) ∩ C = A ∩ (B ∩ C) (associativity of ∩)
f. A ∩ Ω = Ω ∩A = A (neutral element Ω for ∩)
g. A ∩B = B ∩A (commutativity of ∩)

And we have the following interrelationship between4 and ∩:

h. A ∩ (B4C) = (A ∩B)4(A ∩ C) (distributivity)

Solution:

Proof of a. The proof given here is based on with set membership. It is very tedious and there is a much more
elegant proof but it requires knowledge of indicator functions 9 and of base 2 modular arithmetic (see, e.g., [1]
B/G (Beck/Geoghegan) ch.6.2).

By definition x ∈ U4V if and only if either x ∈ U or x ∈ V , i.e.,
(either)

[
x ∈ U and x /∈ V

]
or
[
x ∈ V and x /∈ U

]
Hence x ∈ (A4B)4C means either x ∈ (A4B) or x ∈ C, i.e.,
either

[
x ∈ A, x /∈ B or x ∈ B, x /∈ A

]
or x ∈ C, i.e., we have one of the following four combinations:

a. x ∈ A x /∈ B x /∈ C
b. x /∈ A x ∈ B x /∈ C
c. x ∈ A x ∈ B x ∈ C
d. x /∈ A x /∈ B x ∈ C

and x ∈ A4(B4C) means either x ∈ A or x ∈ (B4C), i.e.,
either x ∈ A or

[
x ∈ B, x /∈ C or x ∈ C, x /∈ B

]
, i.e., we have one of the following four combinations:

1. x ∈ A x ∈ B x ∈ C
2. x ∈ A x /∈ B x /∈ C
3. x /∈ A x ∈ B x /∈ C
4. x /∈ A x /∈ B x ∈ C

We have a perfect match a↔ 2, b↔ 3, c↔ 1, d↔ 4. and this completes the proof of a.

�
8The inverse element for A in the sense of def.13.3 on p.258. is A itself!
9 Indicator functions will be discussed in ch.6.2 on p.112 and in ch.8.2 on p.139.
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Remark 2.8 (Rings of sets as rings). A set G = (G,⊕) with a “binary operation” g3 = g1 ⊕ g2 – i.e.,
an operation ⊕ which assigns to any two g1, g2 ∈ G a third element g3 ∈ G – such that ⊕ satisfies
a – d above with 4 playing the role of ⊕ is called an abelian or commutative group (see ch.13 on
p.257.)

A set R = (R,⊕,�) with two binary operations g3 = g1 ⊕ g2 and g4 = g1 � g2 which satisfies a – h
above with 4 playing the role of ⊕ and ∩ playing the role of � is called a commutative ring with
multiplicative unit. ⊕ is customarily referred to as “addition” and � is customarily referred to as
“multiplication”. This explains the name “ring of sets” for R = (R,4,∩).

We note that rings of sets satisfy axioms 1.1 – 1.4 but not axiom 1.5 (the cancellation axiom) of [1]
B/G (Beck/Geoghegan) ch.1.1. This explains the name “ring of sets”.

The name “algebra of sets” for a ring of sets which contains Ω stems from the fact that such systems
of subsets of Ω are “boolean algebras”. �

2.3 Exercises for Ch.2

2.3.1 Exercises for Sets

Exercise 2.1. Let X = {x, y, {x}, {x, y} }. True or false?

a. {x} ∈ X c. { {x} } ∈ X e. y ∈ X g. {y} ∈ X
b. {x} ⊆ X d. { {x} } ⊆ X f. y ⊆ X h. {y} ⊆ X �

For the subsequent exercises refer to example 4.4 for the preliminary definition of cardinality of a set and
to def.4.1 (Cartesian Product of two sets) for the definition of Cartesian product. You find both in ch.4.1
(Cartesian products and relations) on p.72

Exercise 2.2. Find the cardinality of each of the following sets:

a. A = {x, y, {x}, {x, y} } c. C = {u, v, v, v, u} e. E = {sin(kπ/2) : k ∈ Z}
b. B = {1, {0}, {1} } d. D = {3z − 10 : z ∈ Z} f. F = {πx : x ∈ R} �

Exercise 2.3. Let X = {x, y, {x}, {x, y} } and Y = {x, {y} }. True or false?

a. x ∈ X ∩ Y c. x ∈ X ∪ Y e. x ∈ X \ Y g. x ∈ X∆Y
b. {y} ∈ X ∩ Y d. {y} ∈ X ∪ Y f. {y} ∈ X \ Y h. {y} ∈ X∆Y �

Exercise 2.4. Let X = {1, 2, 3, 4} and let Y = {x, y}.

a. What is X × Y ? c. What is card(X × Y )? e. Is (x, 3) ∈ X × Y ? g. Is 3 · x ∈ X × Y ?
b. What is Y ×X? d. What is card(Y ×X)? f. Is (x, 3) ∈ Y ×X? h. Is 2 · y ∈ Y ×X? �
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2.4 Addenda to Ch.2

Definition 2.13 (Absolute value). For a real number x we define its absolute value as

|x| =

{
x ifx = 0,

−x ifx < 0.
�

�

Example 2.4. |3| = 3; | − 3| = 3; | − 5.38| = 5.38. �

Remark 2.9. For any real number x we have
√
x2 = |x|. �(2.16)
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3 Logic (Skim this!)

This chapter uses material presented in ch.2 (Logic) and ch.3 (Methods of Proofs) of [4] Bryant, Kirby Course
Notes for MAD 2104.

3.1 Prologue: Notation for Functions

The material on functions presented in this section will be discussed again and in greater detail in chapter
4 (unctions and relations) on p.72. It is presented at the beginning of this chapter about logic because the
definition of a function is needed to properly discuss statement functions (see ch.3.2 on p.26).

Note 3.1 (Motivation for a good function definition). When discussing logic we deal with statement
functions (predicates) (see def.3.4 on p.26) and we are in the same predicament as when discussing
some run of the mill functions known from calculus such as f1(x) =

√
x and f2(x, y) = ln(x − y):

Sometimes f1(x) means the entire graph, i.e., the entire collection of pairs
(
x,
√
x
)

and sometimes
it just refers to the function value

√
x for a “fixed but arbitrary” number x. In case of the function

f2(x): Sometimes f2(x, y) means the entire graph, i.e., the entire collection of pairs
(
(x, y), ln(x−y)

)
and sometimes it just refers to the function value ln(x−y) for a pair of “fixed but arbitrary” numbers
(x, y).

This issue is addressed in the material of ch.4.2 on p.74 which precedes the mathematically precise
definition of a function (def.4.6 on p.77). You are encouraged to look at it once you have read the
remainder of this short section as ch.4.2 contains everything you see here.

To get to a usable definition of a function there are several things to consider. In the following f1(x)
and f2(x, y) again denote the functions f1(x) =

√
x and f2(x, y) = ln(x− y).

a. The source of all allowable arguments (x–values in case of f1(x) and (x, y)–values in case
of f2(x, y)) will be called the domain of the function. The domain is explicitly specified
as part of a function definition and it may be chosen for whatever reason to be only
a subset of all arguments for which the function value is a valid expression. In case
of the function f1(x) this means that the domain must be restricted to a subset of the
interval [0,∞[ because the square root of a negative number cannot be taken. In case of
the function f2(x, y) this means that the domain must be restricted to a subset of { (x, y) :
x, y ∈ R and x−y > 0} because logarithms are only defined for strictly positive numbers.

b. The set to which all possible function values belong will be called the codomain of the
function. As is the case for the domain, the codomain also is explicitly specified as part of
a function definition. It may be chosen as any superset of the set of all function values for
which the argument belongs to the domain of the function. In case of the function f1(x)
this means that we are OK if the codomain is a superset of the interval [0,∞[. Such a set
is big enough because square roots are never negative. It is OK to specify the interval
] − 3.5,∞ or even the set R of all real numbers as the codomain. In case of the function
f2(x, y) this means that we are OK if the codomain contains R. Not that it would make a
lot of sense but the set R ∪ { all inhabitants of Chicago } also is an acceptable choice for
the codomain.
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c. A function y = f(x) is not necessarily something that maps (assigns) numbers or pairs of
numbers to numbers but domain and codomain can be a very different kind of animal.
In this chapter on logic you will learn about statement functions A(x) which assign ar-
guments x from an arbitrary set U , called the universe of discourse, to statements A(x),
i.e., sentences that are either true or false.

d. Considering all that was said so far you can now think of the graph of a function f(x)
with domain D and codomain C (see the beginning of this chapter) as the set Γf :=
{
(
x, f(x)

)
: x ∈ D}. Alternatively you can characterize this function by the assignment

rule which specifies how the function value f(x) depends on any given argument x ∈ D.
We write “x 7→ f(x) to indicate this. You can also write instead f(x) = whatever the
actual function value will be. This is possible if you do not write about functions in
general but about specific functions such as f1(x) =

√
x and f2(x, y) = ln(x − y). We

further write “f : C → D” as a short way of saying that the function f(x) has domain C
and codomain D.

In case of the function f1(x) =
√
x for which we choose the interval X := [2.5, 7] as the

domain (small enough because X ⊆ [0,∞[) and Y :=]1, 3[ as the codomain (big enough
because 1 <

√
x < 3 for any x ∈ X) we specify this function as

either f1 : X → Y, x 7→
√
x or f1 : X → Y, f(x) =

√
x.

Let us choose U := {(x, y) : x, y ∈ R 1 5 x 5 10 and y < −2} as the domain and
V := [0,∞[ as the codomain for f2(x, y) = ln(x − y). These choices are OK because
x − y = 1 for any (x, y) ∈ U and hence ln(x − y) = 0, i.e., f2(x, y) ∈ V for all (x, y ∈ U .
We specify this function as

either f2 : U → V, (x, y) 7→ ln(x− y) or f2 : U → V, f(x, y) = ln(x− y). �

We incorporate the above into the following preliminary definition.

Definition 3.1 (Preliminary definition of a function). A function f consists of two nonempty sets
X and Y and an assignment rule x 7→ f(x) which assigns any x ∈ X uniquely to some y ∈ Y . We
write f(x) for this assigned value and call it the function value of the argument x. X is called the
domain and Y is called the codomain of f . We write

f :X → Y, x 7→ f(x).(3.1)

We read “a 7→ b” as “a is assigned to b” or “a maps to b” and refer to 7→ as the maps to operator or
assignment operator. The graph of such a function is the collection of pairs

Γf := {
(
x, f(x)

)
: x ∈ X}.(3.2)

�

Remark 3.1. The name given to the argument variable is irrelevant. Let f1, f2, X, Y, U, V be as
defined in d of note 3.1. The function

g1 : X → Y, p 7→ √p
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is identical to the function f1. The function

g2 : U → V, (t, s) 7→ ln(t− s)

is identical to the function f2 and so is the function

g3 : U → V, (s, t) 7→ ln(s− t).

The last example tells you that you can swap function names as long as you do it consistently in all
places. �

Note 3.2 (Textual variables). It was mentioned in c above that the input variables and function
values need not necessarily numbers but they can also be textual. For example, the domain of a
function may consist of the first names of certain persons.

A note on textual variables: If the variable is the last name of the person James Joice and
valid input for the function F : p 7→ “Each morning p writes two pages.”) then we write
interchangeably Joyce or ‘Joyce’. Quotes are generally avoided unless they add clarity.

In the above example “Each morning ‘Joyce’ writes two pages.” emphasizes that Joyce is the
replacement of a parameter whereas F (‘Joyce’) does not seem to improve the simpler notation
F (Joyce) and you will most likely see the expression F (Joyce) = “Each morning ‘Joyce’ writes two
pages.” �

We also need the definition of a cartesian product. 10

Definition 3.2 (Preliminary definition: cartesian product). Let X and Y be two sets The set

X × Y := {(x, y) : x ∈ X, y ∈ Y }(3.3)

is called the cartesian product of X and Y .

Note that the order is important: (x, y) and (y, x) are different unless x = y.

We write X2 as an abbreviation forX ×X .

This definition generalizes to more than two sets as follows: Let X1, X2, . . . , Xn be sets. The set

X1 ×X2 · · · ×Xn := {(x1, x2, . . . , xn) : xj ∈ Xj for each j = 1, 2, . . . n}(3.4)

is called the cartesian product of X1, X2, . . . , Xn.

We write Xn as an abbreviation forX ×X × · · · ×X . �

Example 3.1. The graph Γf of a function with domain X and codomain Y (see def.3.2) is a subset
of the cartesian productX × Y . �

Example 3.2. The domains given in a and d of note 3.1 are subsets of the cartesian product R2 =
R× R = {(x, y) : x, y ∈ R}. �

10 See ch.4.1 (Cartesian products and relations) on p.72 for the real thing and examples.
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3.2 Statements and Statement Functions

Definition 3.3 (Statements). A statement 11 is a sentence or collection of sentences that is either
true or false. We write T or true for “true” and F or false for “false” and we refer to those constants
as truth values �

Example 3.3. The following are examples of statements:

a. “Dogs are mammals” (a true statement);
b. “Roses are mammals. 7 is a number.” This is a false statement which also could have

been written as a single sentence: “Roses are mammals and 7 is a number”;
c. “I own 5 houses” (a statement because this sentence is either true or false depending on

whether I told the truth or I lied);
d. “The sum of any two even integers is even” (a true statement);
e. “The sum of any two even integers is even and Roses are mammals” (a false statement);
f. “Either the sum of any two even integers is even or Roses are mammals” (a true state-

ment). �

Example 3.4. The following are not statements:

a. “Who is invited for dinner?”
b. “2x = 27” (the variable x must be bound (specified) to determine whether this sentence

is true or false: It is true for x = 13.5 and it is false for x = 33)
c. “x2 +y2 = 34” (both variables x and y must be bound to determine whether this sentence

is true or false It is true for x = 5 and y = 3 and it is false for x = 7.8 and y = 2)
d. “Stop bothering me!” �

For the remainder of the entire chapter on logic we define

S := the set of all statements(3.5)

S will appear as the codomain of statement functions.

Be sure to understand the material of ch.3.1 (Prologue: Notation for Functions) on p.23) before continuing.

Definition 3.4 (Statement functions (predicates)). We need to discuss some preliminaries before
arriving at the definition of a statement function. Let A be a sentence or collection of sentences
which contains one or more variables (placeholders) such that, if each of those variables is assigned
a specific value, it is either true or false, i.e., it is an element of the set S of all statements. If
A contains n variables x1, x2, . . . , xn and if they are bound, i.e., assigned to the specific values
x1 = x10, x2 = x20, . . . , xn = xn0 , we write A(x10, x20, . . . , xn0) for the resulting statement.

To illustrate this let A := “x is green and y and z like each other”. If we know the specific values for
the variables x, y, z then this sentence will be true or false. For example A(this lime, Tim, Fred) is
true or false depending on whether Tim and Fred do or do not like each other.

There are restrictions for the choice of x1 = x10, x2 = x20, . . . , xn = xn0: Associated with each
variable xj in A is a set Uj which we call the universe of discourse, in short, UoD, for the jth

11 usually called a proposition in a course on logic but we do not use this term as in mathematics “proposition” means
a theorem of lesser importance.
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variable in A. Each value xj0 (j = 1, 2, . . . n) must be chosen in such a way that xj0 ∈ Uj . If this is
not the case then the expression A(x10, x20, . . . , xn0) is called inadmissible and we refuse to deal
with it.

What was said can be rephrased as follows: We have an assignment (x1, x2, . . . , xn) 7→
A(x1, x2, . . . , xn) which results in a statement, i.e., an element of S (see (3.5)) just as long as
xj0 ∈ Uj . In other words we have a function

A : U1 ×U2 × · · · ×Un → S , (x1, x2, . . . , xn) 7→ A(x1, x2, . . . , xn)(3.6)

in the sense of def. 3.1. with the cartesian product of the UoDs for x1, . . . , xn as domain and S as
codomain. We call such a function a statement function 12 or predicate. �

Note 3.3 (Relaxed notation for statement functions). You should remember that a statement func-
tion is a function in the sense of def.3.1 but we we will often use the simpler notation

A := “some text that contains the placeholders x1, x2, . . . , xn and evaluates to true
or false once all xj are bound”

together with the specification of each UoD Uj rather than the formal notation

A :U1 ×U2 × · · · ×Un → S , (x1, x2, . . . , xn) 7→ A(x1, x2, . . . , xn).

If A contains two or more variables then the formal notation has an advantage. There is no doubt
when looking at an evaluation such as A(5.5, 7,−3, 8) which placeholder in the string corresponds
to 5.5, which one corresponds to 7 etc. When employing the relaxed notation then we decide this
according to the following

Left to right rule for statement functions: If the string A contains n different place hold-
ers then the expression A(x10, x20, . . . xn0) implies the following: If the name of the first
(leftmost) place holder in A is x then each occurrence of x is bound to the value x10. If
the name of the first of the remaining place holders in A is y then each occurrence of y is
bound to the value x20, .... After n−1 steps the remaining placeholders all have the same
name, say z and each occurrence of z is bound to the value xn0. If there is any confusion
about what is first, what is second, ... then this will be indicated when A is specified or
when its variables are bound for the first time.

Example 3.5. In def.3.4 A = “x is green and y and z like each other” was used to illustrate the
concept of a statement function. We never showed how to write the actual statement function. We
must decide the UoDs for x, y, z and we define them as follows.

UoD for x: Ux := all plants and animals in the U.S.,
UoDs for y and z: Uy := Uz := all BU majors in actuarial science.

a. Here is the formal definition: Let A be the statement function

A : Ux ×Uy ×Uz → S , (x, y, z) 7→ A(x, y, z) := “x is green and y and z like each other”

12 A statement function is usually called a proposition function in a course on logic. As previously mentioned, we do
not use the term “proposition” in this document because in most brances of mathematics it refers to a theorem of lesser
importance.
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b. Here is the relaxed definition: Let A be the statement function

A := “x is green and y and z like each other” with UoDs Ux for x, Uy for y and Uz for z. �

The example above and all those below for statement functions of more than a single variable em-
ploy the left to right rule. �

Adhering to the left to right rule is not a big deal because

We will restrict ourselves in this document from now on to state-
ment functions of one or two variables.

Example 3.6. Let A(t) = “t − 4.7 is an integer′′. Then A : R → S , x 7→ A(x) is a one parameter
statement function with UoD R and x as the variable. Note that it is immaterial that we wrote t in
the equation and x in the “ 7→” expression because with deal with a dummy variable and we have
employed its name consistently in both cases. We have

a. A(Honda) = “‘Honda’− 4.7 is an integer′′ is inadmissible because a car brand is not part
of our universe of discourse.

b. If u0 ∈ U then A(u0) = “u0 − 4.7 is an integer′′ is a statement which evaluates to true or
false depending on that fixed but unknown value of u0.

c. If n ∈ U then A(n) is the statement(!) “n − 4.7 is an integer”. It does not matter that
this expression looks exactly like the original A: The expression A(n) implies that the
parameter inside the sentence collection A which happens to be named “n” has been
bound to a fixed (but unspecified) value also denoted by n. �

Example 3.7. Let B(x, y) := “x2 − y + 2 = 11′′. Then B : R×]1, 100[→ S , (x, y) 7→ B(x, y) is a
two parameter statement function with UoD R for x and UoD ]1, 100[ for the variable y. Then

a. B(4,−2) = “42 − (−2) + 2 = 11′′ (a false statement) because x is the leftmost item in B.
b. B(z, 10) = “z2 − 10 + 2 = 11′′ (true or false depending on z).
c. BE CAREFUL: If x, y ∈ R then B(y, x) = “y2 − x + 2 = 11′′ and NOT “x2 − y + 2 = 11′′

because the “evaluate left to right” rule matters, not any similarity or even coincidence
between the symbols inside the sentence collection and in the evaluation B(·, ·) �

Example 3.8. The following are predicates:

a. P := “2x = 27′′ (see example 3.4.b), UoD U := {x ∈ R : x > 10}
b. Q := “x2 + y2 = 34′′ (example 3.4.c), UoD V := {(x, y) : x, y ∈ R and x < y}
c. R := “x2 + y2 = 34 and xy > 100′′, UoDs are Wx := Wy := [−50, 25].

Note the following for c: R(−30, 20) evaluates to a false statement because (−30) · 20 > 100 is
false. R(30, 20) does not evaluate to any kind of statement: It is an inadmissible expression because
30 /∈ Wx.

d. The sentence “Stop bothering x!” is not a statement function because this imperative will not be
true or false even if x is bound to a specific value. �

28



Example 3.9. Let B := “x + 7 = 16 and d is a dog′′. Let Ux := N and Ud := {d :
d is a vegetable or animal }.

B becomes a statement function of two variables x and d if we specify that the UoD for x is Ux and
the UoD for d is Ud

Assume for the following that Robby is an animal.

a. B(9,Robby) is the statement “9 + 7 = 16 and Robby is a dog′′. It is true in case Robby is
a dog and false in case Robby is not a dog.

b. B(20,Robby) is the statement “20 + 7 = 16 and Robby is a dog′′ which is false regardless
of what Robby might be because 20 + 7 = 16 by itself is false.

c. B(d, F ) is the statement “d + 7 = 16 and F is a dog′′: which is true or false depending
on the fixed but unspecified values of d and F . Note that d corresponds to the leftmost
variable x inside B and not to the second variable d!

d. B(x) is not a valid expression as we do not allow “partial evaluation” of a predicate. 13

�

3.3 Logic Operations and their Truth Tables

We now resume our discussion of statements.

3.3.1 Overview of Logical Operators

Statements can be connected with logical operators, also called connectives, to form another statement,
i.e., something that is either true or false.

Here is an overview of the important connectives. 14 Their meaning will be explained subsequently, once we
define compound statements and compound statement functions.

13To indicate that we consider d as fixed but arbitrary and want to interpret “x+ 7 = 16 and d is a dog′′ as a statement
function of only x as a variable we could have introduced the notation B(·, d) : x 7→ B(x, d). Similarly, to indicate that
we consider x as fixed but arbitrary and want to interpret “x + 7 = 16 and d is a dog′′ as a statement function of only d
as a variable we could have introduced the notation B(x, ·) : d 7→ B(x, d). We choose not to overburden the reader with
this additional notation. Rather, this situation can be handled by defining two new predicates C : x 7→ C(x) := “x+ 7 =
16 and z is a dog′′ and D : d 7→ D(d) := “z + 7 = 16 and d is a dog′′ and then state that z is not a variable but a fixed
(but unspecified) value.

14 This order is rather unusual in that usually you would discuss biconditional and logical equivalence operators last,
but logical equivalence between two statements A and B is what we think of when saying “A if and only if B” and it
helps to understand what this phrase means in the context of logic as early as possible.

29



negation: ¬A not A
conjunction: A ∧B A and B
double arrow (biconditional): A↔ B A double arrow B
logical equivalence: A ⇔ B A if and only if B
disjunction (inclusive or): A ∨B A or B
exclusive or: A xor B either A or B, exactly one of A or B
arrow: A→ B A arrow B, if A then B
implication: A⇒ B A implies B, if A then B

Notations 3.1 (use of symbols vs descriptive English).

a. In the entire chapter on logic we generally use for logical operators their symbols like “¬” or “⇒”
in formulas but we use their corresponding English expressions (not and implies in this case) in
connection with constructs which contain English language.

For example we would write ¬(A ∨ ¬B) rather than not(A or not B) but we would write “d+ 7 =
16 and F is a dog′′ rather than “(d+ 7 = 16) ∧ (F is a dog)′′

b. Outside chapter 3 symbols are not used at all for logical operators. We use boldface such as
“and” rather than just plain type face only to make it visually easier to understand the structure of
a mathematical construct which employs connectives. �

Definition 3.5 (Compound statements). A statement which does not contain any logical operators is
called a simple statement and one that employs logical operators is called a compound statement.

Similarly statement functions which contain logical operators are called compound statement func-
tions. �

Example 3.10. Statements e and f of example 3.3 are examples of compound statements.

In e the two simple statements “The sum of any two even integers is even” and “Roses are mam-
mals” are connected by and.

In f the two simple statements “The sum of any two even integers is even” and “Roses are mam-
mals” are connected by either ... or. �

3.3.2 Negation and Conjunction, Truth Tables and Tautologies (Understand this!)

We now give the definition of the first two logical operators which were introduced in the table of section 3.3.1.

Definition 3.6 (Negation). The negation operator is represented by the symbol “¬” and it reverses
the truth value of a statement A, i.e., if A is true then ¬(A) is false and if A is false then ¬(A) is true.

This is expressed in this “truth table” for ¬A:15(3.7)
A ¬ A
F T
T F

�
15The definition of a truth table will be given shortly. See def.3.8 on p.31.
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Example 3.11. Let A := “Rover is a horse”. Then ¬A = “Rover is not a horse” and ¬¬A = ¬(¬A) =
“Rover is a horse” = A.

Let us not quibble here about whether ¬¬A is not in reality the statement “Rover is not not a horse”
which admittedly means the same as “Rover is a horse” but looks different.

There is no question about the fact that the T/F values for A and
¬¬A are the same. Just compare column 1 with column 3.

A ¬A ¬(¬A)

F T F
T F T

Note that we did not use any specifics about A. We derived the T/F values for ¬¬A from those in
the second column by applying the definition of the ¬ operator to the statement B := ¬A.

In other words we have proved that the statements A and ¬¬A are logically equivalent in the
sense that one of them is true whenever the other one is true and vice versa. �

All operators discussed subsequently are binary operators, i.e., they connect two input parameters (state-
ments) A, B and four rather than two rows are needed to show what will happen for each of the four combi-
nations A: false and B: false, A: false and B: true, A: true and B: false, A: true and B: true.

In contrast, the already discussed negation operator “¬” is a unary operators, i.e., it has a single input
parameter. We will keep referring to “¬” as a connective even though there are no two or more items that can
be connected.

Definition 3.7 (Conjunction). The conjunction operator is represented by the symbols “∧” or
“and”. The expression A and B is true if and only if both A and B are true.

Truth table for A and B:(3.8)

A B A ∧B
F F F
F T F
T F F
T T T

The and connective generalizes to more than two statements A1, A2, . . . , An in the obvious manner:

A1 ∧A2 ∧ · · · ∧An is true if and only if each one of A1, A2, . . . , An is true and false otherwise. �

Definition 3.8 (Truth table). A truth table contains the symbols for statements in the header, i.e.,
the top row and shows in subsequent rows how their truth values relate.

It contains in the leftmost columns statements which you may think of as varying inputs and it
contains in the columns to the right compound statements which were built from those inputs
by the use of logical operators. We have a row for each possible combination of truth values for
the input statements. Such a combination then determines the truth value for each of the other
statements.

When we count rows we start with zero for the header which contains the statement names. Row 1
is the first row which contains T/F values.

An example for a truth table is the following table which you encountered in the definition above
3.7 of the conjunction operator:
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A B A ∧B
F F F
F T F
T F F
T T T

Here the input statements areA andB. The compound statementA∧B
is built from those inputs with the use of the ∧ operator. We have 4 pos-
sible T/F combinations for A and B and each one of those determines
the truth value of A ∧B. For example, row 2 contains A:F and B:T and
from this we obtain F as the corresponding truth value of A ∧B.

Some truth tables have more than two inputs. If there are three statements A,B,C from wich the
compound statements that interest us are built then there will be 23 = 8 rows to hold all possible
combinations of truth values and for n inputs there will be 2n rows. �

Definition 3.9 (Logically impossible). The statements A and B in the truth table of def.3.8 were of
a generally nature and all four T/F combinations had to be considered. If we deal with statements
which are more specific but have some variability because they contain place holders 16 then there
may be dependencies that rule out certain combinations as nonsensical. For example let x be some
fixed but unspecified number and look at a truth table which has the statements A := A(x) := “x >
5′′ andB := B(x) := “x > 7′′ as input. It is clearly impossible thatA is false andB is true, no matter
what value x may have.

We call such combinations logically impossible or contradictory. We abbreviate “logically impos-
sible” with L/I.

Both truth tables indicate that the combina-
tion A:F and B:T is logically impossible for
A = “x > 5′′ and B = “x > 7′′.

A B A ∧B
F F F
F T L/I
T F F
T T T

A B A ∧B
F F F
T F F
T T T

�

Remark 3.2. It was mentioned in the definition of logically impossible T/F combinations that there
had to be some relationship between the inputs, i.e., some placeholders or some fixed but unspeci-
fied constants to make this an interesting definitions.

Consider what happens if you have two statements A and B for which this is not the case. For
example, let A := “All tomatoes are blue” (obviously false) and B := “Arkansas is a state of the
U.S.A.” (obviously true).

For those two specific statements we know up-
front that we have A:F and B:T, so why bother
with the other three cases? In other words, the ap-
propriate truth table is either of those two:

A B A ∧B
F F L/I
F T F
T F L/I
T T L/I

A B A ∧B
F T F

�

Remark 3.3. We chose for a more compact notation to place “L/I” into one of the statement columns
but be aware that the L/I attribute really belongs to certain combinations of the T/F values of the
inputs. In other words,

16 e.g., if we have a statement function P : x 7→ P (x) and we look at the statements P (x0) for which x0 belongs to the
UoD of P or a certain subset thereof
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the L/I attribute belongs to certain rows of the truth table. A
more accurate way would be to place L/I into a separate status
column and place “N/A” or “-” or nothing into all columns
other than those for the inputs:

Status A B A ∧B
F F F

L/I F T -
T F F
T T T

�

Of course more than two input statements can be involved when discussing logical impossibility. The follow-
ing example will show this.

Example 3.12. Let U, V,W,Z be the statement functions
U := x 7→ U(x) := “x ∈ [0, 4]′′,
V := x 7→ V (x) := “x /∈ ∅′′,
W := x 7→W (x) := “x < −1′′,
Z := x 7→ Z(x) := “x > 2′′

with UoD R in each case. Let Q be a statement function that is built from U, V,W,Z with the help
of logical operators.

We observe the following:
a. V (x) is always true because the empty set does not contain any elements.
a’. In other words, there is no x in the UoD for which V (x) is false.
b. There is no x in the UoD for which W (x) and Z(x) can both be true.

The following rows in the resulting truth table yield
an L/I regardless whether we enter a truth value of T
or F into anyone of the “•” entries.

U(x) V (x) W (y) Z(x) Q(x)

• F • • L/I
• • T T L/I

�

Remark 3.4. As in example 3.12 above let

U := U(x) := “x ∈ [0, 4]′′, V := V (x) := “x /∈ ∅′′, W := W (x) := “x < −1′′, Z := Z(x) := “x > 2′′.

a. The statement 17 Q(x) := ¬(U(x) ∧ V (x)) ∧W (x) ∧ Z(x) can never be true, regardless of x.

To see this directly note again that V (x) is trivially true for any x because the emptyset by definition
does not contain any elements. It follows that U(x) ∧ V (x) means “x ∈ [0, 4]′′ and Q(x) means
“x < 0′′ ∧ “x > 4′′ ∧ “x < −1′′ ∧ “x > 2′′ which is equivalent to “x < −1′′ ∧ “x > 4′′ and certainly
false for any x in the UoD, i.e., x ∈ R.

Alternatively we can use the results from example 3.12 where we found out that W (x) and Z(x)
cannot both be true at the same time.

The remaining rows in the resulting truth table yield an
F for Q(x) regardless of the truth values of U(x) and
V (x) because W (x) ∧ Z(x) is false, hence Q(x) = what-
ever ∧

(
W (x) ∧ Z(x)

)
is false for those remaining rows.

U(x) V (x) W (y) Z(x) Q(x)

• • F F F
• • F T F
• • T F F

17 It is tough to come up with some decent examples of compound statements if the only operators at your disposal so
far are negation and conjunction.
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b. Let R : x 7→ R(x) := ¬Q(x) be the statement function with UoD R which represents for each x
in the UoD the opposite of Q. Because Q(x) is false for all x, R(x) is true for all x in the universe of
discourse for x. �

Statements which are true or false under all circumstances like the statementsR(x) andQ(x) from the remark
above deserve special names.

Definition 3.10 (Tautologies and contradictions). A tautology is a statement which is true under all
circumstances, i.e., under all combinations of truth values which are not logically impossible.

A contradiction is a statement which is false under all circumstances.

We write T0 for the tautology “1 = 1” and F0 for the contradiction “1 = 0”. This gives us a conve-
nient way to incorporate statements which are true or false under all circumstances into formulas
that build compound statements. �

Example 3.13. Here are some examples of tautologies.

a. The statements R(x) of remark 3.4 are tautologies.

b. T0 is a boring example of a tautology. So is any true statement without any variables such as
“9 + 12 = 21′′ and “a cat is not a cow”.

c. There are formulas involving arbitrary statements which are tautologies. We will show that for
any two statements A and B the statement P := ¬

(
A ∧ ¬A

)
is a tautology.

Here are some examples of contradictions.

d. The statements Q(x) of remark 3.4 are contradictions.

e. F0 is a boring example of a contradiction. So is any false statement without any variables such as
“9 + 12 = 50′′ and “a dog is a whale”.

f. There are formulas involving arbitrary statements which are contradictions. We will show that
for any two statements A and B the statement Q :=

(
A ∧ ¬A

)
∧B is a contradiction. �

Proof of c and f:

P = ¬
(
A∧¬A

)
(last column) has entries all

T, hence P is a tautology.
Q =

(
A∧¬A

)
∧B (next to last column) has

entries all F, hence Q is a contradiction.

A B ¬A A ∧ ¬A (A ∧ ¬A) ∧B ¬(A ∧ ¬A)

F F T F F T
F T T F F T
T F F F F T
T T F F F T

�

We now continue with the conjunction operator.

Example 3.14. In the following let x, y be two (fixed but arbitrary) integers and let A(x) := “x ∈ N′′

andB(y) := “y ∈ Z and y > 0′′. Be sure to understand thatA(x) andB(y) are in fact statements and
not predicates, because the symbols x, y are bound from the start and hence cannot be considered
variables of the predicates A := “x ∈ N′′ and B := “y ∈ Z and y > 0′′.
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We will reuse the statements A(x) and B(y) in examples for the subsequently defined logical oper-
ators.

a. If no assumptions are made about a relationship between
x and y then all four T/F combinations are possible and, to
explore conjunction, we must deal with the full truth table

A(x) B(y) A(x) ∧B(y)

F F F
F T F
T F F
T T T

b. On the other hand, if x < y then the truth of A(x) implies that of B(y) because if y is an integer
which dominates some natural number x then we have y > x = 1 > 0, i.e., y is an integer bigger
than zero, i.e., truth of A(x) and falseness of B(y) are incompatible.

It follows that the combination T/F is L/I. We discard the
corresponding row and restrict ourselves to the truth table

A(x) B(y) A(x) ∧B(y)

F F F
F T F
T T T

c. Even better, if x = y, i.e., we compare truth/falsehood of A(x) with that of B(x), we only need
to worry about the two combinations F/F and T/T for the following reason: The set of positive
integers is the set {1, 2, . . . } and this is, by definition, the set N of all natural numbers. This means
that the statements “x ∈ N” and “y ∈ Z and y > 0′′ are just two different ways of expressing the
same thing.

It follows that either both A(x) and B(x) are true or both
are false. We discard the logically impossible combinations
F/T and T/F and restrict ourselves to the truth table

A(x) B(x) A(x) ∧B(x)

F F F
T T T

�

3.3.3 Biconditional and Logical Equivalence Operators – Part 1

Definition 3.11 (Double arrow operator (biconditional)). The double arrow operator 18 is repre-
sented by the symbol “↔” and read “A double arrow B”. A↔ B is true if and only if either both A
and B are true or both A and B are false.

Truth table for A ↔ B:(3.9)

A B A↔ B

F F T
F T F
T F F
T T T

�

Definition 3.12 (Logical equivalence operator). Two statements A and B are logically equivalent
if the statement A ↔ B is a tautology, i.e., if the combinations A:true, B:false and A:false, B:true
both are logically impossible.

18 [4] Bryant, Kirby Course Notes for MAD 2104 calls this operator the equivalence operator but we abstain from that
terminology because “A is equivalent to B” has a different meaning and is written A ⇔ B.
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We write A ⇔ B and we say “A if and only if B” to indicate that A and B are logically equivalent.

Truth table for A ⇔ B:(3.10)

A B A ⇔ B

F F T
F T L/I
T F L/I
T T T

�

The discussion of the↔ and⇔ operators will be continued in ch.3.3.6 (Biconditional and Logical Equivalence
Operators – Part 2) on p.44

3.3.4 Inclusive and Exclusive Or

Definition 3.13 (Disjunction). The disjunction operator is represented by the symbols “∨” or “or”.
The expression A or B is true if and only if either A or B is true.

Truth table for A ∨ B:(3.11)

A B A ∨B
F F F
F T T
T F T
T T T

The or connective generalizes to more than two statements A1, A2, . . . , An in the obvious manner:

A1 ∨A2 ∨ · · · ∨An is true if and only if at least one of A1, A2, . . . , An is true and false otherwise, i.e.,
if each of the Ak is false. �

Example 3.15. As in example 3.14 let x, y ∈ Z and let
A(x) := “x ∈ N′′ and B(y) := “y ∈ Z and y > 0′′

a. If no assumptions are made about a relationship between
x and y then all four T/F combinations are possible and, to
explore conjunction, we must deal with the full truth table

A(x) B(y) A(x) ∨B(y)

F F F
F T T
T F T
T T T

b. Let x < y. We have seen in example 3.14.b that the com-
bination T/F is impossible and we can restrict ourselves to
the simplified truth table

A(x) B(y) A(x) ∨B(y)

F F F
F T T
T T T

c. Now let x = y. We have seen in example 3.14.c that
either both A(x) and B(y) = B(x) are true or both are false.
Because the combinations F/T and T/F are impossible we
can restrict ourselves to the simplified truth table

A(x) B(x) A(x) ∧B(x)

F F F
T T T

�
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Definition 3.14 (Exclusive or). The exclusive or operator is represented by the symbol “xor”. 19 A
xor B is true if and only if either A or B is true (but not both as is the case for the inclusive or).

Truth table for A xor B:(3.12)

A B A xor B
F F F
F T T
T F T
T T F

�

Example 3.16. As in example 3.14 let x, y ∈ Z and let
A(x) := “x ∈ N′′ and B(y) := “y ∈ Z and y > 0′′

a. If no assumptions are made about a relationship between
x and y then all four T/F combinations are possible and, to
explore conjunction, we must deal with the full truth table

A(x) B(y) A(x) xor B(y)

F F F
F T T
T F T
T T F

b. Let x < y. We have seen in example 3.14.b that the com-
bination T/F is impossible and we can restrict ourselves to
the simplified truth table

A(x) B(y) A(x) xor B(y)

F F F
F T T
T T F

c. Now let x = y. We have seen in example 3.14.c that
either both A(x) and B(y) = B(x) are true or both are false.
Because the combinations F/T and T/F are impossible we
can restrict ourselves to the simplified truth table

A(x) B(x) A(x) xor B(x)

F F F
T T F

This last truth table is remarkable. The truth values for A(x) xor B(x) are false in each row, hence
it is a contradiction as defined in def.3.10 on p.34. �

Remark 3.5. Note that the truth values for A ↔ B are the exact opposites of those for A xor B:

A ↔ B is true exactly when both A and B have the same truth value whereas A xor B is true
exactly when A and B have opposite truth values. In other words,

A ↔ B is true whenever ¬[A xor B] is true and false whenever ¬[A xor B] is false. �

Exercise 3.1. use that last remark to prove that for any two statements A and B the compound
statement

[A↔ B] ↔ ¬[A xor B]

is a tautology. �
19 Some documents such as [4] Bryant, Kirby Course Notes for MAD 2104. also use the symbol ⊕.
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3.3.5 Arrow and Implication Operators

Definition 3.15 (Arrow operator). The arrow operator 20 is represented by the symbol “→”. We
read A→ B as “A arrow B” but see remark 3.7 below for the interpretation “if A then B”.

Truth table for A→ B:(3.13)

A B A→ B

F F T
F T T
T F F
T T T

In other words, A→ B is false if and only if A is true and B is false. �

Definition 3.16 (Implication operator). We say that A implies B and we write

A ⇒ B(3.14)

for two statements A and B if the statement A → B is a tautology, i.e., if the combination A: true,
B: false is logically impossible.

Truth table for A⇒ B:(3.15)

A B A⇒ B

F F T
F T T
T F L/I
T T T

�

Remark 3.6. There are several ways to express A⇒ B in plain english:

Short form:

A implies B
if A then B
A only if B
B if A
B whenever A
A is sufficient for B
B is necessary for A

Interpret this as:

The truth of A implies the truth of B
if A is true then B is true
A is true only if B is true
B is true if A is true
B is true whenever A is true
The truth of A is sufficient for the truth of B
The truth of B is necessary for the truth of A

�

Theorem 3.1 (Transitivity of “⇒”). Let A,B,C be three statements such that A⇒ B and B ⇒ C. Then
A⇒ C.

Proof:

20 [4] Bryant, Kirby Course Notes for MAD 2104 calls this operator the implication operator but we abstain from that
terminology because “A implies B” has a different meaning and is written A⇒ B.
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A ⇒ B means that the combination A:T, B:F is logically impossible because
otherwise A→ B would have a truth value of F and we would not have a tau-
tology. Hence we can drop row 5 from the truth table on the right. Similarly
we can drop row 7 because it contains the combination B:T, C:F which con-
tradicts our assumption that B ⇒ C. But those are the only rows for which
A → C yields false because only they contain the combination A:T, C:F. It
follows that A→ C is a tautology, i.e., A⇒ C.

A B C

1 F F F
2 F F T
3 F T F
4 F T T
5 T F F
6 T F T
7 T T F
8 T T T

�

Theorem 3.2 (Transitivity of “→”). Let A,B,C be three statements.

Then
[
(A→ B) ∧ (B → C)

]
⇒ (A→ C).

Proof: We must show that
[
(A → B) ∧ (B → C)

]
→ (A → C) is a tautology. We do this by brute force

and compute the truth table.

P :=
A B C A→ B B → C (A→ B) ∧ (B → C) A→ C P → (A→ C)

F F F T T T T T
F F T T T T T T
F T F T F F T T
F T T T T T T T
T F F F T F F T
T F T F T F T T
T T F T F F F T
T T T T T T T T

We see that the last column with the truth values for
[
(A → B) ∧ (B → C)

]
→ (A → C) contains true

everywhere and we have proved that this statement is a tautology. �

Definition 3.17. In the context of A → B and A ⇒ B we call A the premise or the hypothesis 21

and we call B the conclusion. 22

We call B → A the converse of A→ B and we call ¬B → ¬A the contrapositive of A→ B.

We call B ⇒ A the converse of A⇒ B and we call ¬B ⇒ ¬A the contrapositive of A⇒ B. �

Remark 3.7.
21 also called the antecedent
22 Another word for conclusion is consequent .
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a. The difference between A → B and A ⇒ B is that A ⇒ B implies a relation
between the premise A and the conclusion B which renders the T/F combination
A:T, B:F logically impossible, i.e., the pared down truth table has only true entries
in the A ⇒ B column. In other words, A ⇒ B is the statement A → B in case the
latter is a tautology as defined in def.3.10 on p.34.

b. Both A → B and A ⇒ B are interpreted as “if A then B” but we prefer in general
to say “A arrow B” for A → B because outside the realm of logic A ⇒ B is what
mathematicians use when they refer to “If ... then ” constructs to state and prove
theorems.

�

Example 3.17. The converse of “if x is a dog then x is a mammal” is “if x is a mammal then x is
a dog”. You see that, regardless whether you look at it in the context of → or ⇒, a “if . . . then”
statement can be true whereas its converse will be false and vice versa.

The contrapositive of “if x is a dog then x is a mammal” is “if x is not a mammal then x is a not a
dog”. Switching to the contrapositive did not switch the truth value of the “if . . . then” statement.
This is not an accident: see the Contrapositive Law (3.41) on p.48. �

Remark 3.8. What is the connection between the truth tables for A → B, A ⇒ B and modeling
“if A then B”?

We answer this question as follows:

a. If the premise A is guaranteed to be false, you should be allowed to conclude from it anything
you like:

Consider the following statements which are obviously false:

F1 : “The average weight of a 30 year old person is 7 ounces”,
F2 : “The number 12.7 is an integer”,
F3 : “There are two odd integers m and n such that m+ n is odd”,
F4 : “All continuous functions are differentiable” 23

and some that are known to be true:

T1 : “The moon orbits the earth”,
T2 : “The number 12.7 is not an integer”,
T3 : “If m and n are even integers then m+ n is even”,
T4 : “All differentiable functions are continuous”

a1. What about the statement “if F3 then T1”: “If There are two odd integers m and n such that
m+n is odd then the moon orbits the earth”? This may not make a lot of sense to you, but consider
this:

The truth of “if F3 then T1” is not the same as the truth of just F1. No absolute claim is made that
the moon orbits the earth. You are only asked to concede such is the case under the assumption that
two odd integers can be found whose sum is odd. But we know that no such integers exist, i.e., we
are dealing with a vacuous premise and there is no obligation on our part to show that the moon
indeed orbits the earth! Because of this we should have no problem to accept the validity of “if F3

23 A counterexample is the function f(x) = |x| because it is continuous everywhere but not differentiable at x = 0.
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then T1”. Keep in mind though that knowing that if F3 then T1 will not help to establish the truth
or falseness of T1!

a2. Now what about the statement “if F3 then F2”: “If There are two odd integers m and n such
that m+n is odd then the number 12.7 is an integer”? The truth of this implication should be much
easier to understand than allowing to conclude something false from something false:

When was the last time that someone bragged “Yesterday I did xyz” and you responded with some-
thing like “If you did xyz then I am the queen of Sheba” in the serene knowledge that there is no
way that this person could have possibly done xyz? You know that you have no burden of proof to
show that you are the queen of Sheba because you did not make this an absolute claim: You hedged
that such is only the case if it is true that the other person in fact did xyz yesterday.

So, yes, the argument “if F3 then F2”. sounds OK and we should accept it as true but, as in the case
of “if F3 then T1”. this has no bearing on the truth or falseness of F2.

To summarize, “if F then B”. should be true, no matter what you plug
in for B. We thus have obtained the first two rows of a sensible truth
table for A→ B:

A B A→ B
F F T
F T T

b. Is it OK to say that if the premise A is true then we may infer that the conclusion B is also true?
Definitely! There is nothing wrong with “if T2 then T4”, i.e., the statement “If The number 12.7 is
not an integer then all differentiable functions are continuous”

We can add the fourth row but
we do not have #3 yet:

A B A→ B
F F T
F T T
T F ??
T T T

c. Is it OK to say that, if the premise A is true, we may say in parallel that A implies B even if the
conclusion B is false? No way! Let’s assume that Jane is a goldfish. Then A: “Jane is a fish” is true
and B: “Jane is a rocket scientist” is false. It is definitely NOT OK to say, under those circumstances,
“If Jane is a fish” then Jane is a rocket scientist”. Contrast that with this modification that fits case
b: “If Jane is a fish’ then Jane is not a rocket scientist”. No one should have a problem with that! We
now can complete row #3: T→ F is false.

We now have the complete truth table for A → B and it
matches the one in def.3.15:

A B A→ B

F F T
F T T
T F F
T T T

The truth table (3.15) forA⇒ B is then derived from that for
A→ B by demanding thatA andB be such thatA→ B can-
not be false, i.e, the combination A:F, B:T must be logically
impossible:

A B A⇒ B

F F T
F T T
T F L/I
T T T

We arrived in this remark at the truth tables for A → B and A ⇒ B based on what seems to be
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reasonable. But the discipline of logic is as exacting a subject as abstract math and the process had
to be done in reverse: We first had to define A → B and A ⇒ B by means of the truth tables given
in def.3.15 and def.3.16 and from there we justified why these operators appropriately model “if A
then B”. �

Example 3.18. As in example 3.14 let x, y ∈ Z and let
A(x) := “x ∈ N′′ and B(y) := “y ∈ Z and y > 0′′

a. If no assumptions are made about a relationship between
x and y then all four T/F combinations are possible and, to
explore conjunction, we must deal with the full truth table

A(x) B(y) A(x)→ B(y)

F F T
F T T
T F F
T T T

b. Let x < y. We have seen in example 3.14.b that the com-
bination T/F is impossible and we can restrict ourselves to
the simplified truth table

A(x) B(y) A(x)→ B(y)

F F T
F T T
T T T

c. Now let x = y. We have seen in example 3.14.c that
either both A(x) and B(y) = B(x) are true or both are false.
Because the combinations F/T and T/F are impossible we
can restrict ourselves to the simplified truth table

A(x) B(x) A(x)→ B(x)

F F T
T T T

We see that A(x)→ B(y) is a tautology in case that x < y or x = y. �

We have seen that some work was involved to show that the “A(x)→ B(y)” statement of the last example is
a tautology. How do we interpret this?

If you show that a “if P then Q” statement is a tautology then you have demonstrated that a true
premise necessarily results in a true conclusion. You have “proved” the validity of the conclusion
Q from the validity of the hypothesis P .

The next example is a modification of the previous one. We replace the statements A(x) and B(y) with
statement functions x 7→ A(x), y 7→ B(y), (x, y) 7→ C(x, y). and replace A(x)→ B(y) with an equivalent
→ statement which involves those three statement functions. Our goal is now to show that this new if . . . then
statement is a tautology for all x and y which belong to their universes of discourse.

Example 3.19. Let Ux := Uy := Z be the UoDs for the variables x and y.

Let A : Ux → S with x 7→ “x ∈ N′′,
B : Uy → S with y 7→ “y ∈ Z and y > 0′′,
C : Ux ×Uy → S with (x, y) 7→ “x < y′′.

Let us try to show that for any x in the UoD of x and y in the UoD of y, i.e., for any two integers x
and y, the function value T (x, y) of the statement function

T :Ux ×Uy → S with (x, y) 7→ T (x, y) :=
[(
A(x) ∧ C(x, y)

)
→ B(y)

]
is a tautology.(3.16)
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Note that

a. The last arrow in (3.16) is the arrow operator→, not the function assignment operator 7→.
b. if we can demonstrate that (3.16) is correct then we can replace

(
A(x)∧C(x, y)

)
→ B(y)

with
(
A(x) ∧ C(x, y)

)
⇒ B(y). We interpret this as having proved the (trivial)

Theorem: It is true for all integers x and y that if x ∈ N and x < y then y ∈ Z and y > 0.

The trick is of course to think of x and y not as placeholders but as fixed but unspecified integers.
Then A(x), B(y) and C(x, y) are ordinary statements and we can build truth tables just as always.
Observe that we now have three “inputs” A(x), B(y) and C(x, y) and the full truth table contains
nine entries.

We need not worry about numbers x and y whose combination (x, y) results in the falseness of the
premise A(x) ∧ C(x, y) because false → B(y) always results in true. In other words we do not
worry about any combination of x and y for which at least one of A(x), C(x, y) is false. To phrase
it differently we focus on such x and y for which we have that both A(x), C(x, y) are true and
eliminate all other rows from the truth table. There are only two cases to consider: either B(y) is
false or B(y) is true:

A(x) C(x, y) B(y) A(x) ∧ C(x, y)
(
A(x) ∧ C(x, y)

)
→ B(y)

T T F T F
T T T T T

The proof is done if it can be shown that the first row is a logically impossible. We now look at the
components A(x), C(x, y), B(y) in context. We have seen in example 3.14b. that the assumed truth
of C(x, y) together with that of A(x) is incompatible with B(y) being false. This eliminates the first
row from that last truth table and what remains is

A(x) C(x, y) B(y) A(x) ∧ C(x, y)
(
A(x) ∧ C(x, y)

)
→ B(y)

T T T T T

In other words we obtain the value true for all non-contradictory combinations in the last column
of the truth table and this proves (3.16). �

Remark 3.9. Let us compare example 3.18.b with example 3.19. Besides using statements in the
former and predicates in the latter a more subtle difference is that, because x and y were assumed
to be known from the outset,

example 3.18.b allowed us to formulate a truth table in which none of the statements had to explic-
itly refer to the condition x < y.

In contrast to this we had to introduce in example 3.19 the predicate C = “x < y′′ to bring this
condition into the truth tables

Was there any advantage of switching from statements to predicates and adding a significant
amount of complexity in doing so? The answer is yes but it will only become clear when we in-
troduce quantifiers for statement functions. �

We will come back to the subject of proofs in chapter 3.7.1 (Building blocks of mathematical theories) on p.59.
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3.3.6 Biconditional and Logical Equivalence Operators – Part 2 (Understand this!)

This chapter continues the discussion of the ↔ and ⇔ operators from ch.3.3.3 (Biconditional and Logical
Equivalence Operators – Part 1) on p.35.

Remark 3.10.

a. Equivalence A ⇔ B provides a “replacement principle for statements”: Logically equivalent
statements are not “semantically identical” but they cannot be distinguished as far as their “logic
content”, i.e., the circumstances under which they are true or false are concerned.

b. Note that A ⇔ B means the same as the following: A is true whenever B is true and A is false
whenever B is false because this is the same as saying that, in a truth table that contains entries for
A and B, each row either has the value T in both columns or the value F in both columns. This in
turn is the same as saying that the column for A↔ B has T in each row, i.e., A↔ B is a tautology.

b’. There is not much value to b if A and B are simple statements but things become a lot more
interesting if compound statements like A := ¬(P ∧Q) and B := ¬P ∨ ¬Q are looked at. �

We illustrate the above remark with the following theorem.

Theorem 3.3 (De Morgan’s laws for statements). LetA andB be statements. Then we have the following
logical equivalences:

¬(A ∧B) ⇔¬A ∨ ¬B,(3.17)
¬(A ∨B) ⇔¬A ∧ ¬B.(3.18)

Those formulas generalize to n statements A1, A2, . . . , An as follows:

¬(A1 ∧A2 ∧ · · · ∧An) ⇔¬A1 ∨ ¬A2 ∨ · · · ∨ ¬An,(3.19)
¬(A1 ∨A2 ∨ · · · ∨An) ⇔¬A1 ∧ ¬A2 ∧ · · · ∧ ¬An.(3.20)

Proof of 3.17: Here is the truth table for both ¬(A ∧ B) and ¬A ∨ ¬B depending on the truth values of A
and B.

A B A ∧B ¬(A ∧B) ¬A ¬B ¬A ∨ ¬B
[
¬(A ∧B)

]
↔
[
¬A ∨ ¬B

]
F F F T T T T T
F T F T T F T T
T F F T F T T T
T T T F F F F T

This proves the validity of 3.17. Note that the last column of the truth table is superfluous because getting
T in each row follows from the fact that the rows of the statement to the left and the one to the right of “↔”
both contain the same entries T-T-T-F. The column has been included because it illustrates what was said in
remark 3.10.

Proof of 3.18: Left as an exercise. �

Example 3.20. As in example 3.14 let x, y ∈ Z and let
A(x) := “x ∈ N′′ and B(y) := “y ∈ Z and y > 0′′
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a. If no assumptions are made about a relationship between x and y then the full truth table needs
all four entries and we obtain

A(x) B(y) A(x)↔ B(y)

F F T
F T F
T F F
T T T

b. Let x < y. We have seen in example 3.14 that the combination T/F is impossible and we can
restrict ourselves to the simplified truth table

A(x) B(y) A(x)→ B(y)

F F T
F T F
T T T

c. Now let x = y. We have seen in example 3.14.c that then either A(x) and B(y) = B(x) must both
be true or they must both be false. Because the combinations F/T and T/F are impossible we can
restrict ourselves to the simplified truth table

A(x) B(x) A(x)↔ B(x)

F F T
T T T

It follows that for any given number x the statement A(x)↔ B(x) is always true, irrespective of the
truth values of A(x) and B(x). Hence A(x) ↔ B(x) is a tautology and we can write A(x) ⇔ B(x)
for all x. �

3.3.7 More Examples of Tautologies and Contradictions (Understand this!)

Now that we have all logical operators at our disposal we can give additional examples of tautologies and
contradictions.

Example 3.21. In the following let P,Q,R be three arbitrary statements, let x, y be two (fixed but
arbitrary) integers and let A(x) := “x ∈ N′′ and B(y) := “y ∈ Z and y > 0′′. (see example 3.14 on
p. 34).

a. Tautologies:

T0,
A1 := “5 + 7 = 12”,
A2 := “Any integer is even or odd”,
A3 := P ∨ ¬P (Tertium non datur or law of the excluded middle),
A4 := P ∨ T0,
A5 := (P ∧ Q) ∨ (P ∧ ¬Q),
A6 := (P → Q)↔ (¬P ∨ Q) (Implication is logically equivalent to an or statement),
A7 := [“x < y′′ ∧A(x)]→ B(y) (see 3.18.b on p.42),
A8 := A(x)↔ B(x) (see 3.18.c).
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Note that we can express the fact that A6, A7, A8 are tautologies as follows:

(P → Q) ⇔ (¬P ∨ Q), [“x < y′′ ∧A(x)]⇒ B(y), A(x) ⇔ B(x).

b. Contradictions:

F0,
B1 := “5 + 7 = 15”,
B2 := “There are some non-zero numbers x such that x = 2x”,
B3 := P ∧ ¬P ,
B3 := P ∧ F0,
B4 := F0 ∧ (P ∨ ¬P ),
B5 := [¬P ∨ ¬Q] ∧ [P ∧Q],
B6 := A(x) xor B(x) (see 3.16.c on p. 37). �

Proof that A3 is a tautology:

P ¬P P ∨ ¬P
F T T
T F T

Proof that A4 is a tautology:

P T0 P ∨ T0

F T T
T T T

Note that even though there are two inputs, P and T0, there are only two valid combinations of truth values
because the only choice for T0 is true.

Proof that A6 is a tautology:

P Q P → Q ¬P ¬P ∨Q (P → Q)↔ (¬P ∨Q)

F F T T T T
F T T T T T
T F F F F T
T T T F T T

�

Remark 3.11. The interesting tautologies and contradictions are not those involving only specific
statements such as T0, F0, A1, A2, B1, B2, from above but those statements like A5, A6, B4 and B5

which specify formulas relating the general statements P,Q and R. �

3.4 Statement Equivalences (Understand this!)

Symbolic logic has a collection of very useful statement equivalences which are given here. They were taken
from ch.2 on logic, subchapter 2.4 (Important Logical Equivalences) of [4] Bryant, Kirby Course Notes for
MAD 2104.

Theorem 3.4. Let P,Q,R be statements.
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a. Identity Laws: P ∧ T0 ⇔ P(3.21)
P ∨ F0 ⇔ P(3.22)

b. Domination Laws:
P ∨ T0 ⇔ T0(3.23)
P ∧ F0 ⇔ F0(3.24)

c. Idempotent Laws: P ∨ P ⇔ P(3.25)
P ∧ P ⇔ P(3.26)

d. Double Negation Law: ¬(¬P ) ⇔ P(3.27)

e. Commutative Laws:
P ∨Q ⇔ Q ∨ P(3.28)
P ∧Q ⇔ Q ∧ P(3.29)

f. Associative Laws:

(P ∨Q) ∨R ⇔ P ∨ (Q ∨R)(3.30)
hence (P ∨Q) ∨R ⇔ P ∨Q ∨R(3.31)

(P ∧Q) ∧R ⇔ P ∧ (Q ∧R)(3.32)
hence (P ∧Q) ∧R ⇔ P ∧Q ∧R(3.33)

g. Distributive Laws: P ∨ (Q ∧R) ⇔ (P ∨Q) ∧ (P ∨R)(3.34)
P ∧ (Q ∨R) ⇔ (P ∧Q) ∨ (P ∧R)(3.35)

h. De Morgan’s Laws: 24 ¬(P ∧Q) ⇔¬P ∨ ¬Q(3.36)
¬(P ∨Q) ⇔¬P ∧ ¬Q(3.37)

i. Absorption Laws: P ∧ (P ∨Q) ⇔ P(3.38)
P ∨ (P ∧Q) ⇔ P(3.39)

24This is theorem 3.3 (De Morgan’s laws for statements).
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j. Implication Law:

(P → Q) ⇔ (¬P ∨Q)(3.40)

You should remember this formula because the fact that implication
can be expressed as an OR statement is often extremely useful when
showing that two statements are logically equivalent.

k. Contrapositive Laws: (P → Q) ⇔ (¬Q→ ¬P )(3.41)
(P ⇒ Q) ⇔ (¬Q⇒ ¬P )(3.42)

l. Tautology: (P ∨ ¬P ) ⇔ T0(3.43)

m. Contradiction: (P ∧ ¬P ) ⇔ F0(3.44)

n. Equivalence: (P → Q) ∧ (Q→ P ) ⇔ (P ↔ Q)(3.45)

The proof for only some of the laws stated above are given here. You can prove all others by writing out the
truth tables to show that left and right sides of the . . . ⇔ . . . statements are indeed logically equivalent.

Proof of h (De Morgan’s laws):
See theorem 3.3 on p.44.

Proof of j (implication law):
We prove (3.40) using a truth table:

We see that the entries T-T-F-T in the ¬P ∨ Q column match those
given for P → Q in def.3.15 on p.38 of the arrow operator. This
proves the logical equivalence of those statements.

P Q ¬P ¬P ∨Q
F F T T
F T T T
T F F F
T T F T

Proof of k (contrapositive law for→):
We prove (3.41) with the help of the previously given laws a through j:

(P → Q)
(j)⇔ (¬P ∨Q)

(e)⇔ (Q ∨ ¬P )
(d)⇔ (¬(¬Q) ∨ ¬P )

(j)⇔ (¬Q→ ¬P )

�
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Example 3.22. Use the logical equivalences of thm.3.4 to prove that ¬
(
¬A∧ (A∧B)

)
is a tautology.

�

Solution:

¬
(
¬A ∧ (A ∧B)

)
⇔ ¬(¬A) ∨ ¬(A ∧B) De Morgan’s Law (3.36)
⇔ A ∨ (¬A ∨ ¬B) De Morgan (3.36) + Double negation (3.27)
⇔ (A ∨ ¬A) ∨ ¬B Associative law (3.30)
⇔ T0 ∨ ¬B Tautology (3.43)
⇔ T0 Commutative Law (3.28) + Domination Law (3.23) �

Example 3.23. Find a simple expression for the negation of the statement “if you come before 6:00
then I’ll take you to the movies”. �

Solution: Let A := “You come before 6:00” and B := “I’ll take you to the movies”. Our task is to find a
simple logical equivalent to ¬(A→ B). We proceed as follows:

¬(A→ B)
(j)⇔¬(¬A ∨B)

(h)⇔ (¬(¬A) ∧ ¬B)
(d)⇔ (A ∧ ¬B)

This translates into the statement “you come before 6:00 and I won’t take you to the movies”.

�

Remark 3.12. Now that we accept that such logical expressions are DEFINED by their truth tables,
we must accept the following: if two logical expressions with two statements A and B as input have
the same truth table, then they are logically equivalent and we may interchangeably use one or the
other in a proof. �

3.5 The Connection Between Formulas for Statements and for Sets (Understand this!)

Given statements a, b and sets A,B you may have the impression that there are connections between a ∧ b
and A ∩B, between a ∨ b and A ∪B, between ¬a and A{, etc. We will briefly explore this.

In this chapter we switch to small letters for statements and statement functions and use capital letters to
denote sets. You have already seen an example in the introduction.

We assume the existence of a universal set U of which all sets are subsets.

All statements will be of the form a(x) = “x ∈ A′′ for some set A ⊂ U . In other words we associate with
such a set A the following statement function:

a : U → S , x 7→ a(x) =: “x ∈ A′′(3.46)

This relationship establishes a correspondence between the subset A of U and the predicate a = “x ∈ A′′

with UoD U . We write a ∼= A for this correspondence.

49



Example 3.24. Let a ∼= A and b ∼= B.

We have

a. T0
∼= U , F0

∼= ∅

b. ¬a : x 7→ ¬a(x) = ¬“x ∈ A′′ evaluates to a true statement if and only if x /∈ A, i.e. x ∈ A{. Hence
¬a ∼= A{.

c. a∧ b : x 7→ a(x)∧ b(x) = “x ∈ A and x ∈ B′′ evaluates to a true statement if and only if x ∈ A∩B.
Hence a ∧ b ∼= A ∩B.

d. a ∨ b : x 7→ a(x) ∨ b(x) = “x ∈ A or x ∈ B′′ evaluates to a true statement if and only if x ∈ A ∪B.
Hence a ∨ b ∼= A ∪B. �

We expand the table of formulas for statements given in thm 3.4 on p.46 of ch.3.4 (Statement equivalences)
with a third column which shows the corresponding relation for sets. Having a translation of statement
relations to set relations allows you to use Venn diagrams as a visualization aid.

Theorem 3.5. For a set U Let p, q, r be statement functions and let P,Q,R ⊆ U such that p ∼= P , q ∼= Q,
r ∼= R. Then we have the following:

a. Identity: p ∧ T0 ⇔ p(3.47)
p ∨ F0 ⇔ p(3.48)

P ∩U =P

P ∪ ∅ =P

b. Domination:
p ∨ T0 ⇔ T0(3.49)
p ∧ F0 ⇔ F0(3.50)

P ∪U =U

P ∩ ∅ =∅

c. Idempotency: p ∨ p ⇔ p(3.51)
p ∧ p ⇔ p(3.52)

P ∪ P =P

P ∩ P =P

d. Double Negation: ¬(¬p) ⇔ p(3.53) (P {){ =P

e. Commutative:
p ∨ q ⇔ q ∨ p(3.54)
p ∧ q ⇔ q ∧ p(3.55)

P ∪Q =Q ∪ P
P ∩Q =Q ∩ P
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f. Associative:

(p ∨ q) ∨ r
⇔ p ∨ (q ∨ r)

(3.56)

(p ∧ q) ∧ r
⇔ p ∧ (q ∧ r)

(3.57)

(P ∪Q) ∪R =P ∪ (Q ∪R)

(P ∩Q) ∩R =P ∩ (Q ∩R)

g. Distributive:

p ∨ (q ∧ r)
⇔ (p ∨ q) ∧ (p ∨ r)

(3.58)

p ∧ (q ∨ r)
⇔ (p ∧ q) ∨ (p ∧ r)

(3.59)

P ∪ (Q ∩R) =(P ∪Q) ∩ (P ∪R)

P ∩ (Q ∪R) =(P ∩Q) ∪ (P ∩R)

h. De Morgan: ¬(p ∧ q) ⇔¬p ∨ ¬q(3.60)
¬(p ∨ q) ⇔¬p ∧ ¬q(3.61)

(P ∩Q){ =P { ∪Q{

(P ∪Q){ =P { ∩Q{

i. Absorption: p ∧ (p ∨ q) ⇔ p(3.62)
p ∨ (p ∧ q) ⇔ p(3.63)

P ∩ (P ∪Q) = P

P ∪ (P ∩Q) = P

j1. Implication 1:

(p→ q) ⇔ (¬p ∨ q)(3.64) (P \Q){ = P { ∪Q

Interpretation: p(x) → q(x), i.e., “x ∈ P ′′ → “x ∈ Q′′ is true if
and only if p(x):T, q(x):F is L/I., i.e., if and only if x /∈ P ∩ Q{ =
P \Q, i.e., x ∈ (P \Q){.

j2. Implication 2:

p⇒ q(3.65)

P \Q = ∅, i.e., P ⊆ Q

Note that we are not dealing with p → q but with p ⇒ q
where we assume for all x a relation between p and q which
renders p(x):T, q(x):F logically impossible.

k. Contrapositive: (P → Q) ⇔ (¬Q→ ¬P )(3.66)
(P ⇒ Q) ⇔ (¬Q⇒ ¬P )(3.67)

P { ∪Q = Q ∪ P {

P ⊆ Q ⇔ Q{ ⊆ P {
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l. Tautology: (P ∨ ¬P ) ⇔ T0(3.68) P ∪ P { =U

m. Contradiction: (P ∧ ¬P ) ⇔ F0(3.69) P ∩ P { =∅

n1. Equivalence 1:
(p→ q)∧(q → p)

⇔ (p↔ q)
(3.70)

(P { ∪Q) ∩ (Q{ ∪ P )

= {x : x both in P,Q or
x neither in P nor in Q }

n2. Equivalence 2:
(p⇒ q)∧(q ⇒ p)

⇔ (p⇔ q)
(3.71)

(P ⊆ Q) and (Q ⊆ P )

⇔ (P = Q)

Proof: The set equalities are evident except for the following:

Proof of Equivalence 1:

(P { ∪Q) ∩ (Q{ ∪ P ) =
[
(P { ∪Q) ∩Q{

]
∪
[
(P { ∪Q) ∩ P

]
= (P { ∩Q{) ∪ (Q ∩Q{) ∪ (P { ∩ P ) ∪ (Q ∩ P )

= (P { ∩Q{) ∪ (Q ∩ P )

= {x : x neither in P nor in Q or x both in P,Q }.

�

3.6 Quantifiers for Statement Functions

This chapter has been kept rather brief. You can find more about quantifiers in ch.2 on logic, subchapter ch.2.3
(Predicates and Quantifiers) of [4] Bryant, Kirby Course Notes for MAD 2104.

3.6.1 Quantifiers for One–Variable Statement Functions

Definition 3.18 (Quantifiers). Let A : U → S , x 7→ A(x) be a statement function of a single
variable x with UoD U for x.

a. The universal quantification of the predicate A is the statement

“For all x A(x)′′, written ∀xA(x).(3.72)
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The above is a short for “A(x) is true for each x ∈ U ”. We call the symbol ∀ the universal quantifier
symbol.

b. The existential quantification of the predicate A is the statement

“For some x A(x)′′, written ∃xA(x).(3.73)

The above is a short for “There exists x ∈ U such that A(x) is true”. 25 We call the symbol ∃ the
existential quantifier symbol.

c. The unique existential quantification of the predicate A is the statement

“There exists unique x such that A(x)′′, written ∃!xA(x).(3.74)

The above is a short for “There exists a unique x ∈ U such that A(x) is true”. 26 We call the symbol
∃! the unique existential quantifier symbol. �

Example 3.25. Let A : [−3, 3]→ S be the statement function x 7→ “x2 − 4 = 0′′.

Let C := ∀xA(x) D := ∃xA(x) and E := ∃!xA(x). Then

C = “for all x ∈ [−3, 3] it is true that x2 − 4 = 0”

D = “there is at least one x ∈ [−3, 3] such that x2 − 4 = 0”

E = “there is exactly one x ∈ [−3, 3] such that x2 − 4 = 0”

Note that each of C,D,E is in fact a statement because each one is either true or false: Clearly the
zeroes of the function f(x) = x2 − 4 in the interval −3 5 x 5 3 are x = ±2. It follows that D is a
true statement and A and C are false statements. �

Example 3.26. Let U := { all human beings } be the UoD for the following three predicates:

S(x) := “x is a student at NYU”,
C(x) := “x cheats when taking tests”,
H(x) := “x is honest”,

Let us translate the following three english verbiage statements into formulas:

A1 := “All humans are NYU students”,
A2 := “All NYU students cheat on tests”,
A3 := “Any NYU student who cheats on tests is not honest”.

Solution:

A1 = ∀x S(x) ,
A2 = ∀x [S(x)→ C(x)],
A3 = ∀x [(S(x) ∧ C(x))→ ¬H(x)]. �

Example 3.27. We continue example 3.26.

Let us simplify A3 = ∀x [(S(x) ∧ C(x))→ ¬H(x)].

25 Equivalently, “A(x) is true for some x ∈ U ” or “A(x) is true for at least one x ∈ U ”.
26 Equivalently, “A(x) is true for exactly one x ∈ U ”.
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It is clear that “A(x) is true for all x” is equivalent to “There is no x such that A(x) is false”. In other
words, we have for any statement function A the following:

∀x A(x) ⇔ ¬
[
∃x (¬A(x))

]
.

But A3 is the form ∀x A(x): replace A(x) with (S(x) ∧ C(x))→ ¬H(x).

It follows that

A3 ⇔ ¬
[
∃x (¬

(
S(x) ∧ C(x))→ ¬H(x)

)
)
]
.

What a mess! let us drop the “(x)” everywhere and the above becomes

A3 ⇔ ¬
[
∃x (¬

(
S ∧ C)→ ¬H

)
)
]
.

We have seen in example 3.23 on p.49 that for any two statements P and Q the equivalence
¬(P → Q) ⇔ (P ∧ ¬Q) is true.

Let us apply this with P := S ∧ C and Q := ¬H . We obtain

A3 ⇔¬
[
∃x
(
(S ∧ C) ∧ ¬(¬H)

) ]
. ⇔ ¬

[
∃x
(
S ∧ C ∧H

) ]
.

where we obtained the last equivalence by applying the double negation law to ¬(¬H) and the
associative law for ∧ to remove the parentheses from (S ∧ C) ∧H .

As a last step we bring back the “(x)” terms and obtain

A3 ⇔¬∃x [S(x) ∧ C(x) ∧H(x)].

In other words, A3 means “There is no one who is an NYU student and who cheats on tests and is
honest”. This should make sense if you remember the original meaning of A3: “Any NYU student
who cheats on tests is not honest”. �

3.6.2 Quantifiers for Two–Variable Statement Functions

We now discuss quantifiers for statement functions of two variables. Things become a lot more interesting
because we can mix up ∀, ∃ and ∃!.

Unless mentioned otherwise B denotes the statement function of two variables

B :Ux ×Uy → S , x 7→ B(x, y)(3.75)

It follows that the unverses of discourse are Ux for x and Uy for y.

We need a quantifier for each variable to bind the expression B(x, y) with placeholders x and y into a state-
ment, i.e., into something that will be true or false. This done by example as follows:

Definition 3.19 (Doubly quantified expressions). Here is a table of statements involving two quan-
tifiers and their meanings.
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a. ∀x∀yB(x, y) “for all x ∈ Ux and for all y ∈ Uy (we have the truth of) B(x, y)′′,
b. ∀x∃yB(x, y) “for all x ∈ Ux there exists (at least one) y ∈ Uy such that B(x, y)′′,
c. ∃x∀yB(x, y) “there exists (at least one) x ∈ Ux such that for all y ∈ Uy B(x, y)′′,
d. ∃!x∀yB(x, y) “there exists exactly one x ∈ Ux such that for all y ∈ Uy B(x, y)′′,
e. ∃x∃yB(x, y) “there exists (at least one) x ∈ Ux and (at least one) y ∈ Uy such that B(x, y)′′. �

Example 3.28. Let Ux := N,Uy := Z and B : Ux × Uy → S , (x, y) 7→ B(x, y) := “x + y = 1′′.
Then

a. ∀x∀yB(x, y) false
b. ∀x∃yB(x, y) true: for the given x choose y := 1− x.
c. ∃y∀xB(x, y) false
d. ∀y∃xB(x, y) false: If you choose y > 0 then the only x that satisfies the equa-

tion x+ y = 1 is x = 1− y ≤ 0, i.e., x /∈ N, the UoD for x.
e. ∃!x∀yB(x, y) false
f. ∃x∃yB(x, y) true: choose x := 10 and y := −9.

Understand the different outcomes of b, c and d and remember this:

a. The order in which the qualifiers are applied is important.
∀x∃y generally does not mean the same as ∃y∀x.

b. Interchanging variable names in the qualifiers is not OK.
∀x∃y generally does not mean the same as ∀y∃x.

Proposition 3.1. Note the following:

∀x∀yB(x, y) ⇔ ∀y∀xB(x, y)(3.76)
∃x∃yB(x, y) ⇔ ∃y∃xB(x, y)(3.77)
∀x∃yB(x, y) < ∃y∀xB(x, y)(3.78)
∃y∀xB(x, y)⇒ ∀x∃yB(x, y)(3.79)

Proof: (3.76) and (3.77) follow from a and e in def. 3.19 and we saw an example for (3.76) in the previous
example.

The last item is not so obvious. We argue as follows: Assume that ∃y∀xB(x, y) is true. Then there is some
y0 ∈ Uy such that B(x, y0 is true for all x ∈ Ux.

Why does that imply the truth of ∀x∃yB(x, y), i.e., for all x ∈ Ux you can pick some y ∈ Uy such that
B(x, y) is true? Here is the answer: Pick y0. This works because, by assumption, B(x, y0) is true for all
x ∈ Ux. �

Remark 3.13. The last part of the proof of (3.79) is worth a closer look:

“∀x∃y . . . ” only tells you that for all x there will be some y which generally depends on x, some-
thing we sometimes emphasize using “functional notation” y = y(x).

“∃y∀x . . . ” does more: it postulates the existence of some y0 which is suitable for each x in its UoD.
The assignment y(x) = y0 is constant in x! �
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Remark 3.14 (Partially quantified statement functions). Given a statement function

B :Ux ×Uy → S , x 7→ B(x, y)

with two place holders x and y, we can elect to use only one quantifier for either x or y. If we only
quantify x then we only bind x and y still remains a placeholder and if we only quantify y then we
only bind y and x still remains a placeholder. �

Example 3.29. Let Ux := { all students at this party } and Uy := { “Linear Algebra”, Discrete
Mathematics”, “Multivariable Calculus”, “Ordinary Differential Equations”, “Complex Variables”,
“Graph Theory”, “Real Analysis” }.

Let A := “x studies y′′ be the two-variable statement function with UoD Ux for x and UoD Uy for
y, i.e.,

A : Ux ×Uy → S , (x, y) 7→ A(x, y) = “x studies y′′.

Then B := ∀x A(x, y) is the one-variable predicate

B : Uy → S , y 7→ B(y) = “all students at this party study y”

and C := ∃!y A(x, y) is the one-variable predicate

C : Ux → S , x 7→ C(x) = “x studies exactly one of the courses listed in Uy”. �

3.6.3 Quantifiers for Statement Functions of more than Two Variables

Remark 3.15. Although this document limits its scope to statement functions of one or two variables
(see the note before remark 3.6 in ch.3.2 (Statements and statement functions)) we discuss briefly
the use of quantifiers for predicates

A :U1 ×U2 × · · · ×Un → S , (x1, x2, . . . , xn) 7→ A(x1, x2, . . . , xn).

with n place holders.

Each one of those variables needs to be bound by one of the quantifiers ∀,∃,∃! in order to obtain a
statement, i.e., something that is either true or false. �

Example 3.30 (Continuity vs uniform continuity). This example demonstrates the effect of switch-
ing a ∀ quantifier with an ∃ quantifier for a predicate with four variables. You will learn later that
one quantification corresponds to ordinary continuity and the other corresponds to uniform conti-
nuity of a function. Do not worry if you do not understand how this example relates to continuity.
The only point of interest here is the use of the quantifiers.

Let a < b be two real numbers and let f :]a, b[→ R be a function which maps each x in its domain
]a, b[ to a real number y = f(x).

Let Uε := Uδ :=]0,∞[ and Ux := Ux′ :=]a, b[. Let P : Ux ×Ux′ ×Uδ ×Uε → S be the predicate

(x, x′, δ, ε) 7→ P (x, x′, δ, ε) := “if |x− x′| < δ then |f(x)− f(x′)| < ε“.
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Let A := ∀ε ∀x ∃δ ∀x′P (x, x′, δ, ε) Then A being true is equivalent to saying that the function f is
continuous at each point x ∈]a, b[. 27

Let B := ∀ε ∃δ ∀x ∀x′P (x, x′, δ, ε). Then B being true is equivalent to saying that the function f is
uniformly continuous in ]a, b[. 28

The difference between A and B is that in statement A the variable δ whose existence is required
may depend on both ε and x, i.e., δ = δ(ε, x

On the other hand, to satisfy B, a δ must be found which still may depend on ε but it must be
suitable for all x ∈]a, b[, i.e., δ = δ(ε. �

Remark 3.16 (Partially quantified statement functions). What was said in remark 3.14 about partial
qualification of two-variable predicates generalizes to more than two variables: If A is a statement
function with n variables and we use quantifiers for only m < n of those variables then n − m
variables in the resulting expression remain unbound and this expression becomes a statement
function of those unbound variables.

For example, if A(w, x, y, z) is a four-variable predicate then B : (x, z) 7→
[
∀y ¬∃w A(w, x, y, z)

]
defines a two-variable predicate B which inherits the UoDs for x and z from the original statement
function A. �

3.6.4 Quantifiers and Negation (Understand this!)

Negation of statements involving quantifiers is governed by

Theorem 3.6 (De Morgan’s laws for quantifiers). Let A be a statement function with UoD U . Then

a. ¬
(
∀xA(x)

)
⇔ ∃x ¬A(x) “It is not true that A(x) is true for all x” ⇔ “There is

some x for which A(x) is not true”
b. ¬

(
∃xA(x)

)
⇔ ∀x ¬A(x) “There is no x for which A(x) is true” ⇔ “A(x) is not

true for all x ”

Proof of a: Not given here but you can find it in ch.2 on logic, subchapter 3.11 (De Morgan’s Laws for
Quantifiers) of [4] Bryant, Kirby Course Notes for MAD 2104.

Proof of b: Let Ux be the UoD for x.

The truth of ¬
(
∃xA(x)

)
means that ∃xA(x) is false, i.e., A(x) is false for all x ∈ Ux. This is equivalent to

stating that ¬A(x) is true for all x ∈ Ux and this is by definition, the truth of ∀x ¬A(x). �

You can use the formulas above for negation of statements of more than one variable with more than one
quantifier using the following method, demonstrated here by example.

Example 3.31. Negate the statement ∃x∀yP (x, y), i.e., move the ¬ operator of ¬∃x∀yP (x, y) to the
right past all quantifiers.

27 See def.10.27 (ε-δ continuity) on p.197.
28 See def.10.29 (Uniform continuity of functions) on p.204.
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The key is to introduce an intermittent predicate A : x 7→ A(x) :=
[
∀yP (x, y)

]
. We obtain

[
¬∃x∀yP (x, y)

]
⇔
[
¬∃xA(x)

] (b)⇔
[
∀x¬A(x)

]
⇔
[
∀x(¬∀yP (x, y))

]
(a)⇔
[
∀x(∃y¬P (x, y))

]
. �

Example 3.32. As in example 3.31, negate the statement ∃x∀yP (x, y) but do so using parentheses
instead of explicitly defining an intermittent predicate.

Here is the solution:[
¬∃x∀yP (x, y)

]
⇔
[
¬∃x

(
∀yP (x, y)

)] (b)⇔
[
∀x¬

(
∀yP (x, y)

)]
⇔
[
∀x(¬∀yP (x, y))

]
(a)⇔
[
∀x(∃y¬P (x, y))

]
. �
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3.7 Proofs (Understand this!)

We have informally discussed proofs in examples 3.18 and 3.19 of chapter 3.3.5 (Arrow and Implication
Operators) on p.38 and seen in two simple cases how a proof can be done by building a single truth table for
an if . . . then statement and showing that it is a tautology. In this chapter we take a deeper look at the concept
of “proof”.

Many subjects discussed here follow closely ch.3 (Methods of Proofs) of [4] Bryant, Kirby Course Notes for
MAD 2104.

3.7.1 Building Blocks of Mathematical Theories

Some of the terminology definitions in notations 3.2 and 3.4 were taken almost literally from ch.3 (Methods
of Proofs), subchapter 1 (Logical Arguments and Formal Proofs) of [4] Bryant, Kirby Course Notes for MAD
2104.

Notations 3.2 (Axioms, rules of inferences and assertions).

a. An axiom is a statement that is true by definition. No justification such as a proof needs
to be given.

b. A rule of inference is a logical rule that is used to deduce the truth of a statement from
the truth of others.

c. For some statements it is not clear whether they are true for false. Even if a statement is
known to be true there might be someone like a student taking a test who is given the
task to demonstrate, i.e., prove its truth. In this context we call a statement an assertion
and we call it a valid assertion if it can be shown to be true. An assertion which is not

known to be true by anyone is often called a conjecture. �

Example 3.33. LetA := “all continuous functions are differentiable” (known to be false 29 ) andB :=
“all differentiable functions are continuous” (known to be true). A homework problem in calculus
may ask the students to figure out which of the four statements A,¬A,B,¬B are valid assertions
and give proofs to that effect. �

Remark 3.17.

a. Goldbach’s conjecture states that every even integer greater than 2 can be expressed as the sum
of two primes, i.e., integers p greater than 1 which can be divided evenly by no natural number
other than p (p/p = 1) or 1 (p/1 = p). Goldbach came up with this in 1742, more than 250 years
ago. No one has been able until now to either prove the validity of this assertion or provide a
counterexample to prove its falsehood.

b. Fermat’s conjecture was that there are no four numbers a, b, c, n ∈ N such that n > 2 and an +
bn = cn. 30 This was stated by Pierre de Fermat in 1637 who then claimed that he had a proof.
Unfortunately he never got around to write it down. A successful proof was finally published in
1994 by Andrew Wiles. Accordingly, Fermat’s conjecture was rechristened Fermat’s Last Theorem.
�

29 see remark 3.8 on p.40 in ch.3.3.5 (Arrow and Implication Operators).
30 We have an elementary counterexample for n = 2: 32 + 42 = 25 = 52.

59



Notations 3.3 (Proofs). A proof is the demonstration that an assertion is valid. This demonstration
must be detailed enough so that a person with sufficient expert knowledge can understand that we
do indeed have a statement which is true for all logically possible combinations of T/F values. To
show that the arguments given in this demonstration are valid, available tools are

a. the rules of inference which wil be discussed in section 3.7.2 (Rules of Inference) on p.62
b. logical equivalences for statements (see ch.3.3.6 (Biconditional and Logical Equivalence

Operators – Part 2) on p.ch.44).

In almost all cases the assertion in question is of the form “if P then C”. Proving it means
showing that the statement P → C is a tautology, i.e., it can be replaced by the stronger
P ⇒ C statement. The proof then consists of the demonstration that the combination P :
true, C: false can be ruled out as logically impossible. In other words, assuming P : true,
i.e., the truth of the premise, it must be shown that C: true, i.e., the conclusion then also
is necessarily true.

Usually a proof is broken down into several “sub-proofs” which can be proved separately and
where some or all of those steps again will be broken down into several steps ... You can picture
this as a hierarchical upside down tree with a single node at the top. At the most detailed level
at the bottom we have the leaf nodes. The proof of the entire statement is represented by that top
node. �

Notations 3.4 (Theorems, lemmata and corollaries).

a. A theorem is an assertion that can be proved to be true using definitions, axioms, previ-
ously proven theorems, and rules of inference.

b. A lemma (plural: lemmata) is a theorem whose main importance is that it can used to
prove other theorems.

c. A corollary is a theorem whose truth is a fairly easy consequence of another theorem.
�

Remark 3.18 (Terminology is different outside logic). The terminology given in the above defini-
tions is specific to the subject of mathematical logic. In other branches of mathematics and hence
outside this chapter 3 different meanings are attached to those terms:

Each one of lemma, proposition, theorem, corollary is a theorem as defined above in
notations 3.2, i.e., a statement that can be proved to be true. We distinguish those terms
by comparing them to propositions:

a. Theorems are considered more important than propositions.
b. The main purpose of a lemma is to serve as a tool to prove other propositions or

theorems.
c. A corollary is a fairly easy consequence of some lemma, proposition, theorem or

other corollary.

�

It was mentioned as a footnote to the definition of a statement (def. 3.3 on p.26) that what we call
a statement, [4] Bryant, Kirby calls a proposition and that we deviate from that approach because
mathematics outside logic uses “proposition” to denote a theorem of lesser importance.
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Any mathematical theory must start out with a collection of undefined terms and axioms that specify certain
properties of those undefined terms.

There is no way to build a theory without undefined terms because the following will happen if you try to
define every term: You define T2 in terms of T1, then you define T3 in terms of T2, etc. Two possibilities:

1. Each of T1, T2, T3, . . . are different and you end up with an infinite sequence of definitions.
2. At least one of those terms is repeated and there will be a circular chain of definitions.

Neither case is acceptable if you want to specify the foundations of a mathematical system.

Example 3.34. Here are a few important examples of mathematical systems and their ingredients.

a. In Euclid’s geometry of the plane some of the undefined terms are “point”, “line segment” and
“line”. The five Euclidean axioms specify certain properties which relate those undefined terms.
You may have heard of the fifth axiom, Euclid’s parallel postulate. It has been reproduced here
with small alterations from Wikipedia’s “Euclidean geometry” entry: 31

(It is postulated that) “if a line segment falling on two line segments makes the interior angles on
the same side less than two right angles, the two line segments, if produced indefinitely, meet on
that side on which are the angles less than the two right angles”.

b. In the so called Zermelo-Fraenkel set theory which serves as the foundation for most of the math
that has been done in the last 100 years, the concept of a “set” and the relation “is an element of”
(∈) are undefined terms.

c. Chapters 1 and 2 of [1] Beck/Geoghegan list several axioms which stipulate the existence of a
nonempty set called Z whose elements are called “integers” which you can “add” and “multiply”.
Certain algebraic properties such as “a+ b = b+a” and “c · (a+ b) = (c ·a)+(c ·a)” are given as true
and so is the existence of an additive neutral unit “0” and a multiplicative neutral unit “1”. Besides
those algebraic properties the existence of a strict subset N called “positive integers” is assumed
which has, among others, the property that any z ∈ Z either satisfies z ∈ Z or −z ∈ Z or z = 0.
Finally there is the induction axiom which states that if you create the sequence 1, 1 + 1, (1 + 1) + 1,
. . . then you capture all of N. This axiom is the basis for the principle of proof by mathematical
induction (see def.2.11 on p. 18). �

Once we have the undefined terms and axioms for a mathematical system, we can begin defining new terms
and proving theorems (or lemmas, or corollaries) within the system.

Remark 3.19 (Axioms vs. definitions). You can define anything you want but if you are not careful
you may have a logical contradiction and the set of all items that satisfy that definition is empty.
In contrast, axioms will postulate the existence of an item or an entire collection of items which
satisfy all axioms. If the axioms contradict each other we have a theory which is inconsistent and
the only way to deal with it is to discard it and rework its foundations An example for this was set
theory in its early stages. Anything that you could phrase as “Let A be the set which contains . . . ”
was fair game to define a set. We saw in remark 2.2 (Russell’s Antinomy) on p.12 that this lead to
problems so serious that they caused some of the leading mathematicians of the time to revisit the
foundations of mathematics. �

31 https://en.wikipedia.org/wiki/Euclidean_geometry#Axioms
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Example 3.35. For example you can define an oddandeven integer to be any z ∈ Z which satisfies
that z−212 is an even number and z+48 is an odd number and you can prove great things for such
z. The problem is of course that the set of all oddandeven integers is empty! We have a definition
which is useless for all practical purposes, but no mathematical harm is done.

On the other hand, if you add as an additional axiom for Z in example 3.34.c that Z must contain one
or more oddandeven integers then you are in a conundrum because you postulated the existence of
a set Z which satisfies all axioms and the existence of such a set is logically impossible! �

3.7.2 Rules of Inference

Remark 3.20 (Most important rules of inference). In Notations 3.2 on p.59 we described the term
“rule of inference” as “a logical rule that is used to deduce the truth of a statement from the truth of
others”. The most important rules of inference are those that allow you to draw a conclusion of the
form “if A is true then I am allowed to deduce the the truth of C.” This basically amounts to having
is a list of premises A1, A2, . . . , An and a conclusion C such that

the compound statement
[
A1 ∧A2 ∧ · · · ∧An

]
→ C is a tautology.(3.80)

In other words, the column for the conclusion C in the truth table for this statement must have the
value true for each combination of truth values which is not logically impossible.

Observe that the order of the premises does not matter because the and connective is commutative.
�

Theorem 3.7. Let P1, P2, . . . , Pn and C be statements. Then the statement (P1 ∧ P2 ∧ · · · ∧ Pn)→ C is a
tautology if and only if the following combination of truth values is logically impossible:

Pj is true for each j = 1, 2, . . . , n and C is false.(3.81)

Proof:

Let P := (P1 ∧ P2 ∧ · · · ∧ Pn). Then “Pj is true for each j = 1, 2, . . . , n′′ means according to the definition
of the ∧ operator the same as the truth of P . Hence proving the theorem is equivalent to proving that the
statement P → C is a tautology if and only if the combination of truth values

P is true and C is false is logically impossible.(3.82)

In other words, we must prove that P → C is a tautology if and only if the
row with the combination P :T, C:F, i.e., row 3, is logically impossible and
can be ignored. This is is obvious as row 3 is the only one for which P → C
evaluates to false.

P C P → C

1. F F T
2. F T T
3. T F false
4. T T T

�

Notations 3.5. Rules of inference are commonly written in the following form:
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Your explanations go
into this area

A1

A2

· · ·
An
————
∴ C

Read “∴” as “therefore”. The following, more compact notation can also be found:

A1, A2, . . . , An
—————–
∴ C

Theorem 3.8 (The three most important inference rules). The following lists three inference rules, i.e.,
those arrow statements are indeed tautoloties:

(3.83)
Modus Ponens
(Law of detachment - the mode that af-
firms the antecedent (the premise))

A
A→ C
————
∴ C

(3.84)
Modus Tollens
(The mode that Denies the consequent
(the conclusion))

¬C
A→ C
————
∴ ¬A

(3.85) Hypothetical syllogism

A→ B
B → C
————
∴ A→ C

Here is the compact notation:

Modus Ponens Modus Tollens Hypothetical syllogism

A, A→ C
————–
∴ C

¬C, A→ C
—————
∴ ¬A

A→ B, B → C
——————–
∴ A→ C

Note that the proof that the hypothetical syllogism is a tautology was given in thm.3.1 on p.38
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Proof:

�

Example 3.36. Here are five more inference rules.

(3.86) Disjunction Introduction
A
————
∴ A ∨B

(3.87) Conjunction elimination
A ∧B
————
∴ A

(3.88) Disjunctive syllogism

A ∨B
¬A
————
∴ B

(3.89) Conjunction introduction

A
B
————
∴ A ∧B

(3.90) Constructive dilemma

(A→ B) ∧ (C → D)
A ∨ C
————
∴ B ∨D

Compact notation:

Disjunction Introduction Conjunction elimination Disjunctive syllogism

A
————–
∴ A ∨B

A ∧B
—————
∴ A

A ∨B, ¬A
——————–
∴ B

Conjunction introduction Constructive dilemma

A,B
——————–
∴ A ∧B

(A→ B) ∧ (C → D), A ∨ C
—————————————
-
∴ B ∨D

�
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None of the rules of inference that were given in this chapter involve quantifiers. You can find information
about that topic in ch.2, section 1.6 (Rules of Inference for Quantifiers) of [4] Bryant, Kirby Course Notes for
MAD 2104.

3.7.3 An Example of a Direct Proof

We illustrate in detail a mathematical proof by applying some the tools you have learned so far in this chapter
on logic. For an example we will prove the theorem that each polynomial is differentiable. We define a

polynomial as a function f(x) =
n∑
j=0

cjx
j for some n = 0, 1, 2, . . . , i.e., for some n ∈ Z=0 and we write D

for the set of all differentiable functions. We now can formulate our theorem.

Theorem 3.9. Given the statements

a: A := “(n ∈ Z=0) ∧ (c0 ∈ R) ∧ (c1 ∈ R) ∧ · · · ∧ (cn ∈ R) ∧
(
f(x) =

n∑
j=0

cjx
j
)′′,

b: B := “f(x) ∈ D ′′,

the following is valid: A⇒ B. 32

Proof:

We first collect the necessary ingredients.

We define the following statements which serve as abbreviations so that the formulas we will build are rea-
sonably compact.

a: Zj := “j ∈ Z=0
′′,

b: Cj := Zj ∧ “cj ∈ R′′,
c: 33 Xj := Zj ∧ “xj ∈ D ′′,
d: Dj := Zj ∧ “cjx

j ∈ D ′′,

e: E := Zn ∧ “f(x) =

n∑
j=0

cjx
j ′′,

f: B := “f(x) ∈ D ′′ (repeated for convenient reference)

We now can write our theorem as

(Zn∧C0 ∧ C1 ∧ · · · ∧ Cn ∧ E)→ B.(3.91)

32 Note here and for the other theorems the use of A2 ⇒ B2 instead of A2 → B2: We assume that Thm-2 has been
proved, i.e., A2 → B2 is a tautology.

33The expression xj in c and d denotes the function x 7→ xj .
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We assume that the following three theorems were proved previously, hence we may use them without giving
a proof.

Theorem Thm-1: If p(x) is a power of x, i.e., p(x) = xn for some n = 0, 1, 2, . . . , then is p(x) differentiable.

We rewrite Thm-1 as an implication which uses the statements above. Let

A1 := Zn ∧ “p(x) = xn ′′, B1 := Xn.

Then Thm-1 states that A1 ⇒ B1. 34

Theorem Thm-2: The product of a constant (real number) and a differentiable function is differentiable.

We rewrite Thm-2 as an implication. Let
A2 := “c ∈ R′′ ∧ “h(x) ∈ D ′′ ∧ “g(x) = c · h(x)′′,
B2 := “h(x) ∈ D ′′,

Then Thm-2 states that A2 ⇒ B2.

Theorem Thm-3: The sum of differentiable functions is differentiable

We rewrite Thm-3 as an implication. Let

A3 := “Zn ∧ “h1(x) ∈ D ′′ ∧ “h2(x) ∈ D ′′ ∧ · · · ∧ “hn(x) ∈ D ′′ ∧ “g(x) =
n∑
j=0

hj(x) ′′,

B3 := “g(x) ∈ D ′′,
Then Thm-3 states that A3 ⇒ B3.

Assertion Reason
a: Z0, Z1, . . . Zn evident from Z=0 = {0, 1, 2, . . . }
b: C0, C1, . . . Cn part of the premise of A→ B (see (3.91))
c: Zj → Xj (j = 0, 1, . . . n) Thm-1 with n := j
d: Xj (j = 0, 1, . . . n) c and modus ponens
e: (Zj ∧ Cj ∧Xj)→ Dj (j = 0, 1, . . . n) Thm-2 with c := cj and h(x) := xj

f: Dj (j = 0, 1, . . . n) e and modus ponens
g: E part of the premise of A→ B
h: (Zn ∧D0 ∧D1 ∧ · · · ∧Dn ∧ E)→ B g and Thm-3 with hj(x) := cjx

j and g(x) := f(x)
i: B h and modus ponens

We have demonstrated that the truth of the premise A of our theorem implies that of its conclusion B and this
proves the theorem. �

Remark 3.21. Let us reflect on the steps involved in the proof above.

34 As is the case for the theorem we want to prove, note here and for Thm-2 and Thm-3 below the use of A1 ⇒ B1

instead of A1 → B1: Thm-1 has been proved already, i.e., we know that A1 → B1 is a tautology.
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a: Break down all statements involved – not only those in the theorem you want to
prove but also in all theorems, axioms and definitions you reference – into reusable
components and name those components with a symbol so that it is easier to un-
derstand what assertions you employ and how they lead to the truth of other as-
sertions. Example: Dj references the component Zj ∧ “cjx

j ∈ D ′′ (which itself
references the component Zj = “j ∈ Z′′=0).

b: Rewrite the theorem to be proved as an implication A⇒ B.
c: Do the same for the three other theorems that we assumed as already having been

proved.
The following is specific to our example but can be modified to other problems.

d: Start by using the premise A and the definition Z=0 := {0, 1, 2, . . . } to get the first
two rows. Show that what you have implies the truth of the premise of Thm-1 and
then use the modus ponens inference rule to deduce the truth of its conclusion Xj .
This allows Xj to become an additional assertion.

e: Use that new assertion to obtain the truth of the premise of Thm-2 and then use
again modus ponens to deduce the truth of its conclusion Dj . Now Dj becomes an
additional assertion.

f: Use that new assertion to obtain the truth of the premise of Thm-3 and then use
again modus ponens to deduce the truth of Dj . Now Dj becomes an additional
assertion.

�

3.7.4 Invalid Proofs Due to Faulty Arguments

Remark 3.22 (Fallacies in logical arguments). People who are not very analytical often commit the
following errors in their argumentation:

(3.92)
Affirming the Consequent
(proving the wrong direction)

P → Q
Q
————
∴ P

(3.93)
Denying the Antecedent
(indirect proof in the wrong direction)

P → Q
¬P
————
∴ ¬Q

(3.94) Circular Reasoning
The argument incorporates use of the
(not yet proven) conclusion

�
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The reason that the above are fallacies stems from the fact that the above “rules of inferences” are not tautolo-
gies.

Example 3.37 (Fallacies in reasoning). a. Affirming the Consequent:
“If you are a great mathematician then you can add 2 + 2”. It is true that you can add 2 + 2. You
conclude that you are a great mathematician.

b. Denying the Antecedent:
“If this animal is a cat then it can run quickly”. This is not a cat. You conclude that this animal
cannot run quickly.

c. Circular Reasoning: 35

“If xy is divisible by 5 then x is divisible by 5 or y is divisible by 5”.

The following incorrect proof uses the yet to be proven fact that the factors can be divided evenly
by 5.

Proof:
If xy is divisible by 5 then xy = 5k for some k ∈ Z. But then x = 5m or y = 5n for some m,n ∈ Z
(this is the spot where the conclusion was used). Hence x is divisible by 5 or y is divisible by 5. �

3.8 Categorization of Proofs (Understand this!)

There are different methods by which you can attempt to prove an “if . . . then” statement P ⇒ Q. They are:

a. Trivial proof
b. Vacuous proof
c. Direct proof
d. Proof by contrapositive
e. Indirect proof (proof by contradiction)
f. Proof by cases

3.8.1 Trivial Proofs

The underlying principle of a trivial proof is the following: If we know that the conclusion Q is true then any
implication P ⇒ Q is valid, regardless of the hypothesis P .

Example 3.38 (Trivial proof). Prove that if it rains at least 60 days per year in Miami then 25 + 35 =
60.

Proof: There is nothing to prove as it is known that 25 + 35 = 60. It is irrelevant whether or not in
rains (or snows, if you prefer) 60 days per year in Miami. �

35 This is example 1.8.3 in ch.3 (Methods of Proofs) of [4] Bryant, Kirby Course Notes for MAD 2104.
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3.8.2 Vacuous Proofs

The underlying principle of a vacuous proof is that a wrong premise allows you to conclude anything you
want: Both P :F, Q:F and P :F, Q:T yield true for P → Q.

For example, it was mentioned in remark 2.3 (Elements of the empty set and their properties) on p.12 that you
can state anything you like about the elements of the empty set as there are none. The underlying principle of
proving this kind of assertion is that of a vacuous proof. We prove here assertion d of that remark.

Theorem 3.10. Let A be any set. Then ∅ ⊆ A.

Proof:

According to the definition of ⊆ we must prove that if x ∈ ∅ then x ∈ A.

So let x ∈ ∅. We stop right here: “x ∈ ∅” is a false statement regardless of the nature of x because the empty
set, by definition, does not contain any elements. It follows that x ∈ A. �

Remark 3.23. You may ask: But is it not equally true that if x ∈ ∅ then x /∈ A? The answer to that is
YES, it is equally true that x ∈ A? and x /∈ A?, but so what? First you’ll find me an x that belongs to
the empty set and only then am I required to show you that it both does and does not belong to A!
�

3.8.3 Direct Proofs

In a direct proof of P ⇒ Q we assume the truth of the hypothesis P and then employ logical equivalences,
including the rules of inference, to show the truth of Q.

We proved in chapter 3.7.3 (An example of a direct proof) on p.65 that each polynomial is differentiable
(theorem 3.9). That was an example of a direct proof.

3.8.4 Proof by Contrapositive

A proof by contrapositive makes use of the logical equivalence (P ⇒ Q) ⇔ (¬Q ⇒ ¬P ) (see the contra-
positive law (3.42) on p48). We give a direct proof of ¬Q⇒ ¬P , i.e., we assume the falseness of Q and prove
that then P must also be false. Here is an example.

Theorem 3.11. Let A,B be two subsets of some universal set Ω such that A ∩B{ = ∅. Then A ⊆ B.

Proof: We prove the contrapositive instead: If A * B then A ∩B{ 6= ∅.

So let us assume A * B. This means that not every element of A also belongs to B. In other words, there
exists some x ∈ A such that x /∈ B. But then x ∈ A \B = A ∩B{, i.e., A ∩B{ 6= ∅.

We have proved from the negated conclusion A * B the negated premise A ∩B{ 6= ∅. �
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3.8.5 Proof by Contradiction (Indirect Proof)

A proofs by contradiction are a generalization of proofs by contrapositive. We assume that it is possible for
the implication P ⇒ Q that the premise P can be true and Q can be false at the same time and construct the
assumption of the truth of P ∩¬Q a statement R such that both R and ¬R must be true. Here is an example.

Theorem 3.12. Let A ⊆ Z with the following properties:

m,n ∈ A ⇒ m+ n ∈ A,(3.95)
m,n ∈ A ⇒ mn ∈ A,(3.96)

0 /∈ A,(3.97)
if n ∈ Z then either n ∈ A or − n ∈ A or n = 0.(3.98)

Then 1 ∈ A.

Proof by contradiction: Assume that A is a set of integers with properties (3.95) – (3.98) but that 1 /∈ A. We
will show that then 1 ∈ A must be true. This finishes the proof because it is impossible that both 1 /∈ A and
1 ∈ A are true.

a. It follows from 1 /∈ A and (3.98) and 1 6= 0 that −1 ∈ A.
b. It now follows from (3.96) that (−1) · (−1) ∈ A, i.e., 1 ∈ A.

We have reached our contradiction. �

Remark 3.24. In this simple proof the statement R for which both R and ¬R were shown to be true
happens to be the conclusion 1 ∈ A. This generally does not need to be the case. �

3.8.6 Proof by Cases

Sometimes an assumption P is too messy to take on in its entirety and it is easier to break it down into two
or more cases P1, P2, . . . , Pn each of which only covers part of P but such that P1 ∨ P2 ∨ · · · ∨ Pn covers all
of it, i.e., we assume

P1 ∨ P2 ∨ · · · ∨ Pn ⇔ P.(3.99)

Proof by cases then rests on the following theorem:

Theorem 3.13. Let P,Q, P1 ∨ P2 ∨ · · · ∨ Pn be statements such that (3.99) is true. Then(
P ⇒ Q

)
⇔
[

(P1 ⇒ Q) ∨ (P2 ⇒ Q) ∨ . . . (Pn ⇒ Q)
]
.(3.100)

Proof (outline): You would do the proof by induction. Prove (3.100) first for n = 2 by expressing A→ B as
¬A ∨B and then building a truth table that compares

(
¬(P1 ∨ P2)

)
∨Q with ¬P1 ∨Q ∨ ¬P2 ∨Q.

Then do the induction step in which (3.99) becomes P1 ∨ P2 ∨ · · · ∨ Pn+1 ⇔ P by setting A := P1 ∨ P2 ∨
· · · ∨ Pn and this way reducing the proof of (3.100) for n+ 1 to that of 2 components. You make the validity
of
(
A⇒ Q

)
⇔
[

(P1 ⇒ Q) ∨ (P2 ⇒ Q) ∨ . . . (Pn ⇒ Q)
]

the induction assumption. �
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Theorem 3.14. Prove that for any x ∈ R such that x 6= 5 we have

x

x− 5
> 0 ⇒

[
(x < 0) or (x > 5)

]
.(3.101)

Proof: There are two cases for which x/(x− 5) > 0:
either both x > 0 and x− 5 > 0 or both x < 0 and x− 5 < 0. We write

P := “x/(x− 5) > 0′′, 36 P1 := x > 0 and x− 5 > 0, P2 := x < 0 and x− 5 < 0. Then P = P1 ∨ P2.

case 1. P1:
Obviously x > 0 and x− 5 > 0 if and only if x > 5, so we have proved P1 ⇒ (x > 5).

case 2. P2:
Obviously x < 0 and x− 5 < 0 if and only if x < 0, so we have proved P2 ⇒ (x < 0).

We now conclude from P = P1 ∨ P2 and theorem 3.13 the validity of (3.101). �

36 P := “x/(x− 5) > 0 and x 6= 5′′ if you want to be a stickler for precision
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4 Functions and Relations (Study this!)

4.1 Cartesian Products and Relations

Definition 4.1 (Cartesian Product of two sets). The cartesian product of two sets A and B is

A×B := {(a, b) : a ∈ A, b ∈ B},

i.e., it consists of all pairs (a, b) with a ∈ A and b ∈ B.

Two elements (a1, b1) and (a2, b2) are called equal if and only if a1 = a2 and b1 = b2. In this case we
write (a1, b1) = (a2, b2).

It follows from this definition of equality that the pairs (a, b) and (b, a) are different unless a = b. In
other words, the order of a and b is important. We express this by saying that the cartesian product
consists of ordered pairs.

As a shorthand, we abbreviate A2 := A×A. �

Example 4.1 (Coordinates in the plane). Here is the most important example of a cartesian product
of two sets. Let A = B = R . Then R× R = R2 = {(x, y) : x, y ∈ R} is the set of pairs of real
numbers. I am sure you are familiar with what those are: They are just points in the plane, expressed
by their x– and y–coordinates.
Examples of such points are are: (1, 0) ∈ R2 (a point on the x–axis), (0, 1) ∈ R2 (a point on the
y–axis), (1.234,−

√
2) ∈ R2.

You should understand why we do not allow two pairs to be equal if we flip the coordinates: Of
course (1, 0) and (0, 1) are different points in the xy–plane! �

Remark 4.1 (Function graphs as subsets of cartesian products). We gave the preliminary definition
of a function in def.3.1, p.24 of ch.3.1 (Prologue: Notation for Functions). 37 A function y = f(x)
which assigns real numbers x to function values f(x), e.g., f(x) = x2, is characterized by its graph

Γf := {
(
x, f(x)

)
: x ∈ R}

which is a subset of the cartesian product R× R. �

Remark 4.2 (Empty cartesian product). Note that A×B = ∅ if and only if A = ∅ or B = ∅ or
both are empty. �

Definition 4.2 (Relation). LetX and Y be two sets andR ⊆ X×Y a subset of their cartesian product
X × Y . We call R a relation on (X,Y ). A relation on (X,X) is simply called a relation on X . If
(x, y) ∈ R we say that x and y are related and we usually write xRy instead of (x, y) ∈ R.

A relation on X is reflexive if xRx for all x ∈ X . It is symmetric if x1Rx2 implies x2Rx1 for
all x1, x2 ∈ X . It is transitive if x1Rx2 and x2Rx3 implies x1Rx3 for all x1, x2, x3 ∈ X . It is
antisymmetric if x1Rx2 and x2Rx1 implies x1 = x2 for all x1, x2 ∈ X . �

Here are some examples of relations.
37 The precise definition of a function will be given in section 4.2 on p.74.
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Example 4.2 (Equality as a relation). Given a set X let R := {(x, x) : x ∈ X}, i.e., xRy if and only if
x = y. This defines a relation on X which is reflexive, symmetric and transitive. �

Example 4.3 (Set inclusion as a relation). Given a setX letR := {(A,B) : A,B ⊆ X and A ⊆ B}, i.e.,
ARB if and only if A ⊆ B. This defines a relation which is reflexive, antisymmetric and transitive.
�

Example 4.4 (Cardinality as a relation). Let X be a finite set, i.e., a set which only contains finitely
many elements. For A ⊆ X let card(A) be the number of its elements. 38 Let

R := {(A,B) : A,B ⊆ X and card(A) = card(B) },

i.e., ARB if and only if A and B possess the same number of elements. This defines a relation on
the power set 2X of X which is reflexive, symmetric and transitive. �

Example 4.5 (Empty relation). Given two sets X and Y let R := ∅. This empty relation is the only
relation on (X,Y ) if X or Y is empty. �

Example 4.6. Let X := R2 be the xy plane. For any point ~x = (x1, x2) in the plane let ‖~x‖ :=√
x2

1 + x2
2 be its length 39 and let R := {(~x, ~y) ∈ R2 × R2 : ‖~x‖ = ‖~y‖ }. In other words, two points

in the plane are related when they have the same length: they are located on a circle with radius
r = ‖~x‖ = ‖~y‖. The relation R is reflexive, symmetric and transitive but not antisymmetric. �

The relations given in examples 4.2, 4.4, 4.5 and 4.6 are reflexive, symmetric and transitive. Such relations
are so important that they deserve a special name:

Definition 4.3 (Equivalence relation and equivalence classes). Let R be a relation on a set X which
is reflexive, symmetric and transitive. We call such a relation an equivalence relation on X . It is
customary to write x ∼ y rather than xRy (or (x, y) ∈ R) and we say that x and y are equivalent

Given an equivalence relation “∼” on a set X and x ∈ X let

[x]∼ := {y ∈ X : y ∼ x} = { all items equivalent to x }.(4.1)

We call [x]∼ the equivalence class of x. If it is clear from the context what equivalence relation is
referred to then we simply write [x] instead of [x]∼. �

Relations which are reflexive, antisymmetric and transitive like the relation of example 4.3 (set inclusion)
allow to compare items for “bigger” and “smaller” or “before” and “after”. They also deserve a special name:

Definition 4.4 (Partial Order Relation). Let R be a relation on a set X which is reflexive, antisym-
metric and transitive. We call such a relation a partial ordering of X . or a partial order relation
on X . 40 It is customary to write “x � y” or “y � x” rather than “xRy” for a partial ordering R. We
say that “x before y” or “y after x”.

If “x � y” defines a partial ordering on X then (X,�) is called a partially ordered set set or a
POset. �

38 You will see later that card(X) is the cardinality of A (see def.5.6 on p.103).
39 See def.9.3 on p.152. of the length or Euclidean norm of a vector in n-dimensional space.
40 Some authors, Dudley among them, do not include reflexivity into the definition of a partial ordering and then

distinguish instead between “strict partial orders” and “reflexive partial orders”.
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Remark 4.3. The properties of a partial ordering can now be phrased as follows:

x � x for all x ∈ X reflexivity,(4.2)
x � y and y � x ⇒ y = x antisymmetry,(4.3)
x � y and y � z ⇒ x � z transitivity. �(4.4)

Remark 4.4 (Partial orderings and reflexivity). Note the following:

A. According to the above definition, the following are partial orderings of X :

1. X = R and x � y if and only if x 5 y.
2. X = 2Ω for some set Ω and A � B if and only if A ⊆ B (example 4.3).
3. X = R and x � y if and only if x = y.

B. The following relations are not partial orderings of X because none of them is reflexive.

4. X = R and x � y if and only if x < y.
5. X = 2Ω for some set Ω and A � B if and only if A ⊂ B (i.e., A ⊆ B but A 6= B).
6. X = R and x � y if and only if x > y.

Note that each one of those three relations is antisymmetric. For example, let us look at x < y. It
is indeed true that the premise

[
x < y and y < x

]
allows us to conclude that y = x as there are no

such numbers x and y and a premise that is known never to be true allows us to conclude anything
we want!

C. An equivalence relation ∼ is a never a partial ordering of X except in the very uninteresting
case where you have x ∼ y if and only if x = y.

D. A partial ordering of X , as any relation on X in general, is inherited by any subset A ⊆ X as
follows: Let � be a partial ordering on a set X and let A ⊆ X . We define a relation �A on A as
follows: Let x, y ∈ A. Then x �A y if and only if x � y . �

Definition 4.5 (Inverse Relation). Let X and Y be two sets and R ⊆ X × Y a relation on (X,Y ). Let

R−1 := { (y, x) : (x, y) ∈ R }.

Clearly R−1 is a subset of Y ×X and hence a relation on (Y,X). We call R−1 the inverse relation
to the relation R. �

Example 4.7. Let R := {(x, x3) : x ∈ R}. Then R is the relation on R which represents the function
y = f(x) = x3. We obtain

R−1 = {(x3, x) : x ∈ R} = {(y, y1/3) : y ∈ R}.

In other words, R−1 represents the inverse function x = f−1(y) = y1/3. �

4.2 Functions (Mappings) and Families

4.2.1 Some Preliminary Observations about Functions

Remark 4.5 (A layman’s definition of a function). We look at the set R of all real numbers and the
function y = f(x) =

√
4− x2 which associates with certain real numbers x (the “argument” or
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“independent variable”) another real number y =
√

4− x2 (the “function value” or “dependent
variable”):

f(0) =
√

(4− 0 = 2, f(2) = f(−2) =
√

(4− 4 = 0, f(2/3) = f(−2/3) =
√

(36− 4)/9 =
√

30/3, . . .

You can think of this function as a rule or law which specifies what item y is obtained as the output
or result if the item x is provided as input. 41

Let us look a little bit closer at the function y = f(x) =
√

4− x2 and its properties:

a. For some real numbers x there is no function value: For example, if x = 10 then 4− x2 =
−96 is negative and the square root cannot be taken.

b. For some other x, e.g., x = 0 or x = 2/3, there is a function value f(x). A moment’s
reflection shows that the biggest possible set of potential arguments 42 is the interval
[−2, 2].

c. For a given x there is never more than one function value f(x). This property allows us
to think of a function as an assignment rule: It assigns to certain arguments x a unique
function value f(x). We observed in b that f(x) exists if and only if x ∈ [−2, 2].

d. Not every y ∈ R is suitable as a function value: A square root cannot be negative, hence
no x exists such that f(x) = −1 or f(x) = −π.

e. On the other hand there are numbers y such as y = 2 which are “hit” more than once by
the function: f(2) = f(−2) = 0. 43

f. Graphs as drawings: We are used to look at the graphs of functions, Here is a picture of
the graph of f(x) =

√
4− x2.

x

f(x)

-3 -2 -1 1 2 3
-1

1

2

3

41 Real numbers were defined in section ”Numbers” on p.16.
42This set is called by some authors the natural domain of the function (e.g., [2] Brewster/Geoghegan).
43Matter of fact, only for y = 2 there exists a single argument x such that y = f(x) (x = 0). All other y-values in the

interval [0, 2] are “mapped” to by two different arguments x = ±
√

4− y2.
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g. Graphs as sets: Drawings as the one above have limited precision (the software should
have drawn a perfect half circle with radius 2 about the origin but there seem to be
wedges at x ≈ ±1.8). Also, how would you draw a picture of a function which assigns a
3–dimensional vector 44 (x, y, z) to its distance w = F (x, y, z) =

√
x2 + y2 + z2 from the

zero vector (0, 0, 0)? You would need four dimensions, one each for x, y, z, w, to draw the
graph!
To express the graph of a function without a picture, let us look at a verbal description:
The graph of a function f(x) is the collection of the pairs (x, f(x)) for all points x which
belong to the set [−2, 2] of potential arguments (see a). In mathematical parlance: The
graph of the function f(x) is the set

Γf := {
(
x, f(x)

)
: x ∈ Df}

(see remark 4.1 on p. 72).

�

We now make adjustments to some of those properties which will get us closer to the definition of a function
as it is used in abstract mathematics.

Remark 4.6 (A better definition of a function). We make the following alterations to remark 4.5.

I We require an upfront specification of the set A of items that will be allowed as input
(arguments) for the function and we require that y = f(x) makes sense for each x ∈ A.
Given the function y = f(x) =

√
4− x2 from above this means that A must be a subset of

[−2, 2].
I We require an upfront specification of the set B of items that will be allowed as output

(function values) for the function. This set must be so big that each x ∈ A has a function
value y ∈ B. We do not mind if B contains redundant y values. For y = f(x) =

√
4− x2

any superset of the closed interval [0, 2] will do. We may choose B := [0, 2] or B :=
[−2, 2π] or B := [0, 4] or B := R ∪ { all inhabitants of Chicago }.

Doing so gives us the following: A function consists of three items: a set A of inputs, a set B of
outputs and an assignment rule x 7→ f(x) with the following properties:

1. For all inputs x ∈ A there is a function value f(x) ∈ B.
2. For any input x ∈ A there is never more than one function value f(x) ∈ B. It follows

from property 1 that each x ∈ A uniquely determines its function value y = f(x). This
property allows us to think of a function as an assignment rule: It assigns to each x ∈ A
a unique function value f(x) ∈ B.

3. Not every y ∈ B needs to be a function value f(x) for some x ∈ A.
4. On the other hand there may be numbers y which are “hit” more than once by the func-

tion.

44Skip this example on first reading if you do not know about functions of several variables. You will find information
about this in chapter 9 (“Vectors and vector spaces”) on p.149.
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5. The graph Γf of a function f(x) is the collection of the pairs (x, f(x)) for all points x
which belong to the set A, i.e.,

Γf := {
(
x, f(x)

)
: x ∈ A}.(4.5)

Γf has the following properties:
5a. Γf ⊆ A×B, i.e., Γf is a relation on (A,B) (see def.4.2 on p.72).
5b. For each x ∈ A there exists a unique y ∈ B such that (x, y) ∈ Γf
5c. If x 7→ g(x) is another function with inputs A and outputs B which is different from

x 7→ f(x) (i.e., there is at least one a ∈ A such that f(a) 6= g(a)) then the graphs Γf and
Γg do not coincide

6. Conversely ifA andB are two nonempty sets then any relation Γ on (A,B) which satifies
5a and 5b uniquely determines a function x 7→ f(x) with inputs A and outputs B as
follows: For a ∈ A we define f(a) to be the element b ∈ B for which (a, b) ∈ Γ. We know
from 5b that such b exists and is uniquely determined.

�

Here is a complicated way of looking at the example above: Let X = [−2, 2] and Y = R. Then y = f(x) =√
4− x2 is a rule which "maps" each element x ∈ X to a uniquely determined number y ∈ Y which depends

on x as follows: it is the square root of 4 minus the square of x.

Mathematicians are very lazy as far as writing is concerned and they figured out long ago that writing
"depends on xyz" all the time not only takes too long, but also is aesthetically very unpleasing and makes
statements and their proofs hard to understand. So they decided to write “(xyz)” instead of “depends on
xyz” and the modern notion of a function or mapping y = f(x) was born.

Here is another example: if you say f(x) = x2 −
√

2, it’s just a short for "I have a rule which maps a number
x to a value f(x) which depends on x in the following way: compute x2 −

√
2." It is crucial to understand

from which set X you are allowed to pick the "arguments" x and it is often helpful to state what kinds of
objects f(x) the x–arguments are associated with, i.e., what set Y they will belong to.

We now are ready to give the precise definition of a function.

4.2.2 Definition of a Function and Some Basic Properties

We have seen in remark 4.6 on p. 76 that a function can be thought of equivalently as an assignment rule
x 7→ f(x) or as a graph. Mathematicians prefer the latter because “assignment rule” is a rather vague
term (an undefined term in the sense of ch. 3.7.1 (Building blocks of mathematical theories) on p.59) whereas
“graph” is entirely defined in the language of sets. This chapter starts with the official definition of a function.
It then deals with the following concepts: composition of functions, injective, surjective, bijective and inverse
functions, restriction and extension of functions.

Definition 4.6 (Mappings (functions)). Given are two arbitrary nonempty sets X and Y and a rela-
tion Γ on (X,Y ) (see 4.2 on p.72) which satisfies the following:

(4.6) for each x ∈ X there exists exactly one y ∈ Y such that (x, y) ∈ Γ.

We call the triplet f(·) := (X,Y,Γ) a function or mapping from X into Y . The set X is called the
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domain or source and Y is called the codomain or target of the mapping f(·). We will mostly use
the words “domain” and “codomain” in this document.

Usually mathematicians simply write f instead of f(·) We mostly follow that convention
but include the “(·)” part to emphasize that a function rather than an “ordinary”’ element
of a set is involved.

Let x ∈ X . We write f(x) for the uniquely determined y ∈ Y such that (x, y) ∈ Γ. We write Γf or
Γ(f) if we want to stress that Γ is the relation associated with the function f = (X,Y,Γ) and we call
Γ the graph of the function f . Clearly

(4.7) Γ = Γf = Γ(f) = {(x, f(x)) : x ∈ X}.

It is customary to write

(4.8) f : X → Y, x 7→ f(x)

instead of f = (X,Y,Γ) and we henceforth follow that convention. We abbreviate that to f : X → Y
if it is clear or irrelevant how to compute f(x) from x. We read “a 7→ b” as “a is assigned to b” or “a
maps to b” and refer to 7→ as the maps to operator or assignment operator.

Domain elements x ∈ X are called independent variables or arguments and f(x) ∈ Y is called
the function value of x. The subset

f(X) := {y ∈ Y : y = f(x) for some x ∈ X} = {f(x) : x ∈ X}(4.9)

of Y is called the range or image of the function f(·). 45

We say “f maps X into Y ” and “f maps the domain value x to the function value f(x)”. �

Figure 4.1 on p.79 illustrates the graph of a function as a subset of X × Y .

Remark 4.7 (Mappings vs. functions). Mathematicians do not always agree 100% on their defini-
tions. The issue of what is called a function and what is called a mapping is subject to debate. Some
mathematicians call a mapping a function only if its codomain is a subset of the real numbers 46

but the majority does what I’ll try to adhere to in this document: I use “mapping” and “function”
interchangeably and I’ll talk about real functions rather than just functions if the codomain is part
of R (see (4.12) on p.89). �

Remark 4.8. The symbol for the argument x in the definition of a function is a dummy variable in
the sense that it does not matter what symbol you use.

The following each define the same function with domain [0,∞[ and codomain R which assigns to
any non-negative real number its (positive) square root:

f : [0,∞[→ R, x 7→
√
x,

f : [0,∞[→ R, y 7→ √y,
f : [0,∞[→ R, f(γ) =

√
γ.

45 We distinguish the target (codomain) Y of f(·) from its image (range) f(X) which is a subset of Y .
46 or if the codomain is a subset of the complex numbers, but we won’t discuss complex numbers in this document.
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X

Y
Γf

(x0, f(x0))

x0

f(x0)

Figure 4.1: Graph of a function.

Matter of fact, not even the symbol you choose for the function matters as long as the operation
(here: assign a number to its square root) is unchanged. In other words, the following still describe
the same function as above:

ϕ : [0,∞[→ R, t 7→
√
t,

A : [0,∞[→ R, x 7→
√
x,

g : [0,∞[→ R, g(A) =
√
A.

In contrast, the following three functions all are different from each other and none of them equals
f because domain and/or codomain do not match:

ψ :]0,∞[→ R, x 7→
√
x (different domain).

B : [0,∞[→]0,∞[, x 7→
√
x (different codomain),

h : [0, 1[→ [0, 1[, x 7→
√
x (different domain and codomain). �

Definition 4.7 (Function composition). Given are three nonempty sets X,Y and Z and two func-
tions f : X → Y and g : Y → Z. Given x ∈ X we know the meaning of the expression g

(
f(x)

)
:

y := f(x) is the function value of x for the function f , i.e., the unique y ∈ Y such that (x, y) ∈ Γf
and

z := g(y) = g
(
f(x)

)
is the function value of f(x) for the function g, i.e., the unique z ∈ Z such that(

f(x), z
)

=
(
f(x), g(f(x))

)
∈ Γg.

The set Γ := {
(
x, g(f(x)) : x ∈ X

)
} is a relation on (X,Z) such that

(4.10) for each x ∈ X there exists exactly one z ∈ Z,namely, z = g
(
f(x)

)
, such that (x, z) ∈ Γ.
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It follows that Γ is the graph of a function h = (X,Z,Γ) with function values h(x) = g
(
f(x)

)
for

each x ∈ X . We call h the composition of f and g and we write h = g ◦ f (“g after f”).

As far as notation is concerned it is OK to write either of g ◦ f(x) or (g ◦ f)(x). The additional
parentheses may give a clearer presentation if f and/or g are fairly complex. �

The following shows how you diagram the composition of two functions. The left picture shows the domains
and codomains for each mapping and the left one the element assignments.

Function composition

X Y

Z

f

gg ◦ f

x y

z

f

gg ◦ f

We have a special name for the “do nothing function” which assigns each argument to itself:

Definition 4.8 (identity mapping). Given any non–empty set X , we use the symbol idX for the
identity mapping defined as

idX : X → X, x 7→ x.

We drop the subscript if it is clear what set is referred to. �

4.2.3 Examples of Functions

We now give some examples of functions. You might find some of them rather difficult to understand at first
reading.

Example 4.8. Let Γ := {(x, x3) : x ∈ R } ⊆ R× R. Then f = (R,R,Γ) is the function

f : R→ R, x 7→ x3. �

Example 4.9. Let Γ := {(x, x2 + 1) : x ∈ R }. Then g = (R,R,Γ) is the function

g : R→ R, x 7→ x2 + 1. �

Example 4.10. Let Γ := {(x, ln(x)) : x ∈]0,∞[ }. Here ln(x) denotes the natural logarithm of x.
Then h = (]0,∞[,R,Γ) is the function

h : ]0,∞[→ R, x 7→ ln(x). �

Example 4.11. Let Γ := {(x,
√
x) : x ∈ [0,∞[ }. Then ϕ = ([0,∞[,R,Γ) is the function

ϕ : [0,∞[→ R, x 7→
√
x. �
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Example 4.12. Let Γ := {(x,
√
x) : x ∈ [0,∞[ }. We can consider Γ as a subset of [0,∞[×R but also

as a subset of [0,∞[×[0,∞[. In the first case we obtain a function ϕ = ([0,∞[,R,Γ), i.e., the function

ϕ : [0,∞[→ R, x 7→
√
x.

In the second case we obtain a different(!) function ψ = ([0,∞[, [0,∞[,Γ), i.e., the function

ψ : [0,∞[→ [0,∞[, x 7→
√
x. �

If you have taken multivariable calculus or linear algebra then you know that functions need not necessarily
map numbers to numbers but they can also map vectors to numbers, numbers to vectors (curves) or vectors
to vectors.

Example 4.13. We define a function which maps two-dimensional vectors to numbers. Let A :=

{
(
(x, y) ∈ R2 : x2 + y2 5 1 }. Let Γ := {

(
(x, y),

√
1− x2 − y2

)
: (x, y) ∈ A} . Then F = (A,R,Γ) is

the function
F : A→ R, (x, y) 7→

√
1− x2 − y2.

Note that the domain is not a set of real numbers but of points in the plane and that the graph of F
is a set of points (x, y, z) in 3–dimensional space. �

Example 4.14. We define a function which maps numbers to two-dimensional vectors (a curve in
the plane). Let Γ := {

(
t, (sin t, cos t)

)
: t ∈ R }. Then G = (R,R2,Γ) is the function

G : R→ R2, t 7→ (sin t, cos t).

Note that the codomain is not a set of real numbers but the Euclidean plane. �

Example 4.15. Let Γ := {
(
(x, y), (2x − y/3, x/6 + 4y)

)
: x, y ∈ R }. Then H = (R2,R2,Γ) is the

function
H : R2 → R2, (x, y) 7→ (2x− y/3, x/6 + 4y).

Note that both domain and codomain are the Euclidean plane.

Skip the remainder of this example if you do not know about matrix multiplication.

Let A be the 2× 2 matrix

A :=

(
2 −1/3

1/6 4

)
.

We then obtain for any pair of numbers ~x = (x, y)T 47 that

A~x =

(
2 −1/3

1/6 4

) (
x
y

)
=

(
2x− y/3
x/6 + 4y

)
As is customary in linear algebra we now think of R2 as the collection of column vectors {

(
x
y

)
:

x, y ∈ R} rather than the cartesian product R2 × R2 which is the collection of row vectors {(x, y) :
x, y ∈ R}. �

47 Here (x, y)T =

(
x
y

)
is the transpose of (x.y), i.e., the operation that switches rows and columns of any matrix. In

particular it transforms a row vector into a column vector and vice versa.
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We now reformulate the last example in the framework of linear algebra. Skip the following example if you do
not know about matrix multiplication.

Example 4.16. As is customary in linear algebra we now think of R2 as the collection of column

vectors {
(
x
y

)
: x, y ∈ R} rather than the cartesian product R2 × R2 which is the collection of row

vectors {(x, y) : x, y ∈ R}.

Let A be the 2× 2 matrix

A :=

(
2 −1/3

1/6 4

)
.

We then obtain for any pair of numbers ~x = (x, y)T 48 that

A~x =

(
2 −1/3

1/6 4

) (
x
y

)
=

(
2x− y/3
x/6 + 4y

)

Let Γ := {
((x

y

)
,

(
2x− y/3
x/6 + 4y

))
: x, y ∈ R }. Then H = (R2,R2,Γ) is the function

H : R2 → R2,

(
x
y

)
7→ A

(
x
y

)
.

Note that both domain and codomain are the Euclidean plane. �

If you want to construct a counterexample to a mathematical statement concerning functions it often is best to
construct functions with small domain and codomain so that you can draw a picture that completely describes
the assignments. The next example will illustrate this.

Example 4.17.

Let X := {a, b, c, d}, Y := {x, y, z}, Γ := { (a, y), (b, y), (c, z), (d, y)}.
Then I = (X,Y,Γ) is the function which maps the elements of X to
Y according to the diagram on the right. Note that nothing was said
about the nature of the elements of X and Y . One need not know
about it to make observations like the following: Examine items 3
and 4 of remark 4.6 (A better definition of a function) on p.76. Con-
vince yourself that x ∈ Y is an example for 3: Not every element

a x

b y

c z

d

of Y needs to be a function value and that y ∈ Y is an example for 4: There may be elements of Y
which are “hit” more than once by the function. �

Example 4.18. This example represents a mathematical model for computing probabilities of the
outcomes of rolling a fair die and demonstrates that probability can be thought of as a function that
maps sets to numbers.

48 Here (x, y)T =

(
x
y

)
is the transpose of (x.y), i.e., the operation that switches rows and columns of any matrix. In

particular it transforms a row vector into a column vector and vice versa.
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If we roll a die then the outcome will be an integer between 1 and 6, i.e., the state space for this
random action will be X := {1, 2, 3, 4, 5, 6}. For A ⊆ X let Prob(A) denote the probability that
rolling the die results in an outcome x ∈ A.

For example Prob( an even number occurs ) = Prob
(
{2, 4, 6}

)
= 50% = 1/2. Clearly we have for

singletons consisting of a single outcome that

Prob
(
{1}
)

= Prob
(
{2}
)

= · · · = Prob
(
{6}
)

= 1/6 = 16.6̄%.

Your everyday experience tells you that if A = {x1, x2, . . . , xk} where xj ∈ X for each index j (and
hence k 5 6 because a set does not contain duplicates) then

Prob(A) = Prob
(
{x1}

)
+ Prob

(
{x2}

)
+ · · ·+ Prob

(
{xk}

)
=

k∑
j=1

Prob
(
{xj}

)
.

What if A is the event that the roll of the die does not result in any outcome, i.e., A = ∅? We do not
worry about the die getting stuck in mid-air or the dog snatching it before we get a chance to see
the outcome and consider this event impossible, i.e., Prob(∅) = 0.

We now have a probability associated with every A ⊆ X , i.e., with every A ∈ 2X and can finally
write this probability as a function. Let Γ := {(A,Prob(A)) : A ⊆ X}. Then P = (2X , [0, 1],Γ) is
the function

P : 2X → [0, 1], A 7→ Prob(A).

Why do we use [0, 1] and not R as the codomain? The answer is that we could have done so but
no event has a probablity that exceeds 100% or is negative, so [0, 1] is big enough and by choosing
this set as the codomain we do not deviate from standard presentation of mathematical probability
theory. �

To understand the next example you need to be familiar with the concepts of continuity, differentiability and
antiderivatives (integrals) of functions of a single variable. Just skip the parts where you lack the background.

Example 4.19. Let a ∈ R∪ {−∞} and b ∈ R∪ {∞} and let X :=]a, b[ be the open (end points a, b are
excluded) interval of all real numbers between a and b. Let x0 ∈]a, b[ be “fixed but arbitrary”.

The following is known from calculus (see [11] Stewart, J: Single Variable Calculus): Let f : ]a, b[→ R
be a function which is continuous on ]a, b[. Then

a. f is integrable, i.e., for any α, β ∈ R such that a < α < β < b the definite integral∫ β

α
f(u)du exists. For a definition of integrability see section 4.1 of [11] Stewart, J: Single

Variable Calculus.
b. f has an antiderivative : There exists a function F : ]a, b[→ R whose derivative F ′(·)

exists on all of ]a, b[ and coincides with f , i.e., F ′(x) = f(x) for all x ∈]a, b[.
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c. This antiderivative satisfies
∫ β

α
f(u)du = F (β)− F (α) for all a < α < β < b and it is

not uniquely defined: If C ∈ R then F (·) + C is also an antiderivative of f .
On the other hand, if both F1 and F2 are antiderivatives for f then their differenceG(·) :=
F2(·)−F1(·) has the derivativeG′(·) = f(·)−f(·) which is constant zero on ]a, b[. It follows
that any two antiderivatives only differ by a constant.
To summarize the above: If we have one antiderivative F of f then any other antideriva-
tive F̃ is of the form F̃ (·) = F (·) + C for some real number C.

This fact is commonly expressed by writing
∫
f(u)du = F (x) + C for the indefinite

integral (an integral without integration bounds).
d. It follows from c that if some c0 ∈ R is given then there is only one antiderivative F such

that F (x0) = c0.
Here is a quick proof: Let G be another antiderivative of f such that G(x0) = c0. Because
G− F is constant we have for all x ∈]a, b[ that

G(x)− F (x) = const = G(x0)− F (x0) = 0,

i.e., G = F .

After those reminders about integration we are ready to define a function I(·) for which both do-
main and codomain are sets of functions.

Given are a, b and x0 as above and c0 ∈ R. Let

F := {f : ]a, b[→ R such that f is continuous on ]a, b[ },
G := {g : ]a, b[→ R such that g is differentiable on ]a, b[ and g(x0) = c0 }.

It follows from the preparatory remarks that for each f ∈ F there exists a unique F ∈ G which is
an antiderivative for f . We now define a function I : F → G by specifying its graph as the set

Γ := {
(
f(·), g(·)

)
: f ∈ F , g ∈ G and g is an antiderivative of f }.

In other words, I = (F ,G ,Γ) is the function

I : F → G , f(·) 7→ I(f)(·) =

∫
f(u)du+ C

where C is determined by the requirement that I(f)(x0) = c0. �

4.2.4 Injective, Surjective and Bijective functions

Definition 4.9 (Surjective, injective, bijective). Let f : X → Y . As usual the graph of f is denoted
Γf .

a. Surjectivity: In general it is not true that f(X) = {f(x) : x ∈ X} equals the entire codomain Y ,
i.e., that

(4.11) for each y ∈ Y there exists at least one x ∈ Xsuch that (x, y) ∈ Γf .
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But if f(X) = Y , i.e., if (4.11) holds, we call f surjective and we say that f maps X onto Y .

b. Injectivity: In general it is not true that if y ∈ f(X) then y = f(x) for a unique x, i.e., that if there
is another x1 ∈ X such that also y = f(x1) then it follows that x1 = x. But if this is the case, i.e., if

(4.12) for each y ∈ Y there exists at most one x ∈ Xsuch that (x, y) ∈ Γf .

then we call f injective .

We can express (4.12) also as follows: If x, x1 ∈ X and y ∈ Y are such that (x, y) ∈ Γf and (x1, y) ∈
Γf then it follows that x1 = x.

c. Bijectivity: Let f : X → Y be both injective and surjective. Such a function is called bijective.

It follows from (4.11) and (4.12) that f is bijective if and only if

(4.13) for each y ∈ Y there exists exactly one x ∈ Xsuch that (x, y) ∈ Γf .

We rewrite (4.13) by employing Γf ’s inverse relation Γ−1
f = {(y, x) : (x.y) ∈ Γ} (see def. 4.5 on p.74)

and obtain

(4.14) for each y ∈ Y there exists exactly one x ∈ Xsuch that (y, x) ∈ Γ−1
f .

But this implies, according to (4.6) in the definition of a function, that Γ−1
f is the graph of a function

g := (Y,X,Γ−1
f ) with domain Y and codomain X where, for a given y ∈ Y , g(y) stands for the

uniquely determined x ∈ X such that (y, x) ∈ Γ−1
f . Note that

(4.15) Γ−1
f = Γg.

We call g(·) the inverse mapping or inverse function of f(·) and write f−1(·) instead of g(·). �

Remark 4.9.

a. It follows from (4.15) that

(4.16) Γ−1
f = Γf−1 .

b. Each x ∈ X is mapped to y = f(x) which is the only element of Y such that f−1(y) = x,

c. Each y ∈ Y is mapped to x = f−1(y) which is the only element of X such that f(x) = y.

d. It follows from b and c that

if x ∈ X, y ∈ Y then f(x) = y ⇔ y = f−1(y).

e. It also follows from b and c that f−1(f(x)) = x for all x ∈ X and f(f−1(y)) = y for all y ∈ Y .

In other words, f−1 ◦ f = idX and f ◦ f−1 = idY . Here is the picture:
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X

f

f−1idX

Y X

Y

f−1

fidY

�

Theorem 4.1 (Characterization of inverse functions). Let X and Y be nonempty sets and f : X → Y .
Then the following are equivalent:

a. f is bijective.
b. There exists g : Y → X such that both g ◦ f = idX and f ◦ g = idY .

Proof of a⇒ b: We have seen in part d of remark 4.9 that g := f−1 satisfies b.

Proof of b⇒ a: We must show that f is both surjective and injective. First we show that f is surjective. Let
y ∈ Y . we must find some x ∈ X such that f(x) = y. Let x := g(y). Then

f(x) = f
(
g(y)

)
= f ◦ g(y) = idY (y) = y.

We have f(x) = y and this proves surjectivity. Now we show that f is injective. Let x1, x2 ∈ X and y ∈ Y
such that f(x1) = f(x2) = y. We are done if we can prove that x1 = x2. We have

x1 = idX(x1) = g ◦ f(x1) = g
(
f(x1)

)
= g(y) = g

(
f(x2)

)
= g ◦ f(x2) = idX(x2) = x2,

i.e., x1 = x2 and this proves injectivity of f . �

Remark 4.10. [Horizontal and vertical line tests] LetX and Y be nonempty sets and f : X → Y . The
following needs to be taken with a grain of salt because X and Y may not be sets of real numbers.

Let R ⊆ X × Y . (4.6) on p.77 states that R is the graph of a function with domain X and codomain
Y if and only if any “vertical line”, i.e., any set H0 ⊆ X × Y of the form H(x0) := {(x0, y) : y ∈ Y }
intersects R in exactly one “point”.

a. (4.6) on p.77 states that R is the graph of a function with domain X and codomain Y if
and only if it passes the “vertical line test”: Any “vertical line”, i.e., any set V0 ⊆ X×Y of
the form V (x0) := {(x0, y) : y ∈ Y } for a fixed x0 ∈ X intersects R in exactly one “point”.

b. (4.11) on p.84 states that R is the graph of a surjective function with domain X and
codomain Y if and only if it passes in addition to the “vertical line test” the follow-
ing “horizontal line test”: any “horizontal line”, i.e., any set H0 ⊆ X × Y of the form
H(x0) := {(x, y0) : x ∈ X} for a fixed y0 ∈ Y intersects R in at least one “point”.

c. (4.12) on p.85 states that R is the graph of an injective function with domain X and
codomain Y if and only if it passes in addition to the “vertical line test” the follow-
ing “horizontal line test”: any “horizontal line”, i.e., any set H0 ⊆ X × Y of the form
H(x0) := {(x, y0) : x ∈ X} for a fixed y0 ∈ Y intersects R in at most one “point”.
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d. It follows from (4.13) on p.85 but also from the above that that R is the graph of an
injective function with domain X and codomain Y if and only if it passes in addition to
the “vertical line test” the following “horizontal line test”: any “horizontal line”, i.e., any
set H0 ⊆ X × Y of the form H(x0) := {(x, y0) : x ∈ X} for a fixed y0 ∈ Y intersects R in
exactly one “point”. Note the symmetry between this test and the one for vertical lines.
This is another indication that the inverse graph R−1 of a bijective function is a graph of
a function (the inverse function f−1).

�

Remark 4.11. Abstract math is about proving theorems and propositions and functions are very
important tools for that. It may be very important to know or to show that a certain function is
injective or surjective or both. But these properties depend on the choice of domain and codomain
as this simple example shows.

Let f : A→ B be the function f(x) := x2.

A = R, B = R: f is neither injective nor surjective
A =]− 2, 3[, B = [0, 9[: f is surjective but not injective
A =]0, 3[, B = [0, 9]: f is injective but not surjective
A =]0, 3[, B =]0, 9[: f is bijective

The above demonstrates why specification of domain and codomain are required for a function. �

Proposition 4.1. Let X,Y, Z 6= ∅. Let f : X → Y and g : Y → Z.

a. If both f, g are injective then g ◦ f is injective.
b. If both f, g are surjective then g ◦ f is surjective.
c. If both f, g are bijective then g ◦ f is bijective.

Proof of a and b: Left as an exercise.

Proof of c: Follows from a and b because bijective = injective + surjective. �

We will now examine conditions under which there are functions f : X → Y and g : Y → X such that
g ◦ f = idX , i.e.,

g(f(x)) =x for all x ∈ X :(4.17)

X Y

X

f

gidX

Proposition 4.2. Let X,Y 6= ∅. Let f : X → Y and g : Y → X such that g ◦ f = idX . Then

a. f is injective,
b. g is surjective.

Proof of a: Let x1, x2 ∈ X . If f(x1) = f(x2) then

x1 = idX(x1) = g(f(x1)) = g(f(x2)) = idX(x2) = x2.
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This proves injectivity of f .

Proof of b: Let x0 ∈ X . Let y := f(x0). Then g(y) = g(f(x0)) = g ◦ f(x0) = x0. We found for an arbitrary
x0 in the codomain of g some y which maps to x0 and we have proved surjectivity of g. �

Proposition 4.3. Let X,Y 6= ∅.

a. Let f : X → Y . If f is injective then there exists g : Y → X such that g ◦ f = idX and any such
function g is necessarily surjective.

b. Let g : Y → X . If g is surjective then there exists f : X → Y such that g ◦ f = idX and any
such function f is necessarily injective.

Proof of a: Let Y ′ := f(X) and
f ′ : X → Y ′, x 7→ f(x),

i.e., f(x) = f ′(x) for all x ∈ X . The only difference between f and f ′ is that we shrunk the codomain from
Y to f(X), thus making f ′ not only injective but also surjective, hence bijective. It follows that the inverse
(f ′)−1 : Y ′ → X exists.

Let x0 be an arbitrary, but fixed, element of X . We define g : Y → X as follows.

g(y) :=

{
(f ′)−1(y) if y ∈ Y ′,
x0 if y /∈ Y ′.

Let x ∈ X . Then f(x) ∈ Y ′, hence g ◦ f(x) = g ◦ f ′(x) = (f ′)−1
(
f ′(x)

)
= x. This proves g ◦ f = idX .

We observe that g is surjective according to prop.4.2a.

Proof of b: For x ∈ X let Yx := {y ∈ Y : g(y) = x}. It follows from the surjectivity of g that Yx 6= ∅ and
we may select for each x ∈ X some yx ∈ Yx. 49

Let f : X → Y be the function x 7→ yx. Let x ∈ X . Then

g ◦ f(x) = g(yx) = x.

The first equality follows from the definition of f and the second one is true because yx ∈ Yx. It follows from
prop.4.2b that f is injective. �

There are special names for functions f and g which are related by (4.17).

Definition 4.10 (Sets). Let X,Y 6= ∅. Let f : X → Y and g : Y → X such that g ◦ f = idX . We call g
a left inverse of f and we call f a right inverse of g. �

We combine that last definitions with the preceding two proposition and obtain

Theorem 4.2. Let X,Y 6= ∅. Then

a. Let f : X → Y . Then f is injective ⇔ f has a left inverse which is necessarily surjective.
b. Let g : Y → X . Then g is surjective ⇔ g has a right inverse which is necessarily injective.
c. An injection X → Y exists ⇔ a surjection Y → X exists.

49 The ability to pick do such a selection regardless of the nature of X,Y and a surjective f : X → Y is not something
one can prove. It requires acceptance of the Axiom of Choice. See remark 12.1 on p.247 in ch.12 (Applications of Zorn’s
Lemma).
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Proof of a⇒): prop.4.3a.
Proof of a⇐): prop.4.2a.

Proof of b⇒): prop.4.3b.
Proof of a⇐): prop.4.2b.

Proof of c⇒): Let f : X → Y be injective. According to part a there exists a left inverse g : Y → X which
is surjective
Proof of c ⇐): Let g : Y → X be surjective. According to part b there exists a right inverse f : X → Y
which is injective �

Definition 4.11 (Restriction/Extension of a function). Given are three non-empty sets A,X and Y
such that A ⊆ X . Let f : X → Y a function with domain X . We define the restriction of f to A as
the function

f
∣∣
A

: A→ Y defined as f
∣∣
A

(x) := f(x) for all x ∈ A.(4.18)

Conversely let f : A → Y and ϕ : X → Y be functions such that f = ϕ
∣∣
A

. We then call ϕ an
extension of f to X . �

Example 4.20. For an example let X := R, A := [0, 1] and f(x) := 3x2(x ∈ [0, 1]). For any α ∈ R
the function ϕα : R → R defined as ϕα(x) := 3x2 if 0 5 x 5 1 and αx otherwise defines a different
extension of f to R. �

Notations 4.1. As the only difference between f and f
∣∣
A

is the domain, it is customary to write f
instead of f

∣∣
A

to make formulas look simpler if doing so does not give rise to confusions. �

Remark 4.12. The restriction f
∣∣
A

is always uniquely determined by f . Such is usually not the case
for extensions if A is a strict subset of X . �

Many more properties of mappings will be discussed later. Now we look at families, sequences and some
additional properties of sets.

4.2.5 Operations on Real Functions

Definition 4.12 (real functions). Let X be an arbitrary, nonempty set. If the codomain Y of a map-
ping

f(·) : X // Y x � // f(x)

is a subset of R, then we call f(·) a real function or real valued function. �

Remember that this definition does not exclude the case Y = R because Y ⊆ R is in particular true if both
sets are equal.

Real functions are a pleasure to work with because, given any fixed argument x0, the object f(x0) is just an
ordinary number. In particular you can add, subtract, multiply and divide real functions. Of course, division
by zero is not allowed:
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Definition 4.13 (Operations on real functions). Let X an arbitrary non-empty set.
Given are two real functions f(·), g(·) : X → (R) and a real number α. The sum f + g, difference
f − g, product fg or f · g, quotient f/g or f

g , and scalar product αf are defined by doing the
operation in question with the numbers f(x) and g(x) for each x ∈ X . In other words these items
are defined by the following equations:

(f + g)(x) := f(x) + g(x),

(f − g)(x) := f(x)− g(x),

(fg)(x) := f(x)g(x),

(f/g)(x) := f(x)/g(x) for all x ∈ X where g(x) 6= 0,

(αf)(x) := α · g(x).

(4.19)

�

Before we list some basic properties of addition and scalar multiplication of functions (the operations that
interest us the most), let us have a quick look at constant functions.

Definition 4.14 (Constant functions). Let a be an ordinary real number. You can think of a as a
function from any non-empty set X to R as follows:

a(·) : X // R x � // a

In other words, the function a(·) assigns to each x ∈ X one and the same value a. We call such a
function a constant real function.

The most important constant function is the zero function 0(·) which maps any x ∈ X to the number
zero. We usually just write 0 for this function unless doing so would confuse the reader. Note that
scalar multiplication (αf)(x) = α · g(x) is a special case of multiplying two functions (gf)(x) =
g(x)f(x): Let g(x) = α for all x ∈ X (constant function α).

The concept of a constant function makes sense for an arbitrary, nonempty codomain Y (i.e., Y need
not be a set of real numbers):

We call any mapping f from X to Y a constant function. if its image f(X) ⊆ Y is a singleton, i.e,
it consists of exactly one element. �

One last definition before we finally get so see some examples:

Definition 4.15 (Negative function). Let X be an arbitrary, non-empty set and let
f(·) : X // R x � // f(x)

be a real function on X . The function
−f(·) : X // R x � // −f(x)

which assigns to each x ∈ X the value −f(x) is called negative f or minus f . Sometimes we write
−f rather than −f(·). �

All those last definitions about sums, products, scalar products, . . . of real functions are very easy to under-
stand if you remember that, for any fixed x ∈ X , you just deal with ordinary numbers!
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Example 4.21 (Arithmetic operations on real functions). // For simplicity, we set
X := R+ = {x ∈ R : x = 0} . Let

f(·) : R+
// R x � // (x− 1)(x+ 1)

g(·) : R+
// R x � // x− 1

h(·) : R+
// R x � // x+ 1

Then

(f + h)(x) = (x− 1)(x+ 1) + x+ 1 = x2 − 1 + x+ 1 = x(x+ 1) ∀x ∈ R+

(f − g)(x) = (x− 1)(x+ 1)− (x− 1) = x2 − 1− x+ 1 = x(x− 1) ∀x ∈ R+

(gh)(x) = (x− 1)(x+ 1) = f(x) ∀x ∈ R+

(f/h)(x) = (x− 1)(x+ 1)/(x+ 1) = x− 1 = g(x) ∀x ∈ R+

(f/g)(x) = (x− 1)(x+ 1)/(x− 1) = x+ 1 = h(x) ∀x ∈ R+ \ {1}

It is really, really important to understand that f/g(·) and h(·) are not the same functions on R+.
Matter of fact, f/g(·) is not defined for all x ∈ R+ because for x = 1 you obtain (1−1)(1+1)

1−1 = 0/0.
The domain of f/g is different from that of h and both functions thus are different. �

4.2.6 Sequences, Families and Functions as Families

Definition 4.16 (Indices). Given is an expression of the form

Xı.

We say that X is indexed by or subscripted by or tagged by ı. We call ı the index or subsript of X
and we call Xı an indexed item . �

Remark 4.13. Both X and ı can occur in many different ways. Here is a collection of indexed items:

x7, Aα, kT , H2/9, fx, xt, hA , , iR, H2π

Some of the indices in this collection are highly unusual: Not only are some of them negative but
they are fractions (e.g., 2/9) or irrational (e.g., 2π) Others are not even numbers (e.g., α, T , x, t, A
and R) where it is not clear from the information available to us whether those indices are names of
variables which represent numbers or whether they represent functions, sets or other mathematical
objects. There is one exception: The index of iR is the set of all real numbers. �

We can turn any set into a "family" by tagging each of its members with an index. As an example, look at
the following two indexed versions of the set S2 from example 2.1 on p. 11:

F = (a1, e1, e2, i1, i2, i3, o1, o2, o3, o4, u3, u5, u9, u11, u99)

G = (ak, e−
√

2, e1, i−6, iB, iR, o7, o2/3, o−8, o3, uA, uB, uC , uD, uE)

We note several things:
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a. F has the kind of indices that we are familiar with: all of them are positive
integers.

b. Some of the indices in F occur multiple times. For example, 3 occurs as an
index for i3, o3, u3.

c. All of the indices in G are unique.
d. As in remark 4.13 some of the indices are very unusual.

The last point is not much of a problem as mathematicians are used to very unusual notation but point (b),
the non-uniqueness of indices, is something that we want to avoid. We ask for the following: The indices of
an indexed collection must belong to some set J and each index ı ∈ J must be used exactly once. Remember
that this automatically takes care of the duplicate indices problem as a set never contains duplicate values (see
def.2.1 on p. 11). We further demand that there is a set X such that each indexed item xı belongs to X .

We now are ready to give the definition of a family:

Definition 4.17 (Indexed families). Let J and X be non-empty set and assume that

for each ı ∈ J there exists exactly one indexed item xı ∈ X .

Let R := {(ı, xı) : ı ∈ J} . Then R is a relation on (J,X) which satisfies (4.6) of the definition of a
function

F : J → X, ı 7→ F (ı)

(see def.4.6 on p.77) whose graph ΓF equals R.

We write (xı)ı∈J for this function if we want to deal with the collection of indexed elements xı rather
than the function F (·) or the relation R. Reasons for this will be given in rem.4.15 on p.93.

(xı)ı∈J is called an indexed family or simply a family in X and J is called the index set of the
family. For each  ∈ J , x is called a member of the family (xı)ı∈J .

ı is a dummy variable: (xı)ı∈J and (xk)k∈J describe the same family as long as ı 7→ xı and k 7→ xk
describe the same function F : J → X . This should not come as a surprise to you if you recall
remark 4.8 on p.78. �

Remark 4.14. The codomain X does not occur in the notation (xı)ı∈J . This is OK because we do
now worry about surjectivity or injectivity of families and the only thing that matters about X is
that it is big enough to contain each indexed item. Here are two possible choices for a codomain.

a. If there is a universal set X which contains all tagged items of the family then X is ac-
ceptable as the codomain.

b. If there is no universal set then you can think of

X =
⋃[

xı : ı ∈ J
]

:= {x : x = xi0 for some i0 ∈ I}

as the codomain. 50 �

50General unions and intersections will be defined in ch.5.1 (More on set operations). See def.5.1 on p.98.
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Definition (Equality of families) Two families (xi)i∈I and (yj)j∈J are equal if

a. I = J ,
b. xi = yi for all i ∈ I .

Note 4.1 (Simplified notation for families). If there is no confusion about the index set then it can
be dropped from the specification of a family and we simply write (xı)ı instead of (xı)ı∈J . Even
the index outside the right parentheses may be omitted and we write (xı) if it is clear that we are
talking about families.

For example, a proposition may start as follows: Let (Aα) and (Bα) be two families of subsets of Ω
indexed by the same set. Then .....

It is clear from the formulation that we deal in fact with two families (Aα)α∈J and (Bα)α∈J . Nothing
is said about J , probably because the proposition is valid for any index set or because this set was
fixed once and for all earlier on for the entire section. �

Example 4.22. Here is an example of a family of subsets of R which are indexed by real numbers:
Let J = [0, 1] and X := 2R. For 0 5 x 5 1 let Ax := [x, 2x] be the set of all real numbers between x
and 2x. Then (Ax)x∈[0,1] is such a family. �

Remark 4.15. If a family is just some kind of function, why bother with yet another definition? The
answer to this is that there are many occasions in which writing something as a collection of indexed
items rather than as a function makes things easier to understand. For example, look at theorem 5.1
(De Morgan’s Law) on p.99. One of the formulas there states that for any indexed family (Aα)α∈I
of subsets of a universal set Ω it is true that(⋃

α

Aα
){

=
⋂
α

A{α.

Without the notion of a family you might have to say something like this: Let A : I → 2Ω be a
function which assigns its arguments to subsets of Ω . Then(⋃

α

A(α)
){

=
⋂
α

A(α){.

The additional parentheses around the index α just add complexity to the formula. �

Example 4.23 (Sequences as families). You have worked with special families before: those where
J = N or J = Z≥0 and X is a subset of the real numbers. Example: xn := 1/n. Here

(xn)n∈N corresponds to the indexed collection 1,
1

2
,

1

3
, . . . ,

1

n
, . . .

�

Such families are called sequences:

Definition 4.18 (Sequences and subsequences). Let n0 be an integer and let J := {n?, n? + 1, n? +
2, . . . } = {k ∈ Z : k ≥ n?}. Let X be an arbitrary nonempty set. An indexed family in X with
index set J is called a sequence in X with start index n?.
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Let I be an infinite subset of J . Because any two different integers m and n can be compared, i.e.,
either m < n or n < m, 51 there are integers

n1 < n2 < n3 < . . .

such that J = {nj : j ∈ N}. An indexed family in X with index set I is called a subsequence of
the original sequence.

As is true for families in general, the name of the index variable of a sequence does not matter as
long as it is applied consistently. It does not matter whether you write (xj)j∈J or (xn)n∈J or (xβ)β∈J .
�

Note 4.2 (Simplified notation for sequences).

a. It is customary to choose either of i, j, k, l,m, n as the symbol of the index variable of a
sequence and to stay away from other symbols whenever possible.

b. If J is defined as above then is not unusual to see “(xn)n≥n0” instead of “(xn)n∈J”. By
default the index set for a sequence is J = N = {1, 2, 3, 4, . . . } and we can then write
(xn)n or just (xn)

c. Customary notation for subsequences is either of (xnj )j∈N, (xnj )j=1, (xnj )j or simply
(xnj ).

Compare this to note 4.1 about simplified notation for families. �

Here are two more examples of sequences:

Example 4.24 (Oscillating sequence). xj := (−1)j (j ∈ N0)
Try to understand why this is the sequence

x0 = 1, x2 = −1, x2 = 1, x3 = −1, x4 = 1, x5 = −1, . . . �

Example 4.25 (Series (summation sequence) ). Let sk := 1 + 2−1 + 2−2 + . . .+ 2−k (k = 1, 2, 3, . . . ):

s1 =1, s2 = 1 + 1/2 = 2− 1/2, s3 = 1 + 1/2 + 1/4 = 2− 1/4, . . . ,

sk =1 + 1/2 + . . .+ 2k−1 = 2− 2k−1; s = 1 + 1/2 + 1/4 + 1/8 + . . . “infinite sum”.

You obtain sk+1 from sk = 2−2k−1 by cutting the difference 2k−1 to the number 2 in half (that would
be 2k) and adding that to sk. It is intuitively obvious from sk = 2− 2k−1 that the infinite sum s adds
up to 2. Such an infinite sum is called a series. The precise definition of a series will be given later.
�

Remark 4.16. Having defined the family (xı)ı∈J as the function which maps ı ∈ J to xı means that
a family distinguishes any two of its members xı and x by remembering what their indices are,
even if they represent one and the same element of X : Think of “(xı)ı∈J” as an abbreviation for

“
(
(ı, xı)

)
ı∈J
′′
.(4.20)

Doing so should also make it much easier to see the equivalence of functions and families: (4.20)
looks at its core very much like the graph {(ı, xı) : ı ∈ J} of the function ı 7→ xı. �

51 Z is a linearly ordered set, also called a totally ordered set set in the terminology of def.12.1 (Linear orderings) on
p.247.
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Remark 4.17 (Families and sequences can contain duplicates). One of the important properties of
sets is that they do not contain any duplicates (see def.2.1 (sets) on p.11). On the other hand remark
4.16 casually mentions that families and hence sequences as special kinds of families can contain
duplicates. Let us look at this now more closely.

The two sets A := {31, 20, 20, 20, 31} and B := {20, 31} are equal. On the other hand let J :=
{α, β, π, ?,Q} and define the family (wı)ı∈J in B by its associated graph as follows:

Γ := {(α, 31), (β, 20), (π, 20), (?, 20), (Q, 31)}, i.e.,, wα = 31, wβ = 20, , wπ = 20, w? = 20, wQ = 31.

The three occurrences of 20 cannot be distinguished as elements of the set A. In contrast to this
the items (β, 20), (π, 20), (?, 20) as elements of Γ ⊆ J × A = J × B 52 are different from each other
because two pairs (a, b) and (x, y) are equal only if x = a and y = b. �

In contrast to sets, families and sequences allow you to deal with duplicates.

We remember that, by definition 4.17 on p.92 of a family,

a family (xı)ı∈J in X is just the function F : J → X which maps ı ∈ J to F (z) = xz . Conversely, let
X,Y be nonempty sets and let f : X → Y be a function with domain X and codomain Y . For x ∈ X let
fx := f(x). Then f can be written as (fx)x∈X , i.e., as a family in Y with index set X . In other words, we
have the following:

Proposition 4.4. The following ways of specifying a function f : X → Y, x 7→ f(x) are equivalent:

a. f = (X,Y,Γ) is defined by its graph Γ := {(x, f(x)) : x ∈ X}.
b. f is defined by the following family in Y : (f(x))x∈X

Note that this is one case where we had to explicitly mention the codomain Y in the specification of the family.

There will be a lot more on sequences and series (sequences of sums) in later chapters, but we need to develop
more concepts, such as convergence, to continue with this subject. Now let’s get back to sets.

4.3 Exercises for Ch.4

4.3.1 Exercises for Functions and Relations

Exercise 4.1. Injectivity and Surjectivity

• Let f : R→ [0,∞[; x 7→ x2.
• Let g : [0,∞[→ [0,∞[; x 7→ x2.

In other words, g is same function as f as far as assigning function values is concerned,
but that its domain was downsized to [0,∞[.

Answer the following with true or false.

52 Be sure to understand that J ×A = J ×B!
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a. f is surjective c. g is surjective
b. f is injective d. g is injective

If your answer is false then give a specific counterexample. �

Exercise 4.2 (Excercise 4.1 continued). Let A ⊆ R .

• Let F1 : A→ [−2, 20[; x 7→ x2.
• Let F2 : A→ [2, 20[; x 7→ x2.
• Let G1 : A→ [−2, 20[; x 7→

√
x.

• Let G2 : A→ [2, 20[; x 7→
√
x.

• Let G3 : A→ [−20, 2[; x 7→
√
x.

• Let G4 : A→ [−20,−2[; x 7→
√
x.

What choice of A makes

a. F1 surjective? c. F2 surjective? e. G1 surjective? g. G2 surjective?
b. F1 injective? d. F2 injective? f. G1 injective? h. G2 injective?

i. G3 surjective? k. G4 surjective?
j. G3 injective? l. G4 injective?

For the questions above

• Write impossible if no choice of A ⊆ R exists.
• Write NAF for any of F1, F2, G1, G2, G3, G4 which does not define a function. �

Exercise 4.3. Find f : X → Y and A ⊆ X such that f(A{) 6= f(A){. Hint: use f(x) = x2 and choose
Y as a one element only set (which does not leave you a whole lot of choices for X). See example
4.17 on p.82. �

Exercise 4.4.

a. Prove prop.4.1a: The composition of two injective functions is injective.
b. Prove prop.4.1b: The composition of two surjective functions is surjective. �

Exercise 4.5. You proved in the previous exercise that
injective ◦ injective = injective,
surjective ◦ surjective = surjective.

The following illustrates that the reverse is not necessarily true.

Find functions f : {a} → {b1, b2} and g : {b1, b2} → {a} such that h := g ◦ f : {a} is bijective but
such that it is not true that both f, g are injective and it is also not true that both f, g are surjective.

Hint: There are not a whole lot of possibilities. Draw possible candidates for f and g in arrow
notation as on p.118. You should easily be able to figure out some examples. Again, think simple
and look at example 4.17 on p.82. �
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Exercise 4.6. B/G Project 6.9.:

On Z× (Z \ {0}) we define the relation ∼ as follows.

(m1, n1) ∼ (m2, n2) ⇔ m1 · n2 = n1 ·m2.(4.21)

a. Prove that ∼ defines an equivalence relation on Z× (Z \ {0}).

Let

Q := {[(m,n)] : m,n ∈ Z and n 6= 0}(4.22)

be the set of all equivalence classes of∼. We define two binary operations⊕ and⊗ on Q as follows;

[(m1, n1)]⊕ [(m2, n2)] := [(m1n2 + m2n1, n1n2)],(4.23)
[(m1, n1)]⊗ [(m2, n2)] := [(m1m2, n1n2)](4.24)

b. Prove that these binary operations are defined consistently: the right hand sides of (4.23) and
(4.24) do not depend on the particular choice of elements picked from the sets [(m1, n1)] and
[(m2, n2)]. In other words, prove the following:

Let (p1, q1) ∼ (m1, n1) and (p2, q2) ∼ (m2, n2). Then

[(m1n2 + m2n1, n1n2)] = [(p1q2 + p2q1, q1q2)],(4.25)
[(m1m2, n1n2)] = [(p1p2, q1q2)].(4.26)

or, equivalently, then

(m1n2 + m2n1, n1n2) ∼ (p1q2 + p2q1, q1q2),(4.27)
(m1m2, n1n2) ∼ (p1p2, q1q2). �(4.28)
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5 More on Sets (Understand this!)

5.1 More on Set Operations (Study this!)

The material in this chapter thematically belongs to ch.2.1 on p.11 but it had to be deferred to this chapter as
much of it deals with families of sets, i.e., families (Ai)i

Definition 5.1 (Arbitrary unions and intersections). Let J be a nonempty set and let (Ai)i∈J be a
family of sets. We define⋃

i∈I
Ai :=

⋃[
Ai : i ∈ I

]
:= {x : x ∈ Ai0 for some i0 ∈ I},(5.1) ⋂

i∈I
Ai :=

⋂[
Ai : i ∈ I

]
:= {x : x ∈ Ai0 for each i0 ∈ I}.(5.2)

We call
⋃
i∈I

Ai the union and
⋂
i∈I

Ai the intersection of the family (Ai)i∈J

It is convenient to allow unions and intersections for the empty index set J = ∅. For intersections
this requires the existence of a universal set Ω. We define⋃

i∈∅

Ai := ∅,
⋂
i∈∅

Ai := Ω.(5.3)

�

Note that any statement concerning arbitrary families of sets such as the definition above covers
finite lists A1, A2, . . . , An of sets ( J = {1, 2, . . . , n} ) and also sequences A1, A2, . . . , of sets (
J = N ).

Here are some examples of non-finite unions and intersections.

Proposition 5.1. For the following note that [u, v] = ∅ for u > v and ]u, v[= ∅ for u = v (see (2.10) on
p.17). Let a, b ∈ R. Then

]a, b[ =
⋃
n∈N

[a+ 1/n, b− 1/n],(5.4)

[a, b] =
⋂
n∈N

]a− 1/n, b+ 1/n[.(5.5)

The proof is left as exercise 16.1.

Example 5.1. For any set A we have A =
⋃
a∈A
{a}. According to (5.3) this also is true if A = ∅. �

The following trivial lemma (a lemma is a “proof subroutine” which is not remarkable on its own but very
useful as a reference for other proofs) is useful if you need to prove statements of the form A ⊆ B or A = B
for sets A and B. It is a means to simplity the proofs of [1] B/G (Beck/Geoghegan), project 5.12. You must
reference this lemma as the “inclusion lemma” when you use it in your homework or exams. Be sure to
understand what it means if you choose J = {1, 2} (draw one or two Venn diagrams).
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Lemma 5.1 (Inclusion lemma). Let J be an arbitrary, non-empty index set. Let U,Xj , Y, Zj ,W (j ∈ J)
be sets such that U ⊆ Xj ⊆ Y ⊆ Zj ⊆W for all j ∈ J . Then

(5.6) U ⊆
⋂
j∈J

Xj ⊆ Y ⊆
⋃
j∈J

Zj ⊆W.

Proof: Note that we need at various places in this proof the existence of some j0 ∈ J , i.e. the assumption that
J 6= ∅ is essential.

a. Let x ∈ U . Then x ∈ Xj for all j ∈ J , hence x ∈
⋂
j∈J

Xj . This proves the first inclusion.

b. Now let x ∈
⋂
j∈J

Xj and j0 ∈ J . Then x ∈ Xj for all j ∈ J ; in particular, x ∈ Xj0 . It follows

from Xj0 ⊆ Y that x ∈ Y and we have shown the second inclusion.
c. Let x ∈ Y and j0 ∈ J . It follows from Y ⊆ Zj0 that x ∈ Zj0 . But then x ∈ {z : z ∈

Zj for some j ∈ J}, i.e., x ∈
⋃
j∈J

Zj . This proves the third inclusion.

d. Finally, assume x ∈
⋃
j∈J

Zj It follows from the definitions of unions that there exists j0 ∈ J such

that x ∈ Zj0 . But then x ∈ W as W contains Zj0 . It follows that
⋃
j∈J

Zj ⊆W . This finishes the

proof of the rightmost inclusion. �

Definition 5.2 (Disjoint families). Let J be a nonempty set. We call a family of sets (Ai)i∈J a mu-
tually disjoint family if any two different sets Ai, Aj have intersection Ai ∩ Aj = ∅, i.e., if any two
sets in that family are mutually disjoint. �

Definition 5.3 (Partition). Let A ⊆ 2Ω. We call A a partition of Ω if A ∩B = ∅ for any two A,B ∈ A

and Ω =
⊎[

A : A ∈ A
]
.

We extend this definition to arbitrary families and hence finite collections and sequences of subsets
of Ω: Let J be an arbitrary non-empty set, let (Aj)j∈J be a family of subsets of Ω and let A := {Aj :
j ∈ J}. We call (Aj)j∈J a partition of Ω if A is a partition of Ω.
Note that duplicate non-empty sets cannot occur in a disjoint family of sets because otherwise the
condition of mutual disjointness does not hold. �

Example 5.2. Here are some examples of partitions.

a. For any set Ω the collection { {ω} : ω ∈ Ω} is a partition of Ω.

b. The empty set is a partition of the empty set and it is its only partition. Do you see that this is a
special case of a?

c. The set of half open intervals { ]k, k + 1] : k ∈ Z} is a partitioning of R.

d. Given is a strictly increasing sequence n0 = 0 < n1 < n2 < . . . of non-negative integers. For
k ∈ N let Ak := {j ∈ N : nk−1 < j 5 nk}. Then the set {Ak : k ∈ N} is a partition of N (not of Z≥0!)
�

99



Theorem 5.1 (De Morgan’s Law). Let there be a universal set Ω (see (2.6) on p.14). Then the following
“duality principle” holds for any indexed family (Aα)α∈I of sets:

a.
(⋃
α

Aα
){

=
⋂
α

A{α b.
(⋂
α

Aα
){

=
⋃
α

A{α(5.7)

To put this in words, the complement of an arbitrary union is the intersection of the complements and the
complement of an arbitrary intersection is the union of the complements.

Generally speaking the formulas are a consequence of the duality principle for set operations which states that
any true statement involving a family of subsets of a universal sets can be converted into its “dual” true
statement by replacing all subsets with their complements, all unions with intersections and all intersections
with unions.

Proof of De Morgan’s law, formula a:

1) First we prove that {(
⋃
α
Aα) ⊆

⋂
α

({Aα):

Assume that x ∈ {(
⋃
α
Aα). Then x /∈ (

⋃
α
Aα) which is the same as saying that x does not belong to any of

the Aα. That means that x belongs to each {Aα and hence also to the intersection
⋂
α

({Aα).

2) Now we prove that {(
⋃
α
Aα) ⊇

⋂
α

({Aα): Let x ∈
⋂

({Aα). Then x belongs to each of the {Aα and hence

to none of the Aα. Then it also does not belong to the union of all the Aα and must therefore belong to the
complement {(

⋃
α
Aα). This completes the proof of formula a. The proof of formula b is not given here because

the mechanics are the same. �

You should draw the Venn diagrams involving just two sets A1 and A2 for both formulas a and b so that you
understand the visual representation of De Morgan’s law.

Proposition 5.2 (Distributivity of unions and intersections). Let (Ai)i∈I be an arbitrary family of sets
and let B be a set. Then ⋃

i∈I
(B ∩Ai) = B ∩

⋃
i∈I

Ai,(5.8) ⋂
i∈I

(B ∪Ai) = B ∪
⋂
i∈I

Ai.(5.9)

Proof: We only prove (5.8).
Proof of “⊆”: It follows from B ∩ Ai ⊆ Ai for all i that

⋃
i(B ∩ Ai) ⊆

⋃
iAi. Moreover, B ∩ Ai ⊆ B for

all i implies
⋃
i(B ∩Ai) ⊆

⋃
iB which equals B. It follows that

⋃
i(B ∩Ai) is contained in the intersection(⋃

iAi

)
∩B.

Proof of “⊇”: Let x ∈ B ∩
⋃
iAi. Then x ∈ B and x ∈ Ai? for some i? ∈ I , hence x ∈ B ∩ Ai? , hence

x ∈
⋃
i (B ∩Ai). �

Proposition 5.3 (Rewrite unions as disjoint unions). Let (Aj)j∈N be a sequence of sets which all are

contained within the universal set Ω. For n ∈ N let Bn :=

n⋃
j=1

Aj = A1 ∪A2 ∪ · · · ∪An
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Further, let C1 := A1 = B1 and Cn+1 := An+1 \Bn (n ∈ N). Then

a. The sequence (Bj)j is increasing: m < n⇒ Bm ⊆ Bn,

b. For each n ∈ N,
n⋃
j=1

Aj =
n⋃
j=1

Bj ,

c. The sets Cj are mutually disjoint and
n⋃
j=1

Aj =
n⋃
j=1

Bj =
n⊎
j=1

Cj .

Proof of a and of b: Left as exercise 5.2 (p.107).

Proof of c: Let 1 5 j 5 n. We note that Cj ⊆ Aj ⊆ Bj ⊆ Bn and obtain

Cj ∩ Cn+1 ⊆Bn ∩ Cn+1 = Bn ∩ (An+1 \Bn) = Bn ∩ (An+1 ∩B{n) = An+1 ∩ (Bn ∩B{n) = ∅.

We have proved that for any j, k ∈ N such that j < k the setsCj andCk have empty intersection (we replaced
n+ 1 with k) and it follows that the entire sequence of sets Cj is disjoint. �

5.2 Cartesian Products of more than Two Sets

Remark 5.1 (Associativity of cartesian products). Assume we have three sets A, B and C. We can
then look at

(A×B)× C = {((a, b), c) : a ∈ A, b ∈ B, c ∈ C}
A× (B × C) = {(a, (b, c)) : a ∈ A, b ∈ B, c ∈ C}

The mapping

F : (A×B)× C → A× (B × C),
(
(a, b), c

)
7→
(
(a, b), c

)
is bijective because it has the mapping

G : A× (B × C)→ (A×B)× C,
(
(a, b), c

)
7→
(
(a, b), c

)
as an inverse. For both (A × B) × C and A × (B × C) there are bijections to the set {(a, b, c) : a ∈
A, b ∈ B, c ∈ C} of all triplets (a, b, c): the obvious bijections would be (a, b, c) 7→

(
(a, b), c

)
and

(a, b, c) 7→
(
(a, b), c

)
. �

This remark leads us to the following definition:

Definition 5.4 (Cartesian Product of three or more sets). The cartesian product of three sets A, B
and C is defined as

A×B × C := {(a, b, c) : a ∈ A, b ∈ B, c ∈ C}

i.e., it consists of all pairs (a, b, c) with a ∈ A, b ∈ B and c ∈ C.
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More generally, for N sets X1, X2, X3, . . . , XN (N ∈ N), we define the cartesian product as 53

X1 ×X2 ×X3 × . . .×XN := {(x1, x2, . . . , xN ) : xj ∈ Xj for all 1 5 j 5 N}

Two elements (x1, x2, . . . , xN ) and (y1, y2, . . . , yN ) of X1 × X2 × X3 × . . . × XN are called
equal if and only if xj = yj for all j such that 1 5 j 5 N . In this case we write
(x1, x2, . . . , xN ) = (y1, y2, . . . , yN ) .

As a shorthand, we abbreviate XN := X ×X ×+ · · · ×X︸ ︷︷ ︸
N times

. �

Example 5.3 (N–dimensional coordinates). Here is the most important example of a cartesian prod-
uct of N sets. Let X1 = X2 = . . . = XN = R. Then

RN = {(x1, x2, . . . , xN ) : xj ∈ R for 1 5 j 5 N}

is the set of points in N–dimensional space. You may not be familiar with what those are unless
N = 2 (see example 4.1 above) or N = 3.

In the 3–dimensional case it is customary to write (x, y, z) rather than (x1, x2, x3) . Each such
triplet of real numbers represents a point in (ordinary 3–dimensional) space and we speak of its
x–coordinate, y–coordinate and z–coordinate.
For the sake of completeness: If N = 1 the item (x) ∈ R1 (where x ∈ R; observe the parentheses
around x) is considered the same as the real number x. In other words, we “identify” R1 with R.
Such a “one–dimensional point” is simply a point on the x–axis.

A short word on vectors and coordinates: For N 5 3 you can visualize the following: Given a point
x on the x–axis or in the plane or in 3–dimensional space, there is a unique arrow that starts at the
point whose coordinates are all zero (the "origin") and ends at the location marked by the point x.
Such an arrow is customarily called a vector.

Because it makes sense in dimensions 1, 2, 3, an N–tuple (x1, x2, . . . , xN ) is also called a vector of
dimension N . You will read more about this in the chapter 9, p.149, on vectors and vector spaces.

This is worth while repeating: We can uniquely identify each x ∈ RN with the corresponding vector:
an arrow that starts in (0, 0, . . . , 0︸ ︷︷ ︸

N times

) and ends in x.

More will be said about n-dimensional space in section 9, p.149 on Vectors and vector spaces. �

Example 5.4 (Parallelepipeds). Let a1 < b1, a2 < b2, a3 < b3 be real numbers. Then

[a1, b1]× [a2, b2]× [a3, b3] = {(x, y, z) : a1 5 x 5 b1, a2 5 y 5 b2, a3 5 z 5 b3}

is the parallelepiped (box or quad parallel to the coordinate axes) with sides [a1, b1], [a2, b2] and
[a3, b3]. This generalizes in an obvious manner to N dimensions:

53 If N > 3 there are many ways to group the factors of a cartesian product. For N = 4 there already are 3 times as
many possibilities as for N = 3:

X1 × (X2 ×X3 ×X4), (X1 ×X2)× (X3 ×X4), X1 × (X2 ×X3 ×X4),

Actually proving that we can group the sets with parentheses any way we like is very tedious and will not be done in
this document.
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Let N ∈ N and aj < bj (j ∈ N, j 5 N, aj , bj ∈ R). Then

[a1, b1]× [a2, b2]× · · · × [aN , bN ] = {(x1, x2, . . . , xN ) : aj 5 xj 5 bj , j ∈ N, j 5 N}

is the parallelepiped with sides [a1, b1], . . . , [aN , bN ]. �

We now introduce cartesian products of an entire family of sets (Xi)i∈I .

Definition 5.5 (Cartesian Product of a family of sets). Let I be an arbitrary, non–empty set (the
index set) and let (Xi)i∈I be a family of non–empty sets Xi. The cartesian product of the family
(Xi)i∈I is the set ∏

i∈I
Xi := (

∏
Xi)i∈I := {(xi)i∈I : xi ∈ Xi ∀i ∈ I}

of all familes (xi)i∈I each of whose members xj belongs to the corresponding set Xj . The "
∏

" is the
greek “upper case” letter “Pi” (whose lower case incarnation “π” you are probably more familiar
with). As far as I know, it was chosen because it has the same starting “p” sound as the word
“product” (as in cartesian product).

Two elements (xi)i∈I and (yk)k∈I of
∏
i∈I

Xi are called equal if and only if xj = yj for all j ∈ I . In this

case we write (xi)i∈I = (yk)k∈I . 54

If all sets Xi are equal to one and the same set X , we abbreviate XI :=
∏
i∈I

X :=
∏
i∈I

Xi. �

Remark 5.2. We note that each element (yx)x∈X of the cartesian product Y X is the function

y(·) : X → Y, x 7→ yx

(see def.4.17 (indexed families) and the subsequent remarks concerining the equivalence of func-
tions and families). In other words,

Y X = {f : f is a function with domain X and codomain Y }. �(5.10)

5.3 Countable Sets

This brief chapter is not very precise in that we do not talk about an axiomatic approach to finite sets and
countably infinite sets. You can find that in ch.13 of [1] (Beck/Geoghegan) but also in ch.7.1 on p.117 of this
document.

Everyone understands what a finite set is: It is a set with a finite number of elements.

Definition 5.6 (Finite sets). Let n ∈ N. we say that a set X has cardinality n and we write
card(X) := |X| := n if there is a bijective mapping between X and the set [n] := {1, 2, . . . , n}.
In other words, a set X of cardinality n is one whose elements can be enumerated as x1, x2, . . . , xn:
The cardinality of a finite set is simply the number of elements it contains.

We define the empty set ∅ as finite and we define card(∅) := 0. �

54 In other words, if and only if those two families are equal in the sense of the definition given after remark 4.14 on
p.92.
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You may be surprised to hear this but there are ways to classify the degree of infinity when looking at infinite
sets.

The “smallest degree of infinity” is found in sets that can be compared, in a sense, to the set N of all natural
numbers. Look back to definition (2.11) on the principle of mathematical induction. It is based on the property
of N that there is a starting point a1 = 1 and from there you can progress in a sequence

a2 = 2; a3 = 3; a4 = 4; . . . ak = k; ak+1 = k + 1; . . .

in which no two elements aj , ak are the same for different j and k. We have a special name for infinite sets
whose elements can be arranged into a sequence of that nature.

Definition 5.7 (Countable and countably infinite sets). Let X an arbitrary set such that there is a
bijection f : N→ X . This means that all of the elements of X can be arranged in a sequence

X = {x1 = f(1), x2 = f(2), x3 = f(3), . . . }.

which is infinite, i.e., we rule out the case of sets with finitely many members. X is called a count-
ably infinite set. We call a set that is either finite or countably infinite a countable set. and we
also say that X is countable.

A set that is neither finite nor countably infinite is called uncountable or not countable. �

The proofs given in the remainder of this brief chapter on cardinality are not precise as we do not try to
establish, for example in the first proof below, that for any subset B of a countable set there either exists an
n ∈ N and a bijection from B to [n] or there exists a bijection between B and N. You may be surprised to hear
that even the fact that there is no bijection between [m] = {1, 2, . . .m} and [n] = {1, 2, . . . n} for m 6= n
needs a proof that is not entirely trivial.

Theorem 5.2 (Subsets of countable sets are countable). Any subset of a countable set is countable.

Proof: It is obvious that any subset of a finite set is finite. So we only need to deal with the case where we take
a subset B of a countably infinite set A. Because A is countably infinite, we can arrange its elements into a
sequence

A = {a1, a2, a3, . . . }

We walk along that sequence and set

b1 := aj1 where j1 = min{j = 1 : aj1 ∈ B},
b2 := aj2 where j2 = min{j > j1 : aj2 ∈ B},
b3 := aj3 where j3 = min{j > j2 : aj3 ∈ B}, . . .

. . .

i.e., bj is element number j of the subsetB. The sequence (bj) contains exactly all elements ofB which means
that this set is either finite (in case there is an n0 ∈ N such that bn0 is the last element of that sequence) or it
is countably infinite in case that there are infinitely many bj . �

The following proposition is proved again more exactly in a later chapter (see thm.7.1 on p.122)

Theorem 5.3 (Countable unions of countable set). The union of countably many countable sets is count-
able.
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Proof: In the finite case let the sets be
A1, A2, A3, . . . , AN .

In the countable case let the sets be

A1, A2, A3, . . . , An, An+1, . . .

In either case we can assume that the sets are mutually disjoint, i.e., any two different sets Ai, Aj have
intersection Ai ∩Aj = ∅ (see definition (2.4) on p.13). This is just another way of saying that no two sets
have any elements in common. The reason we may assume mutual disjointness is that if we substitute

B1 := A1; B2 := A2 \B1; B3 := A3 \B2; . . .

then ⋃
j∈N

Aj =
⋃
j∈N

Bj

(why?) and the Bj are mutually disjoint and also countable (thm. 5.2 on p.104). So let us assume the Aj
are mutually disjoint. We write the elements of each set Aj as aj1, aj2, aj3, . . . .

A. Let us first assume that none of those sets is finite. We start the elements of each Aj in a separate row and
obtain
a11

// a12

||

a13
// a14

||

. . .

a21

��

a22

<<

a23

||

a24 . . .

a31

<<

a32

||

a33 a34 . . .

a41 a42 a43 a44 . . .

. . . . . . . . . . . . . . .

Now we create a new sequence bn by following the arrows from the start at a11. We obtain

b1 = a11; b2 = a12; b3 = a21; b4 = a31; . . .

You can see that this sequence manages to collect all elements aij in that infinite two–dimensional grid and
it follows that the union of the sets Aj is countable.

B. How do we modify this proof if some or all of the Ai are finite? We proceed as follows:

If the predecessor Ai−1 is finite with Ni−1 elements, we stick the elements aij to the right of the last ele-
ment ai−1,Ni−1 . Otherwise they start their own row.

If Ai itself is finite with Ni elements, we stick the elements ai+1,j to the right of the last element ai,Ni .
Otherwise they start their own row . . .

B.1. If an infinite number of sets has an infinite number of elements, then we have again a grid that is infinite
in both horizontal and vertical directions and you create the “diagonal sequence” bj just as before:
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Start off with the top-left element. Go one step to the right. Down–left until you hit the first column. Then
down one step.

Then up–right until you hit the first row. Then one step to the right. Down–left until you hit the first column.
Then down one step.

Then up–right until you hit the first row. Then one step to the right. Down–left until you hit the first column.
Then down one step.

Then up–right until . . .

B.2. Otherwise, if only a finite number of sets has an infinite number of elements, then we have a grid that is
infinite in only the horizontal direction. You create the “diagonal sequence” bj almost as before.

The exception: if you hit the bottom row, then must go one to the right rather than one down. Afterward you
march again up–right until you hit the first column . . . �

Corollary 5.1 (The rational numbers are countable).

Proof: Assume we can show that the set Q ∩ [0, 1[= {q ∈ Q : 0 5 q < 1 is countable. Then the set

Qz := Q ∩ [z, z + 1[ = {q ∈ Q : z 5 q < z + 1}(5.11)

is countable for any integer z ∈ Z.

The reason: once we find a sequence bj that runs through all elements of Q ∩ [0, 1[, then the sequence
ej := bj + z runs through all elements of Qz .

But Z = N ∪ {0} ∪ {−k : k ∈ N is countable as a union of only three countable sets.

Observe that Q =
⋃
z∈ZQz . It follows that Q is the countable union of the setsQz , each of which is countable.

So we are done with the proof . . . except we still must prove that the set Q0 of all rational numbers between
zero and one is countable. We do that now.

Let A1 := 0. Let

A2 :={z ∈ Q1 : z has denominator 2} = {0

2
,
1

2
}

A3 :={z ∈ Q1 : z has denominator 3} = {0

3
,
1

3
,
2

3
}

A4 :={z ∈ Q1 : z has denominator 4} = {0

4
,
1

4
,
2

4
,
3

4
}

. . .

An :={z ∈ Q1 : z has denominator n} = { 0

n
,

1

n
,

2

n
, . . . ,

n− 1

n
}

. . .

Then each set is finite and Q1 =
⋃
k∈N

Ak is a countable union of countably many finite sets and hence,

according to the previous theorem (5.3), countable. We are finished with the proof. �

Theorem 5.4 (The real numbers are uncountable). The real numbers are uncountable: There is no se-
quence (rn)n∈N such that {rn : n ∈ N} = R.
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Proof by contradiction: This proof follows the one given in B/G [1] (thm.13.22, p.125).

According to thm.5.2 on p.104 it is enough to prove that the subset [0, 1] of all decimals x = 0.d1d2d3 . . .
where each dn is a digit 0, 1, 2, . . . , 9 55 is not countable.

Let us assume assume that [0, 1] is countable, i.e., there exists a sequence of decimals xn = 0.dn,1dn,2dn,3 . . .
as follows: for each x ∈ [0, 1] there exists some k = k(x) ∈ N such that x = xk and find a contradiction. For
n ∈ N we define the digit d̃n as

d̃n :=

{
3 if dn,n 6= 3,

4 if dn,n = 3.

Let y := 0.d̃1d̃2d̃3 . . . . Clearly y ∈ [0, 1]. It follows from d1,1 6= d̃1 that y 6= x1. It follows from d2,2 6= d̃2

that y 6= x2. You should get the idea: Let k ∈ N. It follows from dk,k 6= d̃k that y 6= xk. This contradicts the
assumption that for each x ∈ [0, 1] there exists some k = k(x) ∈ N such that x = xk. �

5.4 Exercises for Ch.5

Exercise 5.1. Prove prop.5.1 on p.98: Let a, b ∈ R. Then

a. ]a, b[ =
⋃
n∈N

[a+ 1/n, b− 1/n],

b. [a, b] =
⋂
n∈N

]a− 1/n, b+ 1/n[.

Use the following:

a. [u, v] = ∅ for u > v and ]u, v[= ∅ for u = v.
b. For any two real numbers α < β there exists a suitably large k ∈ N such that α+ 1/n < β (and

hence α < β − 1/n.) 56 �

Exercise 5.2. Prove a and b of prop.5.3 (Rewrite unions as disjoint unions) on p.100:

Let (Aj)j∈N such that Aj ⊆ Ω for all j ∈ N. For n ∈ N let Bn :=
n⋃
j=1

Aj = A1 ∪A2 ∪ · · · ∪An

Further, let C1 := A1 = B1 and Cn+1 := An+1 \Bn (n ∈ N). Then

a. The sequence (Bj)j is increasing: m < n⇒ Bm ⊆ Bn,

b. For each n ∈ N,
n⋃
j=1

Aj =
n⋃
j=1

Bj . �

55 We must include the number 1 = 0.9̄.
56This follows from the well–known the fact from calculus that lim

n→∞
1/n = 0.
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6 Sets and Functions, Direct and Indirect Images (Study this!)

6.1 Direct Images and Indirect Images (Preimages) of a Function

Definition 6.1. Let X,Y be two non-empty sets and f : X → Y be an arbitrary function with
domain X and codomain Y . Let A ⊆ X and B ⊆ Y . Let

f(A) := {f(x) : x ∈ A},(6.1)

f−1(B) := {x ∈ X : f(x) ∈ B}.(6.2)

We call f(A) the direct image 57 of A under f and we call We call f−1(B) the indirect image or
preimage of B under f . �

Notational conveniences:

If we have a set that is written as {. . . } then we may write f{. . . } instead of f({. . . }) and f−1{. . . } instead
of f−1({. . . }). Specifically for x ∈ X and y ∈ Y we get f−1{x} and f−1{y}. Many mathematicians will
write f−1(y) instead of f−1{y} but this writer sees no advantages doing so whatsover. There seemingly are
no savings with respect to time or space for writing that alternate form but we are confounding two entirely
separate items: a subset f−1{y} of X v.s. the function value f−1(y) of y ∈ Y which is an element of X . We
can talk about the latter only in case that the inverse function f−1 of f exists.

In measure theory and probability theory the following notation is also very common: {f ∈ B} rather than
f−1(B) and {f = y} rather than f−1{y}

Let a < b ∈ R. We write {a 5 f 5 b} for f−1([a, b]), {a < f < b} for f−1(]a, b[), {a 5 f < b} for
f−1([a, b[) and {a < f 5 b} for f−1(]a, b]), {f 5 b} for f−1(]−∞, b]), etc.

Unless stated otherwise, X,Y and f are as stated above for the remainder of this chapter: f is a function with
domain X and codomain Y .

Proposition 6.1. Some simple properties:

f(∅) = f−1(∅) = ∅(6.3)
A1 ⊆ A2 ⊆ X ⇒ f(A1) ⊆ f(A2)(6.4)

B1 ⊆ B2 ⊆ Y ⇒ f−1(B1) ⊆ f−1(B2)(6.5)
x ∈ X ⇒ f({x}) = {f(x)}(6.6)

f(X) = Y ⇔ f is surjective(6.7)

f−1(Y ) = X always!(6.8)

Proof: Left as an exercise. �

Proposition 6.2 (f−1 is compatible with all basic set ops). In the following we assume that J is an
arbitrary index set, and that B ⊆ Y , Bj ⊆ Y for all j.

57 The range f(X) of f (see (4.9) on p.78 is a special case of a direct image.

108



The following all are true:

f−1(
⋂
j∈J

Bj) =
⋂
j∈J

f−1(Bj)(6.9)

f−1(
⋃
j∈J

Bj) =
⋃
j∈J

f−1(Bj)(6.10)

f−1(B{) = f−1(B){(6.11)

f−1(B1 \B2) = f−1(B1) \ f−1(B2)(6.12)

f−1(B1∆B2) = f−1(B1)∆f−1(B2)(6.13)

Proof of (6.9): Let x ∈ X . Then

x ∈ f−1(
⋂
j∈J

Bj) ⇔ f(x) ∈
⋂
j∈J

Bj (def preimage)

⇔ ∀j f(x) ∈ Bj (def ∩)

⇔ ∀j x ∈ f−1(Bj) (def preimage)

⇔ x ∈
⋂
j∈J

f−1(Bj) (def ∩)

(6.14)

Proof of (6.10): Let x ∈ X . Then

x ∈ f−1(
⋃
j∈J

Bj) ⇔ f(x) ∈
⋃
j∈J

Bj (def preimage)

⇔ ∃j0 : f(x) ∈ Bj0 (def ∪)

⇔ ∃j0 : x ∈ f−1(Bj0) (def preimage)

⇔ x ∈
⋃
j∈J

f−1(Bj) (def ∪)

(6.15)

Proof of (6.11): Let x ∈ X . Then

x ∈ f−1(B{) ⇔ f(x) ∈ B{ (def preimage)
⇔ f(x) /∈ B (def (·){)
⇔ x /∈ f−1(B) (def preimage)

⇔ x ∈ f−1(B){ (·){)

(6.16)

Proof of (6.12): Let x ∈ X . Then

x ∈ f−1(B1 \B2) ⇔ x ∈ f−1(B1 ∩B{2) (def \)

⇔ x ∈ f−1(B1) ∩ f−1(B{2) (see (6.9)

⇔ x ∈ f−1(B1) ∩ f−1(B2){ (see (6.11)

⇔ x ∈ f−1(B1) \ f−1(B2) (def \)

(6.17)

Proof of (6.13): This follows from B1∆B2 = (B1 \B2) ∪ (B2 \B1) and (6.10) and (6.12). �
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Proposition 6.3 (Properties of the direct image). In the following we assume that J is an arbitrary index
set, and that A ⊆ X , Aj ⊆ X for all j.
The following all are true:

f(
⋂
j∈J

Aj) ⊆
⋂
j∈J

f(Aj)(6.18)

f(
⋃
j∈J

Aj) =
⋃
j∈J

f(Aj)(6.19)

Proof of (6.18): This follows from the monotonicity of the direct image (see 6.4):⋂
j∈J

Aj ⊆ Ai ∀i ∈ J ⇒ f(
⋂
j∈J

Aj) ⊆ f(Ai) ∀i ∈ J (see 6.4)

⇒ f(
⋂
j∈J

Aj) ⊆
⋂
i∈J

f(Ai) (def ∩)

First proof of (6.19)) - “Expert proof”:

y ∈ f(
⋃
j∈J

Aj) ⇔ ∃ x ∈ X : f(x) = y and x ∈
⋃
j∈J

Aj (def f(A))(6.20)

⇔ ∃ x ∈ X and j0 ∈ J : f(x) = y and x ∈ Aj0 (def ∪)(6.21)
⇔ ∃ x ∈ X and j0 ∈ J : f(x) = y and f(x) ∈ f(Aj0) (def f(A))(6.22)
⇔ ∃ j0 ∈ J : y ∈ f(Aj0) (def f(A))(6.23)

⇔ y ∈
⋃
j∈J

f(Aj) (def ∪)(6.24)

Alternate proof of (6.19) - Proving each inclusion separately. Unless you have a lot of practice reading and
writing proofs whose subject is the equality of two sets you should write your proof the following way:

A. Proof of “⊆”:

y ∈ f(
⋃
j∈J

Aj) ⇒ ∃ x ∈ X : f(x) = y and x ∈
⋃
j∈J

Aj (def f(A))(6.25)

⇒ ∃ j0 ∈ J : f(x) = y and x ∈ Aj0 (def ∪)(6.26)
⇒ y = f(x) ∈ f(Aj0)(def f(A))(6.27)

⇒ y ∈
⋃
j∈J

f(Aj) (def ∪)(6.28)

B. Proof of “⊇”:

This is a trivial consequence from the monotonicity of A 7→ f(A):

Ai ⊆
⋃
j∈J

Aj ∀ i ∈ J ⇒ f(Ai) ⊆ f
( ⋃
j∈J

Aj
)
∀ i ∈ J(6.29)

⇒
⋃
i∈J

f(Ai) ⊆ f
( ⋃
j∈J

Aj
)
∀ i ∈ J (def ∪)(6.30)
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�

You see that the “elementary” proof is barely longer than the first one, but it is so much easier to understand!

Remark 6.1. In general you will not have equality in (6.18). Counterexample: f(x) = x2 with
domain R: Let A1; =]−∞, 0] and A2; = [0,∞[. Then A1 ∩A2 = {0}, hence f(A1 ∩A2) = f({0}) =
{0}. On the other hand, f(A1) = f(A2) = [0,∞], hence f(A1) ∩ f(A2) = [0,∞]. Clearly, {0} (
[0,∞]. �

Proposition 6.4 (Preimage of function compositions). Let X,Y, Z be an arbitrary, non–empty sets. Let
f : X → Y and g : Y → Z and let W ⊆ Z. Then

(g ◦ f)−1 = f−1 ◦ g−1, i.e., (g ◦ f)−1(W ) = f−1
(
g−1(W )

)
for all W ⊆ Z.

Proof:
a. “⊆”: Let W ⊆ Z and x ∈ (g ◦ f)−1(W ). Then g

(
f(x)

)
= (g ◦ f)(x) ∈ W , hence f(x) ∈ g−1(W ). But

then x ∈ f−1
(
g−1(W )

)
. This proves “⊆”.

b. “⊇”: LetW ⊆ Z, h := g◦f , and x ∈ f−1
(
g−1(W )

)
. Then f(x) ∈ g−1(W ), hence h(x) = g(f(x)) ∈W ,

hence x ∈ h−1(W ) = (g ◦ f)−1(W ). This proves “⊇”. �

Proposition 6.5 (Indirect image and fibers of f ). Let X , Y be non–empty sets and let f : X → Y be a
function. We define on the domain X a relation “∼” as follows:

x1 ∼ x2 ⇔ f(x1) = f(x2), i.e.,.(6.31)

a. Then “∼” is an equivalence relation and its equivalence classes which we denote by [x]f
58 are obtained as

follows:

[x]f = {a ∈ X : f(a) = f(x)} (x ∈ X).(6.32)

b. The following is true for this equivalence relation:

x ∈X ⇒
[

[x]f = {a ∈ X : f(a) = f(x)} = f−1{f(x)}
]

(6.33)

A ⊆X ⇒ f−1(f(A)) =
⋃
a∈A

[a]f .(6.34)

Proof of (6.33): The equation on the left is nothing but the definition of the equivalence classes generated by
an equivalence relation, the equation on the right follows from the definition of preimages.

Proof of (6.34):

As f(A) = f(
⋃
x∈A{x}) =

⋃
x∈A{f(x)} (see 6.19), it follows that

f−1(f(A)) = f−1(
⋃
x∈A
{f(x)})(6.35)

=
⋃
x∈A

f−1{f(x)} (see 6.10)(6.36)

=
⋃
x∈A

[x]f (see 6.33)(6.37)

�
58 [x]f is called the fiber over f(x) of the function f .
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Corollary 6.1.

A ⊆X ⇒ f−1(f(A)) ⊇ A.(6.38)

Proof: It follows from x ∼ x for all x ∈ X that x ∈ [x]f , i.e., {x} ⊆ [x]f for all x ∈ X . But then

A =
⋃
x∈A
{x} ⊆

⋃
x∈A

[x]f = f−1(f(A))(6.39)

where the last equation holds because of (6.34). �

Proposition 6.6.

B ⊂ Y ⇒ f(f−1(B)) = B ∩ f(X).(6.40)

Proof of “⊆”:

Let y ∈ f(f−1(B)). There exists x0 ∈ f−1(B) such that f(x0) = y (def direct image). We have
a. x0 ∈ f−1(B) ⇒ y = f(x0) ∈ B (def. of preimage)
b. Of course x0 ∈ X . Hence y = f(x0) ∈ f(X).

a and b together imply y ∈ B ∩ f(X).

Proof of “⊇”:

Let y ∈ f(X) and y ∈ B. We must prove that y ∈ f(f−1(B)). Because y ∈ f(X) there exists x0 ∈ X such
that y = f(x0). Because y = f(x0) ∈ B we conclude that x0 ∈ f−1(B) (def preimage).

We abbreviate A := f−1(B). Now it easy to see that

x0 ∈ f−1(B) = A ⇒ y = f(x0) ∈ f(f−1(B)).(6.41)

We have shown that if y ∈ f(X) and y ∈ B then y ∈ f(f−1(B)). The proof is completed. �

Remark 6.2. Be sure to understand how the assumption y ∈ f(X) was used. �

Corollary 6.2.

B ∈Y ⇒ f(f−1(B)) ⊆ B.(6.42)

Trivial as f(f−1(B)) = B ∩ f(X) ⊆ B. �

6.2 Indicator Functions

In certain situation it is advantageous to think of the subsets of a universal set Ω as “binary” functions
Ω→ {0, 1}.

Definition 6.2 (indicator function for a set). Let Ω be “the” universal set, i.e., we restrict our scope
of interest to subsets of Ω. Let A ⊆ Ω. Let 1A : Ω→ {0, 1} be the function

(6.43) 1A(ω) :=

{
1 if ω ∈ A,
0 if ω /∈ A.
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1A is called the indicator function of the set A. 59 �

The above association of a subset A of Ω with its indicator function is unique:

Proposition 6.7. Let F (Ω, {0, 1}) denote the set of all functions f : Ω → {0, 1}, i.e., all functions f with
domain Ω for which the only possible function values f(ω) are zero or one.

a. The mapping

F :2Ω → F (Ω, {0, 1}), defined as F (A) := 1A(6.44)

which assigns to each subset of Ω its indicator function is injective.

b. Let f ∈ F (Ω, {0, 1}). Further, let A := {f = 1} := f−1({1}) := {a ∈ A : f(a) = 1}. Then f = 1A.

c. The function F above is bijective and its inverse function is

G :F (Ω, {0, 1})→ 2Ω, defined as G(f) := {f = 1}.(6.45)

Proof of a: This follows from c which will be proved below.

Proof of b: We have

f(ω) = 1 ⇔ ω ∈ {f = 1} (def. of inverse image)
⇔ ω ∈ A (because A = {f = 1})
⇔ 1A(ω) = 1 (def. of indicator function).

It follows that f(ω) = 1 if and only if 1A(ω) = 1. As the only other possible function value is 0 we conclude
that f(ω) = 0 if and only if 1A(ω) = 0. It follows that f(ω) = 1A(ω) for all ω ∈ Ω, i.e., f = 1A and this
proves b.

Proof of c: It follows from a and b that F is bijective. According to theorem 4.1 on p.86 about the character-
ization of inverse functions we have a second proof if we can demonstrate that F and G are inverse to each
other. To prove this it suffices to show that

G ◦ F = id2Ω and F ◦G = idF (Ω,{0,1}).(6.46)

Let A ⊆ Ω and A ∈ Ω. Then

G ◦ F (A) = G(1A) = {1A = 1} = {ω ∈ Ω : 1A(ω) = 1} = {ω ∈ Ω : ω ∈ A} = A.

This proves G ◦ F = id2Ω . Let ω ∈ Ω. Then(
F ◦G(f)

)
(ω) = F ({f = 1})(ω) = 1{f=1}(ω)

=

{
1 iff ω ∈ {f = 1},
0 iff ω /∈ {f = 1}

=

{
1 iff f(ω) = 1,

0 iff f(ω) 6= 1
=

{
1 iff f(ω) = 1,

0 iff f(ω) = 0
= f(ω).

59 Some authors call this characteristic function of A and some choose to write χA or 1A instead of 1A.
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The equation next to the last results from the fact that the only possible function values for f are 0 and 1. It
follows that F ◦G(f) = idF (Ω,{0,1})(f) for all f ∈ F (Ω, {0, 1}), hence F ◦G = idF (Ω,{0,1}). We have
proved (6.46) and hence c. �

The following definition is a special case of “modular arithmetic”. We will only use it in the context of
indicator functions of set differences. For further information we refer to [1] B/G, ch.6.3.

Definition 6.3 (mod 2 addition). Let m,n ∈ Z We define be the function

(6.47) m+ n mod 2 :=

{
0 if m+ n is even,
1 if m+ n is odd,

and we call m+ n mod 2 the sum mod 2 of m and n. �

Proposition 6.8 (Addition mod 2 is associative). Let m,n, p ∈ Z. Then(
m+ n mod 2

)
+ p mod 2 = m+

(
n+ p mod 2

)
mod 2.(6.48)

Proof: See [1] B/G, prop.6.26.

Proposition 6.9. Let A,B,C be subsets of Ω. Then

1A∪B = max(1A, 1B),(6.49)
1A∩B = min(1A, 1B),(6.50)

1A{ = 1− 1A,(6.51)
1A4B = 1A + 1B mod 2.(6.52)

Proof: The proof of the first three equations is left as an exercise.

Proof of (6.52): This follows easily from the the fact that

(A4B){ = {ω ∈ Ω : either ω ∈ A ∩B or ω ∈ neither A nor B} �

Proposition 6.10 (Addition mod 2 is associative). Let A,B,C ⊆ Ω. Then

(A4B)4C = A4(B4C).(6.53)

Proof: This follows easily from (6.52) and prop.6.8 as follows. Let ω ∈ Ω. Then

ω ∈ (A4B)4C ⇔ 1(A4B)4C = 1 ⇔ 1A4(B4C) = 1 ⇔ ω ∈ A4(B4C).

We obtained the equivalence in the middle from prop.6.8. �

6.3 Exercises for Ch.6

Exercise 6.1. Prove prop.6.1 on p.108:
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a. f(∅) = f−1(∅) = ∅
b. A1 ⊆ A2 ⊆ X ⇒ f(A1) ⊆ f(A2)

c. B1 ⊆ B2 ⊆ Y ⇒ f−1(B1) ⊆ f−1(B2)
d. x ∈ X ⇒ f({x}) = {f(x)}
e. f(X) = Y ⇔ f is surjective
f. f−1(Y ) = X always! �

Exercise 6.2. Prove prop.6.11 on p.115.
Hint: The main tools you need are prop.6.5 on p.111, prop6.6 on p.112, and their corollaries. �

Exercise 6.3. Prove prop.6.12 on p.115.
Hint: Work with the inverse of f and apply prop.6.2 on p.108. �

Exercise 6.4. Prove prop.6.13 on p.116.
Hint: To prove a, use prop.6.3 on p.110. �

6.4 Addenda to Ch.6

Proposition 6.11.

a. Let A ⊆ X . If f : X → Y is injective then f−1(f(A)) = A.

b. Let B ⊆ Y . If f : X → Y is surjective then f
(
f−1(B)

)
= B.

c. Let A ⊆ X and B ⊆ Y . If f : X → Y is injective and if B = f(A) then f−1(B) = A.

d. Let A ⊆ X and B ⊆ Y . If f : X → Y is surective and if f−1(B) = A then B = f(A).

e. Let A ⊆ X and B ⊆ Y . If f : X → Y is bijective then B = f(A) ⇔ f−1(B) = A.

Proof: Left as exercise 6.2.

�

Proposition 6.12. In the following we assume that J is an arbitrary index set, and that A ⊆ X , Aj ⊆ X
for all j.
Let f : X → Y be bijective. Then the following all are true:

f(
⋂
j∈J

Aj) =
⋂
j∈J

f(Aj)(6.54)

f(
⋃
j∈J

Aj) =
⋃
j∈J

f(Aj)(6.55)

f(A{) = f(A){(6.56)
f(A1 \A2) = f(A1) \ f(A2)(6.57)
f(A1∆A2) = f(A1)∆f(A2)(6.58)

Proof: Left as exercise 6.3.

�
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Proposition 6.13. Let J be an arbitrary non–empty index set and let (Aj)j∈J be a partition of X , i.e., if
i 6= j then Ai ∩ Aj = ∅ and X =

⊎
j Aj . Assume further that none of the Aj are enpty. For j ∈ J let

Bj := f(Aj). Then

a. (Bj)j∈J is a partition of Y .
b. For j ∈ J we look at the restriction f

∣∣
Aj

: Aj → Y to Aj . Then f
∣∣
Aj

(Aj) = Bj and the function

fj : Aj → Bj , x 7→ fj(x) := f
∣∣
Aj

(x) = f(x)

is a bijection.

Proof: Left as exercise 6.4.

�

Corollary 6.3. Let f : X → Y be bijective. Let A ⊂ X,A 6= ∅ (strict inclusion, so A{ 6= ∅). Then both

fA : A→ f(A), x→ f(x) and fA{ : A{ → f(A{)

are bijections.

Proof: This follows from prop.6.13, applied to J = {1, 2}, A1 = A,A2 = A{. �

Corollary 6.4. Let f : X → Y be bijective. Let a ⊂ X and assume that X 6= {a}. Then

f̃ : X \ {a} → Y \ {f(a)}, x→ f(x)

also is bijective. 60

Proof: This follows from 6.4 applied to A = {a} and the fact that f({a}) = {f(a)}. �

60 This is B/G [1] prop.13.2.
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7 Some Miscellaneous Topics

Although this chapter only contains a single topic at this time (cardinality), additional topics are planned in
the future.

7.1 Cardinality - Alternate Approach to Beck/Geoghegan (Study this!)

This chapter gives an alternative presentation of cardinality from that of ch.13 of B/G. It also gives a more
exact presentation of the material in ch.5.3 on p.103 of this document.

Notation: In this entire chapter on cardinality, if n ∈ N, the symbol [n] does not denote an
equivalence class of any kind but the set {1, 2, . . . , n} of the first n natural numbers.

At the beginning of this chapter we look at two lemmata that let you replace bijective and surjective functions
with more suitable ones that inherit bijectivity or surjectivity. This will come in handy when we prove
propositions concerning cardinality.

The first lemma shows how to preserve bijectivity if two function values need to be switched around.

Lemma 7.1. Let X,Y 6= ∅, let f : X → Y be bijective and let x1, x2 ∈ X . Let

(7.1) g(x) :=


f(x2) ifx = x1,

f(x1) ifx = x2,

f(x) ifx 6= x1, x2.

(In other words, we swap two function arguments). Then g : X → Y also is bijective.

Proof: Let y1 := f(x1) and y2 := f(x2). Let f−1 : Y → X be the inverse function of f
and define G : Y → X as follows

(7.2) G(y) :=


f−1(y2) if y = y1,

f−1(y1) if y = y2,

f−1(y) if y 6= y1, y2.

We show that G satisfies G ◦ g = idX and g ◦G = idY , i.e., g has G as its inverse. This suffices to prove
bijectivity of g.

y 6= y1, y2 ⇒ g ◦G(y) = g(f−1(y)) = f(f−1(y)) = y as f−1(y) 6= x1, x2,

g ◦G(y1) = g(f−1(y2)) = g(x2) = f(x1) = y1 as f−1(y2) = x2,

g ◦G(y2) = g(f−1(y1)) = g(x1) = f(x2) = y2 as f−1(y1) = x1.

Further,

x 6= x1, x2 ⇒ G ◦ g(x) = G(f(x)) = f−1f(x)) = y as f(x) 6= y1, y2,

G ◦ g(x1) = G(f(x2)) = G(y2) = f−1(y1)) = x1 as f(x1) = y1,

G ◦ g(x2) = G(f(x1)) = G(y1) = f−1(y2)) = x2 as f(x2) = y2.
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We have proved that g has an inverse, the function G. �

Note that the validity of G ◦ g = idX and g ◦ G = idY is obvious without the use of any formalism: g
differs from f only in that it switches around the function values f(x1) and f(x2). and G differs from f−1

only in that this switch is reverted.

A more general version of the above shows how to preserve surjectivity if two function values need to be
switched around.

Lemma 7.2. Let X,Y 6= ∅ and assume that Y contains at least two elements y1 and y2. Let f : X → Y be
surjective.

Let A1 := f−1{y1}, A2 := f−1{y2}, and B := X \ (A1 ∪A2). Let

(7.3) g(x) :=


y2 ifx ∈ A1,

y1 ifx ∈ A2,

f(x) ifx ∈ B.

In other words, everything that f maps to y1 is now mapped to y2 and everything that f maps to y2 is now
mapped to y1. Then g : X → Y also is surjective.

Proof:

We notice that A1, A2, B partition X into three mutually exclusive parts: X = B
⊎
A1
⊎
A2

and that the sets f(A1) = {y1}, f(A2) = {y2}, f(B) = Y \ {y1, y2}

partition Y into Y = f(B)
⊎
f(A1)

⊎
f(A2). (Do you see why f(B) = Y \ {y1, y2}?)

B and hence f(B) might be empty but none of the other four sets are.

It follows that there is indeed a function value g(x) for each x ∈ X and there is exactly one such value, i.e., g
in fact defines a mapping from X to Y .

The surjectivity of g follows from that of f and the fact that

(7.4) Y = f(B) ∪ f(A1) ∪ f(A2) = g(B) ∪ g(A2) ∪ g(A1)

(see (6.19) on p. 110 in prop. 6.3 (Properties of the direct image)). �

The definitions of finite, countable, countably infinite and uncountable sets were given at the beginning of ch.
5.3: “Countable sets” on p. 103.

Definition 7.1 (cardinality comparisons). Given two arbitrary sets X and Y we say cardinality of
X 5 cardinality of Y and we write card(X) 5 card(Y ) if there is an injective mapping f : X → Y .

We say X,Y have same cardinality and we write card(X) = card(Y ) if both card(X) 5 card(Y )
and card(Y ) 5 card(X), i.e., there is a bijective mapping f : X

∼→ Y .

Finally we say cardinality of X < cardinality of Y and we write card(X) < card(Y ) if both
card(X) 5 card(Y ) and card(Y ) 6= card(X), i.e., there is an injective mapping but not a bijection
f : X → Y . �
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Remark: Note that the above definition does not specify how card(X) itself is defined. This will be done in
def.7.3 on p.124.

Proposition 7.1. Let m,n ∈ N. Let ∅ 6= A ⊆ [m]. If m < n then there is no surjection from A to [n].

Proof by induction on n:

Base case: Let n = 2. This implies m = 1 and A = [1] (no other non-empty subset of [1]). For an arbitrary
function f : A → [2] we have either f(1) = 1 in which case 2 /∈ f(A) or f(1) = 2 in which case 1 /∈ f(A).
This proves the base case.

Induction assumption: Fix n ∈ N and assume that for any m̃ < n and non-empty Ã ⊆ [m̃] there is no
surjective f̃ : Ã→ [n].

We must prove the following: Let m ∈ N and ∅ 6= A ⊆ [m]. If m < n+ 1 then there is no surjection from A
to [n+ 1].

We now assume to the contrary that a surjective f : A→ [n+ 1] exists.

case 1: n /∈ A:

As m < n+ 1 this implies both n, n+ 1 /∈ A, hence A ⊆ [n− 1].

Let Ã := A \ f−1{n+ 1}. Then Ã ⊆ A ⊆ [n− 1]

and, because the surjective f “hits” every integer between 1 and n + 1 and we only removed those a ∈ A
which map to n+ 1, the restriction f̃ of f to Ã covers any integer between 1 and n.

In other words, f̃ : Ã→ [n] is surjective, contradictory to our induction assumption.

case 2: n ∈ A and f(n) = n+ 1: As in case 1, let Ã := A \ f−1{n+ 1}.

Then Ã ⊆ [n− 1] because n was discarded from A as an element of f−1{n+ 1}.

Again, the surjective f “hits” every integer between 1 and n + 1 and again, we only removed those a ∈ A
which map to n+ 1.

It follows as in case 1 that f̃ : Ã→ [n] is surjective, contradictory to our induction assumption.

case 3: n ∈ A and f(n) 6= n+1: According to lemma 7.1 on p.119 we can replace f by a surjective function
g which maps n to n+ 1.

This function satisfies the conditions of case 2 above, for which it was already proved that no surjective
mapping from A to [n+ 1] exists. We have reached a contradiction. �

Corollary 7.1 (No bijection from [m] to [n] exists). B/G Thm.13.4: Let m,n ∈ N. If m 6= n then there is
no bijective f : [m]

∼−→ [n].

Proof: We may assume m < n and can now apply prop. 7.1 with A := [m]. �

Corollary 7.2 (Pigeonhole Principle). B/G Prop.13.5: Let m,n ∈ N. If m < n then there is no injective
f : [n]→ [m].
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Proof: Otherwise, by thm.4.2 on p.88, f would have a (surjective) left inverse g : [m]→ [n] in contradiction
to the preceding proposition. �

Proposition 7.2 (B/G Prop.13.6, p.122: Subsets of finite sets are finite). Let ∅ 6= B ⊆ A and let A be
finite. Then B is finite.

Proof: Done by induction on the cardinality n of sets:

Base case: n = 1 or n = 2: Proof obvious.

Induction assumption: Assume that all subsets of sets of cardinality less than n are finite.

Now let A be a set with cardinality card(A) = n. there is a bijection a(·) : [n]
∼−→ A. Let B ⊆ A.

Case 1: a(n) ∈ B: Let Bn := B \ {a(n)} and An := A \ {a(n)}.

Then the restriction of a(·) to [n− 1] is a bijection [n− 1]
∼−→ An according to cor.6.3 on p.116.

As card(An) = n − 1 and Bn ⊆ An it follows from the induction assumption that Bn is finite: there exists
m ∈ N and a bijection b(·) : [m]

∼−→ Bn.

We now extend b(·) to [m+ 1] by defining b(m+ 1) := a(n). It follows that this extension remains injective
and it is also surjective if we choose as codomain Bn ∪ {a(n)} = B.

It follows that B is finite.

Case 2: a(n) /∈ B: We pick an arbitrary b ∈ B. Let j := a−1(b). Clearly j ∈ [n].

Now we modify the mapping a(·) by switching the function values for j and n. We obtain another bijection
f : [n]

∼−→ A (see lemma 7.1 on p. 117) for which f(n) = a(j) = b ∈ B.

We now can apply what was proved in case 1 and obtain that B is finite. �

Proposition 7.3 (B/G Cor.13.16, p.122). N2 is countable.

Proof: 61 Done by directly specifiying a bijection F : N2 ∼−→ N.

The following definitions and observations will make it easier to understand this proof. Let

s0 := 0; sn :=
n∑
j=1

j = 1 + 2 + · · ·+ n =
n(n+ 1)

2
.

For the last equality see [1] B/G prop.4.11 on p.37. We note that

sn−1 + n =sn,(7.5)

hence

An := {j ∈ N : sn−1 < j 5 sn} = {sn−1 + 1, sn−1 + 2, . . . , sn−1 + n} (n ∈ N)(7.6)

61 Understanding this proof is not very important and you will understand the essence of it if you read instead the
subsequent remark 7.1.
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is a partition of N (see example 5.2.d on p.99).

For n ∈ N \ {1} = {2, 3, 4, . . . } let

Dn := {(i, j) ∈ N2 : i+ j = n}

be the set of all pairs of natural numbers whose sum equals n. Clearly, (Dn+1)n=2 is a partition of N2.

For n ∈ N let us look at the mapping

fn :An → Dn+1, sn−1 + k 7→ fn(sn−1 + k) := (n+ 1− k, k). (k ∈ N, 1 5 k 5 n)(7.7)

We see from the second equality in (7.6) that the argument values sn−1 +k (1 5 k 5 n) in fact coincide with
the domain An and it follows that (7.7) indeed defines a function An → N2.

It is immediate that Dn+1 = {(n + 1 − k, k) : 1 5 k 5 n}. We conclude that fn(An)) = Dn+1 and we
have proved surjectivity of fn.

Finally we observe that if 1 5 k, k′ 5 n and k 6= k′ then

fn(sn−1 + k) = (n+ 1− k, k) 6= (n+ 1− k′, k′) = fn(sn−1 + k′)

and this proves injectivity of fn.

We now “glue together” the functions fn to obtain

a function f with domain
⋃[

An : n ∈ N
]

= N and codomain
⋃[

Dn+1 : n ∈ N
]

= N2 as follows:

f(m) := fn(m) for m ∈ An, i.e.,

f(sn−1 + k) = fn(sn−1 + k) = (n+ 1− k, k) for k ∈ An.

f inherits injectivity from the individual fn as the ranges fn(An) = Dn+1 are mutually disjoint for different
values of n and f inherits surjectivity from the fn as

f(N) =
⋃[

fn(An) : n ∈ N
]

= N2 =
⋃[

f(An) : n ∈ N
]

= N2

To summarize, we have proved that f is a bijective mapping between N and N2 and this proves that N2 is
countable. �

Remark 7.1. The following will help to visualize the proof just given. We think of N2 as a matrix
with “infinitely many rows and columns”

(1, 1) (1, 2) (1, 3) . . .(7.8)
(2, 1) (2, 2) (2, 3) . . .(7.9)
(3, 1) (3, 2) (3, 3) . . .(7.10)

We reorganize this matrix into an ordinary sequence (f(j))j∈N as follows:

f(1) =f1(1) = (1, 1),(7.11)
f(2) =f2(2) = (1, 2), f(3) = f2(3) = (2, 1),(7.12)
f(4) =f3(4) = (1, 3), f(5) = f3(5) = (2, 2), f(6) = f3(6) = (3, 1),(7.13)
f(7) =f4(7) = (1, 4), f(8) = f4(8) = (2, 3), f(9) = f4(9) = (3, 2), f(10) = f4(10) = (4, 1),(7.14)

. . .(7.15)
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In other words, we traverse first D2, then D3, then D4, ... starting for each Dn at the upper right
(1, n− 1) and ending at the lower left (n− 1, 1)). �

The following proposition was proved informally before (see thm.5.3 on p.104)

Theorem 7.1 (B/G prop.13.6: Countable unions of countable sets). The union of countably many count-
able sets is countable.

Proof: Let the sets
A1, A2, A3, . . . be countable and let A :=

⋃
n∈N

Ai.

We assume that at least one of those sets is not empty: otherwise their union is empty, hence finite, hence
countable and we are done.

We may assume, on account of prop.5.3 that the sets are mutually disjoint, i.e., any two different sets Ai, Aj
have intersection Ai ∩Aj = ∅ (see definition (2.4) on p.13).

A. As each of the non-emptyAi is countable, eitherA is finite and we have anNi ∈ N and a bijective mapping
ai(·) : Ai

∼−→ [Ni], or Ai is countably infinite and we have a bijective mapping ai(·) : Ai
∼−→ N.

We now define the mapping f : A→ N2 as follows: Let a ∈ A. As the Aj are disjoint there is a unique index
i such that a ∈ Ai and, as sets do not contain duplicates of their elements, there is a unique index j such that
a = ai(j).

In other words, for any a ∈ A there exists a unique pair (ia, ja) ∈ N2 such that a = aia(ja) and the
assignment a 7→ (ia, ja) defines an injective function f : A→ N2.

But then this same assignment gives us a bijective function F : A
∼−→ f(A).

f(A) is countable as a subset of the countable set N2 and this proves the theorem as any subset of a countable
set is countable (see B/G prop.13.10). �

Corollary 7.3. Let the set X not be countable and let A ⊆ X be countable. Then its complement A{ is not
countable.

Proof: Left to the reader.

Theorem 7.2 (Finite Cartesians of countable sets are countable). The Cartesian product of finitely many
countable sets is countable.

Proof by induction: Let X := X1 × · · · × Xn We may assume that none of the factor sets Xj is empty:
Otherwise the Cartesian is empty too and there is nothing to prove.

We could choose k = 1 for which the proof is a triviality as the base case, but it is more instructive to choose
k = 2 instead.

So let X1, X2 be two nonempty countable sets. We now prove that X1 ×X2 is countable.

For fixed x1 ∈ X1 the function F2 : X2 → {x1} × X2; x2 7→ (x1, x2) is bijective because it has as an
inverse the function G2 : {x1} ×X2 → X2; (x1, x2) 7→ x2. It follows that {x1} ×X2 is countable.
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But then X1 ×X2 =
⋃
x∈X1

{x1} ×X2 is countable according to thm.7.1 on p.122. We have proved the base

case.

Our induction assumption is that X1 × · · · × Xk is countable. We must prove that X1 × · · · × Xk+1 is
countable. We can “identify”

X1 × · · · ×Xk+1 =(X1 × · · · ×Xk)×Xk+1(7.16)

by means of the bijection (x1, . . . , xn, xn+1) 7→
(
(x1, . . . , xn), xn+1

)
. According to the induction assump-

tion the set X1 × · · · ×Xk is countable.

The proof for the base case shows thatX1×· · ·×Xk+1 as the Cartesian product of the two setsX1×· · ·×Xk

and Xk+1 is countable. This finishes the proof of the induction step. �

Corollary 7.4. Let n ∈ N. The sets Qn and Zn are countable.

Proof: This follows from the preceding theorem because the sets Q and Z are countable. �

Definition 7.2 (algebraic numbers). Let x ∈ R be the root (zero) of a polynomial with integer coef-
ficients. We call such x an algebraic number and we call any real number that is not algebraic a
transcendental number. �

Proposition 7.4 (B/G Prop.13.21, p.125: All algebraic numbers are countable). All algebraic numbers
are countable.

Proof: Let P be the set of all integer polynomials and Z the set of zeroes for all such polynomials. Let

(7.17) Pn := {polynomials p(x) =
n∑
j=0

ajx
j : aj ∈ Z and − n 5 aj 5 n}.

Then Pn is finite and

(7.18) Zn := {x ∈ R : p(x) = 0 for some p ∈ Pn}

also is finite as a polynomial of degree n has at most n zeroes.

But Z is the countable union of the sets Zn. It follows that Z is countable. �

Here are some trivial consequences of the fact that R is not countable (see thm. 5.4, p.5.4 and B/G Thm.13.22).

Proposition 7.5. All transcendental numbers are not countable.

Proof: the uncountable real numbers are the disjoint union of the countable algebraic numbers with the
transcendentals. The assertion follows from cor.7.3. �

7.1.1 Cardinality as a Partial Ordering

We assume in this subchapter that all sets are subsets of a universal set Ω. Having such a universal set allows
us to declare on its power set 2Ω the following equivalence relation. If we work with specific sets, e.g. the set
R of all real numbers, we assume implicitly that they are contained in Ω.
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We defined in definition 7.1 on p118) the meaning of card(X) = card(Y ) and card(X) 5 card(Y ) for two
sets X and Y but we never defined the expression card(X) per se. This will be done now.

Definition 7.3 (Cardinality as an equivalence class). Let X,Y ⊆ Ω. We say that X and Y are equiv-
alent and we write X ∼ Y if and only if there is a bijective function f : X → Y . 62 The proposition
following this definition shows that “∼” is indeed an equivalence relation.

We now DEFINE for a set X ⊆ Ω its cardinality as follows:

card(X) := {Y ⊆ Ω : ∃ bijection X → Y }.(7.19)

In other words, card(X) is the equivalence class [X] of X for the relation “∼”. �

Proposition 7.6. X ∼ Y as defined above is an equivalence relation on 2Ω.

Proof: Left as an exercise.

�

The following theorem allows us to prove that the relation

card(X) � card(Y ) ⇔ card(X) 5 card(Y ),

i.e. there exists an injection X → Y , is antisymmetric.

Theorem 7.3 (Cantor-Schroeder-Bernstein’s Theorem). Let X,Y ⊆ Ω. Let there be functions f : X →
Y and g : Y → X which both are injective. Then there exists a bijection X → Y .

Proof: Not given here. See [1] B/G (Beck/Geoghegan), Further Topics F: Cardinal Number and Ordinal
Number or [7] Haaser/Sullivan: Real Analysis for a proof. �

Corollary 7.5. The relation

card(X) � card(Y ) ⇔ card(X) 5 card(Y )

on 2Ω is a partial ordering.

Proof: Reflexivity is obvious, antisymmetry follows from Cantor-Schroeder-Bernstein and transitivity follows
from prop.4.1.a: The composition of two injective functions is injective. �

7.2 Addenda to Ch.7 - EMPTY!

EMPTY

62 In other words, X ∼ Y means card(X) = card(Y ).
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8 The Completeness of the Real Numbers System (Study this!)

8.1 Minima, Maxima, Infima and Suprema (Study this!)

Definition 8.1 (Upper and lower bounds, maxima and minima). 63 Let A ⊆ R. Let l, u ∈ R. We call
l a lower bound of A if l 5 a for all a ∈ A. We call u an upper bound of A if u = a for all a ∈ A.

We call A bounded above if this set has an upper bound and we call A bounded below if A has a
lower bound. We call A bounded if A is both bounded above and bounded below.

A minimum (min) of A is a lower bound l of A such that l ∈ A. A maximum (max) of A is an upper
bound u of A such that u ∈ A.

The next proposition will show that min and max are unique if they exist. This makes it possible to
write min(A) or minA for the minimum of A and max(A) or maxA for the maximum of A. �

Proposition 8.1. Let A ⊆ R. If A has a maximum then it is unique. If A has a minimum then it is unique.

Proof for maxima: Let u1 and u2 be two maxima of A: both are upper bounds of A and both belong to A. As
u1 is an upper bound, it follows that a 5 u1 for all a ∈ A. Hence u2 5 u1. As u2 is an upper bound, it
follows that u1 5 u2 and we have equality u1 = u2. The proof for minima is similar. �

Definition 8.2. Given A ⊆ R we define

Alowb := {l ∈ R : l is lower bound of A}
Auppb := {u ∈ R : u is upper bound of A}.

(8.1)

Note that A is bounded above if and only if Auppb 6= ∅ and bounded below if and only if Alowb 6= ∅.
�

Axiom 8.1. (see [1] B/G axiom 8.52, p.83).

Completeness axiom for R: Let A ⊆ R. If its set of upper bounds Auppb
is not empty then Auppb has a minimum.

The above was stated incorrectly up to and including version Version 2017-04-17 of this document.
It read as follows

“.... If its set of LOWER bounds Auppb is not empty ....”.

The error was found by Jeremy Siegelstein.

The above has the status of an axiom due to the fact that the real numbers usually are given axiomatically as
an “archimedian ordered field” which satisfies the completeness axiom just stated.

63 The definitions here were previously given for Z. See def.16.2 on p.279.
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Remark 8.1. Alowb and/or Auppb may be empty: A = R, A = R>0, A = R<0. �

Definition 8.3. Let A ⊆ R. If Auppb is not empty then min(Auppb) exists by axiom 8.1 and it is unique
by prop. 8.1. We write sup(A) or l.u.b.(A) for min(Auppb) and call it the supremum or least upper
bound of A.

We will see in cor.8.1 that, if Alowb is not empty, then max(Alowb) exists and it is unique by prop. 8.1.
We write inf(A) or g.l.b.(A) for max(Alowb) and call it the infimum or greatest lower bound of A.
�

Proposition 8.2 (Duality of upper and lower bounds, min and max, inf and sup). Let A ⊆ R and
x ∈ R. Then the following is true for −x and −A = {−y : y ∈ A}:

−x is a lower bound of A ⇔ x is an upper bound of -A and vice versa,
−x ∈ Auppb ⇔ x ∈ (−A)lowb and vice versa,

−x = sup(A) ⇔ x = inf(−A) and vice versa,
−x = max(A) ⇔ x = min(−A) and vice versa.

(8.2)

Proof: A simple consequence of

−x ≤ y ⇔ x = −y and − x = y ⇔ x 5 −y. �

Corollary 8.1. Let A ⊆ R. If A has lower bounds then inf(A) exists.

Proof: According to the duality proposition prop.8.2, if A has lower bounds then (−A) has upper bounds. It
follows from the completeness axiom that sup(−A) exists. We apply once more prop.8.2 to prove that inf(A)
exists: inf(A) = sup(−A).

Here are some examples. We define for all three of them f(x) := −x and g(x) := x.

Example 8.1 (Example a: Maximum exists). Let X1 := {t ∈ R : 0 5 t 5 1} .
For each x ∈ X1 we have |f(x)− g(x)| = g(x)− f(x) = 2x and the biggest possible such differ-
ence is g(1)− f(1) = 2, . So max(X1) exists and equals max(X1) = 2. �

Example 8.2 (Example b: Supremum is finite). Let X2 := {t ∈ R : 0 5 t < 1}, i.e., we now exclude
the right end point 1 at which the maximum difference was attained. For each x ∈ X we have

|f(x)− g(x)| = g(x)− f(x) = 2x

and the biggest possible such difference is certainly bigger than

g(0.9999999999)− f(0.9999999999) = 1.9999999998.

If you keep adding 5, 000 9s to the right of the argument x, then you get the same amount of 9s
inserted into the result 2x, so 2x comes closer than anything you can imagine to the number 2,
without actually being allowed to reach it.

The supremum is still considered in a case like this to be 2. This precisely is the difference in
behavior between the supremum s := sup(A) and the maximumm := max(A) of a setA ⊆ R of real
numbers: For the maximum there must actually be at least one element a ∈ A so that a = max(A).
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For the supremum it is sufficient that there is a sequence a1 5 a2 5 . . . which approximates s from
below in the sense that the difference s − an "drops down to zero" as n approaches infinity. We
will not be more exact than this because doing so would require us to delve into the concepts of
convergence and contact points. �

Example 8.3 (Example c: Supremum is infinite). Let X3 := R≥0 = {t ∈ R : 0 5 t}. For each x ∈ X3

we have again |f(x)− g(x)| = g(x)− f(x) = 2x. But there is no more limit to the right for the
values of x. The difference 2x will exceed all bounds and that means that the only reasonable value
for sup{|f(x)− g(x)| : x ∈ X3} is +∞.

As in case b above, the max does not exist because there is no x0 ∈ X3 such that |f(x0) − g(x0)|
attains the highest possible value among all x ∈ X3.

You should understand that even though sup(A) as best approximation of the largest value ofA ⊆ R
is allowed to take the "value" +∞ or −∞ this cannot be allowed for max(A).

How so? The infinity values are not real numbers, but, by definition of the maximum, if
α := max(A) exists, then α ∈ A . In particular, the max must be a real number. �

That last example motivates the following definition.

Definition 8.4 (Supremum and Infimum of unbounded and empty sets). If A is not bounded from
above then we define

(8.3) supA =∞

If A is not bounded from below then we define

(8.4) inf A = −∞

Finally we define

(8.5) sup ∅ = −∞, inf ∅ = +∞. �

Definition 8.5 (bounded functions). Given is a nonempty set X . A real-valued function f(·) with
domain X is called bounded from above if there exists a (possibly very large) number γ1 > 0 such
that

(8.6) f(x) < γ1 for all arguments x.

It is called bounded from below if there exists a (possibly very large) number γ2 > 0 such that

(8.7) f(x) > −γ2 for all arguments x.

It is called a bounded function if it is both bounded from above and below. It is obvious that if you
set γ := max(γ1, γ2) then bounded functions are exactly those that satisfy the inequality

(8.8) |f(x)| < γ for all arguments x. �

127



We note that f is bounded if and only if its range f(X) is a bounded subset of R. We further note that we
have defined infimum and supremum for any kind of set: empty or not, bounded above or below or not. We
use those definitions to define infimum and supremum for functions, sequences and indexed families.

Definition 8.6 (supremum and infimum of functions). Let X be an arbitrary set, A ⊆ X a subset
of X , f : X → R a real function on X . Look at the set f(A) = {f(x) : x ∈ A}, i.e., the image of A
under f(·).

The supremum of f(·) on A is then defined as

(8.9) sup
A
f := sup

x∈A
f(x) := sup (f(A))

The infimum of f(·) on A is then defined as

(8.10) inf
A
f := inf

x∈A
f(x) := inf (f(A)). �

Definition 8.7 (supremum and infimum of families). Let (xi)i∈I be an indexed family of real num-
bers xi.

The supremum of (xi)i∈I is then defined as

(8.11) sup (xi) := sup
i

(xi) := sup (xi)i := sup (xi)i∈I := sup
i∈I

xi := sup {xi : i ∈ I}

The infimum of (xi)i∈I is then defined as

(8.12) inf (xi) := inf
i

(xi) := inf (xi)i := inf (xi)i∈I := inf
i∈I

xi := inf {xi : i ∈ I}. �

The definition above for families extends to sequences (the special case of I = {k ∈ Z : k ≥ k0 for some
k0 ∈ Z).

Definition 8.8 (supremum and infimum of sequences). Let (xn)n∈N be a sequence of real numbers
xn. The supremum of (xn)n∈N is then defined as

(8.13) sup (xn) := sup (xn)n∈N := sup
n∈N

xn = sup {xn : n ∈ N}

The infimum of (xn)n∈N is then defined as

(8.14) inf (xn) := inf (xn)n∈N := inf
n∈N

xn = inf {xn : n ∈ N}. �

We note that the “duality principle” for min and max, sup and inf is true in all cases above: You flip the sign
of the items you examine and the sup/max of one becomes the inf/min of the other and vice versa.
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Proposition 8.3. X be a nonempty set and ϕ,ψ : X → R be two real valued functions on X . Let A ⊆ X .
Then

sup{ϕ(x) + ψ(x) : x ∈ A} 5 sup{ϕ(y) : y ∈ A} + sup{ψ(z) : z ∈ A},(8.15)
inf{ϕ(x) + ψ(x) : x ∈ A} = inf{ϕ(y) : y ∈ A} + inf{ψ(z) : z ∈ A}.(8.16)

Proof:
We only prove (8.15). The proof of (8.16) is similar. 64

Let U := {ϕ(x) + ψ(x) : x ∈ A}, V := {ϕ(y) : y ∈ A}, W := {ψ(z) : z ∈ A}. Let x ∈ A.

Then sup(V ) is an upper bound of ϕ(x) and sup(W ) is an upper bound of ψ(x),

hence sup(V ) + sup(W ) = ϕ(x) + ψ(x).

This is true for all x ∈ A, hence sup(V ) + sup(W ) is an upper bound of U .

It follows that sup(V ) + sup(W ) dominates the least upper bound sup(U) of U and this proves (8.15). �

Definition 8.9 (convergence of sequences of real numbers). We say that a sequence (xn) of real
numbers converges 65 to a ∈ R for n → ∞ if almost all of the xn will come arbitrarily close to a in
the following sense:

For any δ ∈ R (no matter how small) there exists (possibly extremely large) n0 ∈ N such that

|a− xj | < δ for all j = n0.(8.17)

We write either of

a = lim
n→∞

xn or xn → a(8.18)

and we call a the limit of the sequence (xn). �

There is an equivalent way of expressing convergence towards a: No matter
how small a “neighborhood” ]a − δ, a + δ[ of a you choose: at most finitely
many of the xn will be located outside that neighborhood.

Example 8.4. Some simple examples for convergence:

a. Let xn := 1/n (n ∈ N). Then xn → 0 as n→∞.
b. Let α ∈ R and zn := α2π (n ∈ N). Then the sequence (zn)n has limit α2π .
c. More generally let zn := x0 for some x0 ∈ R (n ∈ N). Then lim

n→∞
zn = x0. �

64 (8.16)can also be deduced from (8.15) and the fact that inf{ϕ(u) : u ∈ A} = − sup{−ϕ(v) : v ∈ A}.
65 We will define convergence of a sequence of items more general than real numbers in ch.10.1.4 (see def.10.9 (conver-

gence of sequences in metric spaces) on p.179).
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Proof of a: If δ > 0, let n0 := some integer larger than 1/δ. Such a number exists because the natural
numbers are not bounded above. Then

|xn − 0| = 1/n < δ.

Proof of b and c: Left as an exercise. �

Proposition 8.4 (convergent⇒ bounded). Let (xn)n be a sequence in R with limit x. Then this sequence
is bounded.

Proof: We must prove that there exists K ∈ R such that |xj | 5 K for all j ∈ N.

Let δ = 1 in (8.17) and it follows that there is n0 ∈ N such that |xj − x| < 1 for all j = n0. But then

|xj | = |(xj − x) + x| 5 |xj − x|+ |x| 5 |x| + 1 for all j = n0.

Let K := max(1, |x1|, |x2|, . . . , |xn0−1| It follows that |xj | 5 K + x for all j ∈ N. �

The following proposition states that the product of a sequence which converges to zero and a bounded se-
quence converges to zero.

Proposition 8.5. Let (xn)n and (αn)n be two sequences in R and let α ∈ R.
If lim
n→∞

xn = 0 and if |αj | 5 α for all j ∈ N then

lim
j→∞

(αjxj) = 0.(8.19)

Proof:

Case 1: α = 0. Then αj = 0 for all j ∈ N, hence αjxj = 0. For any δ > 0 let n0 = 1. Then

|αjxj − 0| = |αjxj | = 0 < δ.

This proves convergence αjxj → 0.

Case 2: α 6= 0, i.e., |α| > 0. Let δ > 0. We must show that

there is n0 ∈ N such that |αjxj | < δ for all j ∈ N such that j = n0.(8.20)

Let ε := δ/|α|. Then ε > 0 and it follows from limj→∞ xj = 0 that

there is N ∈ N such that |xj | < ε for all j ∈ N such that j = N.(8.21)

But then |αj xj | = |αj | · |xj | < |α| · ε = δ for all j ∈ N such that j = N . We choose n0 := N and (8.20)
follows. �

It is very rare that you need to apply def.8.9 on p.129 to compute a limit. Rather, the previous proposition
and the following set of rules are employed.

Proposition 8.6 (Rules of arithmetic for limits). Let (xn)n and (yn)n be two sequences in R and let
x, y, α ∈ R.
Let lim

j→∞
xj = x and lim

j→∞
yj = y. Then
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a. lim
j→∞

α = α,

b. lim
j→∞

(α · xj) = α · x,

c. lim
j→∞

(xj + yj) = x+ y,

d. lim
j→∞

(xj · yj) = x · y,

e. if x 6= 0 then lim
j→∞

1

xj
=

1

x
.

Proof of a: Exercise 8.1.

Proof of b:
Case 1: α = 0. Then α xj is the constant sequence 0, 0, . . . which converges to 0 = α x — Done.

Case 2: α 6= 0. Let δ > 0. We must show that

there is n0 ∈ N such that |α xj − α x| < δ for all j ∈ N such that j = n0.(8.22)

Let ε := δ/|α|. Then ε > 0 and it follows from limj→∞ xj = x that

there is N ∈ N such that |xj − x| < ε for all j ∈ N such that j = N.(8.23)

But then |α xj − α x| = |α| · |xj − x| < |α| · ε = δ for all j ∈ N such that j = N . We choose n0 := N
and (8.22) is proved.

Proof of c:
Let δ > 0. It follows from lim

j→∞
xj = x and lim

j→∞
yj = y that there exist N1, N2 ∈ N such that

if j = N1 then |xj − x| < δ/2 and if j = N2 then |yj − y| < δ/2.(8.24)

It follows from the triangle inequality |A+B| 5 |A|+ |B| (prop.2.3 on p.18) and from (8.24) that

|(xj + yj)− (x+ y)| = |(xj − x) + (yj + y)| 5 |xj − x|+ |yj − y)| < δ/2 + δ/2 = δ(8.25)

for all j = max(N1, N2). Let n0 := max(N1, N2). It follows from (8.25) that |(xj + yj)− (x+ y)| < δ for
all j = n0. This proves c.

Proof of d:
Let uj := (xj − x)yj and vj := x(yj − y) (j ∈ N). Then

xjyj − xy = (xjyj − xyj) + (xyj − xy) = (xj − x)yj + x(yj − y) = uj − vj .(8.26)

The convergent sequences (yn)n and (x)n (constant sequence!) are bounded by prop.8.4 and it follows from
parts c and a that

lim
j→∞

(xj − x) = lim
j→∞

xj − lim
j→∞

x = x− x = 0,

lim
j→∞

(yj − y) = lim
j→∞

yj − lim
j→∞

y = y − y = 0,
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i.e., the sequences xj − x and yj − y converge to zero.

It now follows from prop.8.5 that lim
j→∞

uj = 0 and lim
j→∞

vj = 0. According to (8.26) xjyj = xy+uj + vj

is the limit of three convergent sequences. 66 It follows from part c that

lim
j→∞

xnyn = lim
j→∞

(xy) + lim
j→∞

uj + lim
j→∞

vj = xy + 0 + 0 = xy.

Proof of e:
Because lim

j→∞
xn = x and |x| > 0 there exists N1 ∈ N such that |xn − x| 5 |x|/2 for all j = N1. Hence

|x| = |(x− xn) + xn| 5 |x− xn|+ |xn| 5
|x|
2

+ |xn|

⇒
|x|
2
5 |xn| ⇒ |x| |xn| =

x2

2
⇒

1

|xxn|
5

2

x2
.

(8.27)

Let zn := (xxn)−1 and K := max(2/x2, |z1|, |z2|, . . . , |zN1 |). It follows from (8.27) that the
sequence (zn)n is bounded by K. It follows from part a that lim

j→∞
x = x and from part c that

lim
j→∞

(xn − x) = lim
j→∞

(xn)− x = 0.

It now follows from prop.8.5 that

lim
j→∞

(
1

xn
−

1

x

)
= lim

j→∞

1

x xn
· (x − xn) = lim

j→∞
zn (x− xn) = 0.(8.28)

Let δ > 0. On account of (8.28) there exists n0 ∈ N such that∣∣∣∣∣ 1

xn
−

1

x

∣∣∣∣∣ =

∣∣∣∣∣
(

1

xn
−

1

x

)
− 0

∣∣∣∣∣ < δ for all j = n0.(8.29)

This proves convergence of 1/xn to 1/x. �

Exercise 8.1. Prove example 8.4 part c: Let zn := x0 for some x0 ∈ R (n ∈ N). Then lim
n→∞

zn = x0.

If that is too abstract, try to prove the special case b first. �

Proposition 8.7.

a. Let xn be a sequence of real numbers that is non-decreasing, i.e., xn 5 xn+1 for all n (see def. 17.1
on p.290 ), and bounded above. Then lim

n→∞
xn exists and coincides with sup{xn : n ∈ N}

b. Further, if yn is a sequence of real numbers that is non-increasing, i.e., yn = yn+1 for all n, and
bounded below, the analogous result is that lim

n→∞
yn exists and coincides with inf{yn : n ∈ N}.

Proof: see the proof of [1] B/G thm 10.19, p.101. �

66 The constant sequence (xy) has limit xy according to part a
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Definition 8.10 (Tail sets of a sequence). Let (xn)n∈N be a sequence in R. Let

(8.30) Tn := {xj : j = n} = {xn, xn+1, xn+2, xn+3, . . . }

be what remains in the sequence after we discard the first n − 1 elements. We call (Tn)n∈N the tail
set for n of the given sequence (xk)k∈N. �

Remark 8.2. Some simple properties of tail sets:

a. We deal with sets and not with sequences Tn: If, e.g., xn = (−1)n then each Tn = {−1, 1} only
contains two items and not infinitely many.

b. The tail set sequence (Tn)n∈N is “decreasing”: If m < n then Tm ⊇ Tn.

c. It follows from (b) and prop.8.14 on p.144 and prop.8.7 that

βn := sup(Tn) is non–increasing, hence lim
n→∞

βn = inf
n
βn;

αn := inf(Tn) is non–decreasing, hence lim
n→∞

αn = sup
n
αn.

These limits can also be epressed as follows.

lim
n→∞

(
sup{xj : j ∈ N, j = n}

)
:= lim

n→∞

(
sup(Tn)

)
:= inf

(
{sup(Tn) : n ∈ N}

)
,

lim
n→∞

(
inf{xj : j ∈ N, j = n}

)
:= lim

n→∞

(
inf(Tn)

)
:= sup

(
{inf(Tn) : n ∈ N}

)
.

(8.31)

An expression like sup{xj : j ∈ N, j = n} can be written more compactly as sup
j∈N,j=n

{xj}. Moreover,

when dealing with sequences (xn), it is understood in most cases that n ∈ N or n ∈ Z=0 and the last
expression simplifies to sup

j=n
{xj}. This can also be written as sup

j=n
(xj) or sup

j=n
xj .

In other words, (8.31) becomes

inf
n∈N

(
sup
j=n

xj
)

= inf
(
{sup(Tn) : n ∈ N}

)
= lim

n→∞

(
sup(Tn)

)
= lim

n→∞

(
sup
j=n

xj
)
,

sup
n∈N

(
inf
j=n

xj
)

= sup
(
{inf(Tn) : n ∈ N}

)
= lim

n→∞

(
inf(Tn)

)
= lim

n→∞

(
inf
j=n

xj
)
. �

(8.32)

The above leads us to the following definition:

Definition 8.11. Let (xn)n∈N be a sequence in R and let Tn = {xj : j ∈ R, j = n} be the tail set for
xn. Assume that Tn is bounded above for some n0 ∈ N (and hence for all n = n0). We call

lim sup
n→∞

xj := lim
n→∞

(
sup
j=n

xj
)

= inf
n∈N

(
sup
j=n

xj
)

= inf
n∈N

(
sup(Tn)

)
the lim sup or limit superior of the sequence (xn).

If, for each n, Tn is not bounded above then we say lim sup
n→∞

xj =∞.
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Assume that Tn is bounded below for some n0 (and hence for all n = n0). We call

lim inf
n→∞

xj := lim
n→∞

(
inf
j=n

xj
)

= sup
n∈N

(
inf
j=n

xj
)

= sup
n∈N

(
inf(Tn)

)
the lim inf or limit inferior of the sequence (xn).

If, for each n, Tn is not bounded below then we say lim inf
n→∞

xj = −∞. �

Proposition 8.8. Let (xn)n∈N be a sequence in R which is bounded above with tail sets Tn.

A. Let

U := {y ∈ R : Tn ∩ [y,∞[6= ∅ for all n ∈ N},
U1 := {y ∈ R : for all n ∈ N there exists k ∈ Z=0 such that xn+k = y},
U2 := {y ∈ R : ∃ subsequence n1 < n2 < n3 < · · · ∈ N such that xnj = y for all j ∈ N},
U3 := {y ∈ R : xn = y for infinitely many n ∈ N}.

(8.33)

Then U = U1 = U2 = U3.

B. There exists z = z(U ) ∈ R such that U is either an interval ]−∞, z] or an interval ]−∞, z[.

C. Let u := sup(U ). Then u = z = z(U ) as defined in part B. Further, u is the only real number such that

C1. u− ε ∈ U and u+ ε /∈ U for all ε > 0.(8.34)

C2. There exists a subsequence (nj)j∈N of integers such that u = lim
j→∞

xnj and u is the largest real

number for which such a subsequence exists.

Proof of A:

A.1 - U = U1: This equality is valid by definition of tailsets of a sequence:

x ∈ Tn ⇔ x = xj for some j = n ⇔ x = xn+k for some k ∈ Z=0

from which it follows that x ∈ Tn ∩ [y,∞[⇔ x = xn+k for some k = 0 and xn+k = y.

A.2 - U1 ⊆ U2:

Let y ∈ U1 and n ∈ N. We prove the existence of (nj)j by induction on j.

Base case j = 1: As T1 ∩ [y,∞[6= ∅ there is some x ∈ T1 such that y 5 x < ∞, i.e., x = y. Because
x ∈ T1 = {x1, x2, . . . } we have x = xn1 for some integer n1 = 1; we have proved the existence of n1.

Induction assumption: Assume that n1 < n2 < · · · < nj0 have already been picked.

Induction step: As y ∈ U1 there is k ∈ Z=0 such that x(nj0
+1)+k = y. We set nj0+1 := nj0 + 1 + k. As this

index is strictly larger than nj0 , the induction step has been proved.

A.3 - U2 ⊆ U3: This is trivial: Let y ∈ U2. The strictly increasing subsequence n1 < n2 < n3 < · · · ∈ N
constitutes the infinite set of indices that is required to grant y membership in U3.
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A.4 - U3 ⊆ U : Let y ∈ U3. Fix some n ∈ N.

Let J = J(y) ⊆ N be the infinite set of indices j for which xj = y. At most finitely many of those j can be
less than that given n and there must be (infinitely many) j ∈ J such that j = n

Pick any one of those, say j′. Then xj′ ∈ Tn and xj′ = y. It follows that y ∈ U

We have shown the following sequence of inclusions:

U = U1 ⊆ U2 ⊆ U3 ⊆ U

It follows that all four sets are equal and part A of the proposition has been proved.

Proof of B: Let y1, y2 ∈ R such that y1 < y2 and y2 ∈ U .

It follows from [y2,∞[⊆ [y1,∞[ that, because Tn∩ [y2,∞[6= ∅ for all n ∈ N, we must have Tn∩ [y1,∞[6= ∅
for all n ∈ N, i.e., y1 ∈ U .

But that means that U must be an interval of the form ]−∞, z] or ]−∞, z[ for some z ∈ R.

Proof of C: Let z = z(U ) as defined in part B and u := sup(U ).

Proof of C.1 - (8.34) part 1, u− ε ∈ U :

As u − ε is smaller than the least upper bound u of U , u − ε is not an upper bound of U . Hence there is
y > u− ε such that y ∈ U . It follows from part B that u− ε ∈ U .X

Proof of C.1 - (8.34) part 2, u+ ε /∈ U :

This is trivial as u+ ε > u = sup(U ) implies that y 5 u < u+ ε for all y ∈ U .

But then y 6= u for all y ∈ U , i.e., u /∈ U . This proves u+ ε /∈ U .

Proof of C.2: We construct by induction a sequence n1 < n2 < . . . of natural numbers such that

u − 1/j ≤ xnj 5 u + 1/j.(8.35)

Base case: We have proved as part of C.1 that xn = u + 1 for at most finitely many indices n. Let K be the
largest of those.

As u− 1 ∈ U3, there are infinitely many n such that xn = u− 1. Infinitely many of those n must exceed K.
We pick one of them and that will be n1. Clearly, n1 satisfies (8.35) and this proves the base case.

Induction step: Let us now assume that n1 < n2 < · · · < nk satisfying (8.35) have been constructed.
xn = u+ 1/(k + 1) is possible for at most finitely many indices n. Let K be the largest of those.

As u− 1/(k+ 1) ∈ U3, there are infinitely many n such that xn = u− 1/(k+ 1). Infinitely many of those n
must exceed max(K,nk). We pick one of them and that will be nk+1. Clearly, nk+1 satisfies (8.35) and this
finishes the proof by induction.

We now show that lim
j→∞

xnj = u. Given ε > 0 there is N = N(ε) such that 1/N < ε. It follows from (8.35)

that |xnj − u| 5 1/j < 1/N < ε for all j = n and this proves that xnj → u as j →∞.

We will be finished with the proof of C.2 if we can show that ifw > u then there is no sequence n1 < n2 < . . .
such that xnj → w as j →∞.
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Let ε := (w − u)/2. According to (8.34), u+ ε /∈ U . But then, by definition of U , there is n ∈ N such that
Tn ∩ [u+ ε,∞[ = ∅.

But u+ ε = w − ε and we have Tn ∩ [w − ε,∞[ = ∅. This implies that |w − xj | = ε for all j = n and that
rules out the possibility of finding nj such that lim

j→∞
xnj = w. �

Corollary 8.2. As in prop.8.8, let u := sup(U ). Then U = ]−∞, u] or U = ]−∞, u[.

Further, u is determined by the following property: For any ε > 0, xn > u − ε for infinitely many n and
xn > u+ ε for at most finitely many n.

Proof: This follows from U = U3 and parts B and C of prop.8.8. �

When we form the sequence yn = −xn then the roles of upper bounds and lower bounds, max and min, inf
and sup will be reversed. Example: x is an upper bound for {xj : j = n if and only if −x is a lower bound
for {yj : j = n.

The following “dual” version of prop. 8.8 is a direct consequence of the duality of upper/lower bounds,
min/max, inf/sup proposition prop.8.2, p.126.

Proposition 8.9. Let (xn)n∈N be a sequence in R which is bounded below with tail sets Tn.

A. Let

L := {y ∈ R : Tn∩]−∞, y] 6= ∅ for all n ∈ N},
L1 := {y ∈ R : for all n ∈ N there exists k ∈ Z=0 such that xn+k 5 y},
L2 := {y ∈ R : ∃ subsequence n1 < n2 < n3 < · · · ∈ N such that xnj 5 y for all j ∈ N},
L3 := {y ∈ R : xn 5 y for infinitely many n ∈ N}.

(8.36)

Then L = L1 = L2 = L3.

B. There exists z = z(L ) ∈ R such that L is either an interval [z,∞[ or an interval ]z,∞[.

C. Let l := inf(L ). Then l = z = z(L ) as defined in part B. Further, l is the only real number such that

C1. l + ε ∈ L and l − ε /∈ L(8.37)

C2. There exists a subsequence (nj)j∈N of integers such that l = lim
j→∞

xnj and l is the smallest real

number for which such a subsequence exists.

Proof: Let yn = −xn and apply prop.8.8. �

Proposition 8.10. Let (xn) be a bounded sequence of real numbers. As in prop. 8.8 and prop 8.9, let

u = sup(U ) = sup{y ∈ R : Tn ∩ [y,∞[6= ∅ for all n ∈ N},
l = inf(L ) = inf{y ∈ R : Tn∩]−∞, y] 6= ∅ for all n ∈ N},

(8.38)

Then u = lim sup
n→∞

xj and l = lim inf
n→∞

xj .
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Proof that u = lim sup
n→∞

xj : Let

βn := sup
j=n

xj , β := inf
n
βn = lim sup

n→∞
xn.(8.39)

We will prove that β has the properties listed in prop.8.8.C that uniquely characterize u: For any ε > 0, we
have

β − ε ∈ U and β + ε /∈ U

Another way of saying this is that

b ∈ U for b < β and a /∈ U for a > β.(8.40)

We now prove the latter characterization.

Let a ∈ R, a > β = inf{βn : n ∈ N}. Then a is not a lower bound of the βn: βn0 < a for some n0 ∈ N.

As the βn are not increasing in n, this implies strict inequality βj < a for all j = n0. By definition, βj is the
least upper bound (hence an upper bound) of the tail set Tj . We conclude that xj < a for all j = n0.

From that we conclude that Tn ∩ [a,∞[ = ∅ for all j = n0. It follows that a /∈ U .

Now let b ∈ R, b < β = g.l.b{βn : n ∈ N}. As β 5 βn we obtain b < βn for all n.

In other words, b < sup(Tn) for all n: It is possible to pick some xk ∈ Tn such that b < xk.

But then Tn ∩ [b,∞[ 6= ∅ for all n and we conclude that b ∈ U .

We put everything together and see that β has the properties listed in (8.40). This finishes the proof that
u = lim sup

n→∞
xj . The proof that l = lim inf

n→∞
xj follows again by applying what has already been proved to the

sequence (−xn). �

We have collected everything to prove

Theorem 8.1 (Characterization of limsup and liminf). Let (xn)n∈N be a bounded sequence in R. Then

a1. lim sup
n→∞

xn is the largest of all real numbers x for which a sequence n1 < n2 < · · · ∈ N can be

found such that x = lim
j→∞

xnj .

a2. lim sup
n→∞

xn is the only real number u such that, for all ε > 0, the following is true:

xn > u+ ε for at most finitely many n and xn > u− ε for infinitely many n.
b1. lim inf

n→∞
xn is the smallest of all real numbers x for which a sequence n1 < n2 < · · · ∈ N can be

found such that x = lim
j→∞

xnj .

b2. lim inf
n→∞

xn is the only real number l such that, for all ε > 0, the following is true:

xn < l − ε for at most finitely many n and xn < l + ε for infinitely many n.

Proof: We know from prop.8.10 on p.136 that lim sup
n→∞

xn is the unique number u described in part C of

prop.8.8, p.134:
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u− ε ∈ U and u+ ε /∈ U for all ε > 0

and u is the largest real number for which there exists a subsequence (nj)j∈N of integers such that
u = lim

j→∞
xnj .

u− ε ∈ U = U3 (see part A of prop.8.10) means that there are infinitely many n such that xn = u− ε and
u+ ε /∈ U = U3 means that there are at most finitely many n such that xn = u+ ε. This proves a1 and a2.

We also know from prop.8.10 that lim inf
n→∞

xn is the unique number l described in part C of prop.8.9, p.136:
l + ε ∈ L and l − ε /∈ L for all ε > 0 and l is the smallest real number for which there exists a
subsequence (nj)j∈N of integers such that u = lim

j→∞
xnj .

l + ε ∈ L = L3 (see part A of prop.8.10) means that there are infinitely many n such that xn 5 l + ε and
l − ε /∈ L = L3 means that there are at most finitely many n such that xn 5 l − ε. This proves b1 and b2.
�

Proof of thm.8.1 without the use of prop.8.10, prop.8.8 and the dual propositions for the liminf.

Step 1:

Let ε > 0. It follows from βn = sup(Tn) = sup{xj : j = n} and βn ↘ β = lim supn xn that βn < β + ε
for all n = N for a suitable N = N(ε) ∈ N. But then β + ε exceeds the upper bound βN of TN and follows
that all of its elements, i.e., all xn with n = N , satisfy xn < β + ε. Hence only some or all of the finitely
many x1, x2, . . . xN−1 can exceed β + ε. It follows that β satisfies the first half of a1 of thm.8.1.

Step 2: We create a subsequence (xnj )j such that

βnj = xnj > βnj − 1/j(8.41)

for all j ∈ N as follows.

β1 = sup(T1) is the smallest upper bound for T1, hence β1 − 1 is not an upper bound and we can find some
k ∈ N such that β1 = xk > β1 − 1. We set n1 := k.

Having constructed n1 < n2 < · · · < nk such that βnj = xnj > βnj − 1/j for all j 5 k we now find
xnk+1

with an index nk+1 > nk as follows.

βnk+1 − 1
k+1 is not an upper bound for Tnk+1, hence there exists some i ∈ N such that xnk+i (which belongs

to Tnk+1) satisfies

xnk+i > βnk+1 −
1

k + 1
.(8.42)

We set nk+1 := nk + i. The sequence βn non–increasing (i.e., decreasing) and it follows from nk+1 =
nk + i = nk + 1 that βnk+1

5 βnk+1. But then (8.42) implies that xnk+1
> βnk+1

− 1
k+1 . We note that

xnk+1
5 βnk+1

because xnk+1
∈ Tnk+1

and βnk+1
= sup(Tnk+1

) is an upper bound for all elements of Tnk+1
.

Together with (8.42) we have

βnk+1
= xnk+1

> βnk+1 −
1

k + 1
.(8.43)

It follows that xnk+1
satisfies (8.41) and the the proof of step 1 is completed.
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Step 3: The sequence xnj we constructed in step 2 converges to β = lim supn xn. This is true because
limk βnk

= β, limk βnk
− 1/k = limk βnk

− limk 1/k = β − 0 = β and xnj is “sandwiched” between two
sequences which both converge to the same limit β.

It follows from step 1 that no subsequence of (xn) can converge to a number u bigger than β: Let ε :=
1/2(u−β). Then all but finitely many xj satisfy xj 5 β+ε, hence xj 5 u−ε and it follows that the distance
d(xj , u) exceeds ε for j = N and no subsequence converging to u can be extracted. This proves a1 of thm.8.1.

Step 4. We still must prove the missing half of thm.8.1.a2: xn > β − ε for infinitely many n.

Let ε > 0. and let j ∈ N be so big that 1/j < ε. Let xnj be again the subsequence constructed in step 2. It
follows from (8.41) and βnj = β and 1/j < ε that xnj > β − ε. This proves the missing half of thm.8.1.a2.

Uniqueness of β: If we have some v > β tnen we set ε := (v− β)/3. Because v− ε > β + ε, at most finitely
many xn satisfy xn > v − ε. It follows that v does not satisfy part 2 of thm.8.1.a2.

Finally let v < β. Let ε := (β − v)/3. Because β − ε > v + ε, infinitely many xn satisfy xn > v + ε. It
follows that v does not satisfy part 1 of thm.8.1.a2. We have proved that lim supn xn is uniquely determined
by the inequalities of thm.8.1.a2 and we have shown both a1 and a2 of thm.8.1.

Parts b1 and b2 of thm.8.1 follow now easily from applying parts a1 and a2 to the sequence yn := −xn. �

Theorem 8.2 (Characterization of limits via limsup and liminf). Let (xn)n∈N be a bounded sequence in
R. Then (xn) converges to a real number if and only if liminf and limsup for that sequence coincide and we
have

lim
n→∞

xn = lim inf
n→∞

xn = lim sup
n→∞

xn.(8.44)

Proof of “⇒”: Let L := lim
n→∞

xn. Let ε > 0. There is N = N(ε) ∈ N such that Tk ⊆ ] L− ε, L+ ε [ for all
k = N . But then

L− ε 5 αk := inf(Tk) ≤ βk := sup(Tk) 5 L+ ε for all k = N.

It follows from Tj ⊆ Tk for all j = k that

L− ε ≤ αk 5 αj 5 βj 5 βk 5 L+ ε, hence
L− ε ≤ lim

k→∞
αk = lim inf

k→∞
xk 5 lim sup

k→∞
xk = lim

k→∞
βk 5 L+ ε.

The equalities above result from prop.8.10. We have shown that, for any ε > 0, lim inf
k→∞

xk and lim sup
k→∞

xk

differ by at most 2ε, hence they are equal.

Proof of “⇐”: Let L := lim inf
n→∞

xn = lim sup
n→∞

xn. Let ε > 0. We know from (8.34), p.134 and (8.37), p.136

that L+ ε/2 /∈ U and L− ε/2 /∈ L But then there are at most finitely many n for which xn has a distance
from L which exceeds ε/2. Let N be the maximum of those n. It follows that |xn − L| < ε for all n > N ,
hence L = lim

n→∞
xn. �

8.2 Sequences of Sets and Indicator functions and their liminf and limsup

Let Ω be a non-empty set and let fn : Ω → R be a sequence of real-valued functions. Let ω ∈ Ω. Then(
fn(ω)

)
n∈N is a sequence of real numbers for which we can examine lim infn fn(ω) and lim supn fn(ω). We
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will look at those two expressions as functions of ω.

Definition 8.12 (limsup and liminf of a sequence of real functions). Let Ω be a non-empty set and
let fn : Ω→ R be a sequence of real-valued functions such that fn(ω) is bounded for all ω ∈ Ω. 67

We define

lim inf
n→∞

fn : Ω→ R as follows: ω 7→ lim inf
n→∞

fn(ω),(8.46)

lim sup
n→∞

fn : Ω→ R as follows: ω 7→ lim sup
n→∞

fn(ω). �(8.47)

Remark 8.3. We recall from thm.8.1 (Characterization of limsup and liminf) on p.137 that

lim inf
n→∞

fn(ω) = inf{α ∈ R : lim
j→∞

fnj (ω) = α for some subsequence n1 < n2 < . . . },(8.48)

lim sup
n→∞

fn(ω) = sup{β ∈ R : lim
j→∞

fnj (ω) = β for some subsequence n1 < n2 < . . . }. �(8.49)

We now characterize lim infn fn and lim supn fn for functions fn such that fn(ω) is either zero or one. We
have seen in prop.6.7 on p.113 that any such function is the indicator function 1A of the set

A := {f = 1} = f−1
(
{1}
)

= {ω ∈ Ω : f(ω) = 1} ⊆ Ω.

Proposition 8.11 (liminf and limsup of binary functions). Let Ω 6= ∅ and fn : Ω → {0, 1}. Let ω ∈ Ω.
Then either lim infn fn(ω) = 1 or lim infn fn(ω) = 0 and either lim supn fn(ω) = 1 or lim supn fn(ω) =
0. Further

lim inf
n→∞

fn(ω) = 1 ⇔ fn(ω) = 1 except for at most finitely many n ∈ N(8.50)

lim sup
n→∞

fn(ω) = 1 ⇔ fn(ω) = 1 for infinitely many n ∈ N(8.51)

Proof: It follows from (8.48), (8.49) and 0 5 fn(ω) 5 1 that 0 5 lim infn fn(ω) 5 lim supn fn(ω) 5 1.

We conclude from (8.48) that lim infn fn(ω) = 0 if a subsequence n1 < n2 < . . . can be found such that
fnj (ω) = 0 for all j and that lim infn fn(ω) = 1 if no such subsequence exists, i.e., if fn(ω) = 1 for
all except at most finitely many n. This proves not only (both directions(!) of) (8.50) but also that either
lim infn fn(ω) = 1 or lim infn fn(ω) = 0

67 In more advanced texts you will find the following

Definition 8.13 (Extended real functions). The set R := R ∪ {∞} ∪ {−∞} is called the extended real numbers line.
A mapping F whose codomain is a subset of R is called an extended real function. �

The above allows to define the functions lim infn fn and lim supn fn even if there are arguments ω for which
lim infn fn(ω) and/or lim supn fn(ω) assumes one of the values ±∞. There are many issues with functions that allow
some arguments to have infinite value (hint: if F (x) =∞ and F (y) =∞, what is F (x)− F (y)?)

We only list the following rule which might come unexpected to you:

0 · ±∞ = ±∞ · 0 = 0(8.45)
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We conclude from (8.49) that lim supn fn(ω) = 1 if a subsequence n1 < n2 < . . . can be found such that
fnj (ω) = 1 for all j and that lim supn fn(ω) = 0 if no such subsequence exists, i.e., if fn(ω) = 0 for
all except at most finitely many n. This proves not only (both directions(!) of) (8.51) but also that either
lim supn fn(ω) = 1 or lim supn fn(ω) = 0. �

We now look at indicator functions 1An of a sequence of sets An ⊆ Ω. For such a sequence we define

A? :=
⋃
n∈N

⋂
j=n

Aj , A? :=
⋂
n∈N

⋃
j=n

Aj .(8.52)

Proposition 8.12. Let ω ∈ Ω. Then

ω ∈ A? ⇔ ω ∈ An for all except at most finitely many n ∈ N.(8.53)
ω ∈ A? ⇔ ω ∈ An for infinitely many n ∈ N,(8.54)

a. Proof that ω ∈ A? ⇒ ω ∈ An for all except at most finitely many n ∈ N:
We will prove the contrapositive: Assume that there exists 1 5 n1 < n2 < . . . such that ω /∈ Anj for all
j ∈ N. We must show that ω /∈ A?.

Let k ∈ N. Then k 5 nk (think!) and it follows from ω /∈ Ank
and Ank

⊇
⋂
j=nk

Aj ⊇
⋂
j=k

Aj that there is

no k ∈ N such that ω ∈
⋂
j=k

Aj .

But then ω /∈
⋃
k

⋂
j=k

Aj = A? and we are done with the proof of a.

b. Proof that ω ∈ An for all except at most finitely many n ∈ N ⇒ ω ∈ A?:
By assumption there exists some N ∈ N such that ω ∈ An for all n = N .

It follows that ω ∈
⋂
n=N An ⊆

⋃
m∈N

⋂
n=mAn = A? and b has been proved.

c. Proof that ω ∈ A? ⇒ ω ∈ An for infinitely many n ∈ N:
Let ω ∈ A?. We will recursively construct 1 5 n1 < n2 < . . . such that ω ∈ Anj for all j ∈ N.

We observe that ω ∈
⋃
j=n

Aj for all n ∈ N. As ω ∈
⋃
j=1Aj there exists n1 = 1 such that ω ∈ An1 and we

have constructed the base case.

Let k ∈ N. If we already have found n1 < n2 < . . . nk such that ω ∈ Anj for 1 5 j 5 k then we find nk+1

as follows: As ω ∈
⋃
j=nk+1Aj there exists nk+1 = nk + 1 such that ω ∈ Ank+1

. We have constructed our
infinite sequence and this finishes the proof of c.

d. Proof that if ω ∈ An for infinitely many n ∈ N ⇒ ω ∈ A?:
For n ∈ N we abbreviate Γn :=

⋃
j=nAj .

Let 1 5 n1 < n2 < . . . such that ω ∈ Anj for all j ∈ N. Let k ∈ N.

Then nk = k, hence ω ∈ Ank
∈ Γnk

⊆ Γk for all k ∈ N, hence ω ∈
⋂
k∈N Γk = A?. We have proved d. �
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Proposition 8.13 (liminf and limsup of indicator functions).

1A? = lim inf
n→∞

1An and 1A? = lim sup
n→∞

1An(8.55)

Proof: Let ω ∈ Ω. Then

1A?(ω) = 1 ⇔ ω ∈ A? ⇔ ω ∈ An for all except at most finitely many n ∈ N(8.56)
⇔ 1An(ω) = 1 for all except at most finitely many n ∈ N(8.57)
⇔ lim inf

n
1An(ω) = 1(8.58)

The second equivalence follows from prop.8.12 and the last equivalence follows from prop.8.11 and this proves
the first equation. Similarly we have

1A?(ω) = 1 ⇔ ω ∈ A? ⇔ ω ∈ An for infinitely many n ∈ N(8.59)
⇔ 1An(ω) = 1 for infinitely many n ∈ N(8.60)
⇔ lim sup

n
1An(ω) = 1(8.61)

Again the second equivalence follows from prop.8.12 and the last equivalence follows from prop.8.11. �

This last proposition is the reason for the following definition.

Definition 8.14 (limsup and liminf of a sequence of sets). Let Ω be a non-empty set and let An ⊆
Ω (n ∈ N). We define

lim inf
n→∞

An :=
⋃
n∈N

⋂
j=n

Aj ,(8.62)

lim sup
n→∞

An :=
⋂
n∈N

⋃
j=n

Aj .(8.63)

We call lim inf
n→∞

An the limit inferior and lim sup
n→∞

An the limit superior of the sequence An.

We note that lim inf
n→∞

An = lim sup
n→∞

An if and only if the functions lim inf
n→∞

1An and lim sup
n→∞

1An coincide

(prop. 8.58) which is true if and only if the sequence 1An(ω) has a limit for all ω ∈ Ω (thm.8.2 on
p.139). In this case we define

lim
n→∞

An := lim inf
n→∞

An = lim sup
n→∞

An(8.64)

and we call this set the limit of the sequence An. �

Note 8.1 (Notation for limits of monotone sequences of sets). Let (An) be a non-decreasing sequence
of sets, i.e., A1 ⊆ A2 ⊆ . . . and let A :=

⋃
nAn. Further let Bn be a non-increasing sequence of sets,

i.e., B1 ⊇ B2 ⊇ . . . and let B :=
⋂
nBn. We write suggestively 68

An ↗A (n→∞), Bn ↘ B (n→∞). �

68 See note 10.1 on p.181.
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Example 8.5. Let An ⊆ Ω.

a. If An ↗ then lim inf
n→∞

An = lim sup
n→∞

An =
⋃
n∈N

An.(8.65)

b. If An ↘ then lim inf
n→∞

An = lim sup
n→∞

An =
⋂
n∈N

An. �(8.66)

Exercise 8.2. Prove the assertions of example 8.5 above. �

Note 8.2 (Liminf and limsup of number sequences vs their tail sets). Let xn ∈ R be a sequence of
real numbers. We then can associate with this sequence that of its tail sets Tn := {xj : j = n}.

Do not confuse lim infn xn = supn
(

inf(Tn)
)

with lim infn Tn =
⋃
n

(⋂
k≥n Tk

)
and do not confuse lim supn xn = infn

(
sup(Tn)

)
with lim supn Tn =

⋂
n

(⋃
k≥n Tk

)
:

lim inf
n

xn (lim sup
n

xn) is a number: it is the lowest possible (highest possible) limit of a convergent

subsequence (xnj )j∈N. On the other hand we deal with a set(!) lim infn Tn = lim supn Tn =
⋂
n Tn.

The last equality follows from example 8.5 and the fact the the sequence of tailsets Tn is always
non-increasing. �

8.3 Sequences that Enumerate Parts of Q

We informally defined the real numbers in ch.2.2 (Numbers) on p.16 as the set of all decimals, i.e., all numbers
x which can be written as

x = m +
∞∑
j=1

dj10−j where dj is a digit, i.e., dj = 0, 1, 2, . . . , 9,(8.67)

i.e., x = lim
k→∞

xk where xk = m +
k∑
j=1

dj10−j .(8.68)

Each xk is a (finite) sum of fractions, hence xk ∈ Q.

We proved in ch.5.3 (Countable sets) on p.103 that Q and hence all of its subsets can be sequenced: If A ⊆ Q
there is a sequence (qn)n of fractions such that A = {qn : n ⊆ N}. We apply this to A := Q as follows.

Let x ∈ R have the representation (8.68). Then xk ∈ Q for each k ∈ N, hence there is some n ∈ N such that
xk = qn. Of course n depends on k, i.e., we have a functional dependency n = n(k) = nk. It follows from
(8.68) that qnk

→ x as k →∞. In other words, we have proved the following

Theorem 8.3 (Universal sequence of rational numbers with convergent subsequences to any real
number).

There is a sequence (qn)n∈N of fractions which satisfies the following: For any x ∈ R there is a sequence
n1, n2, n3, . . . , of natural numbers such that x = lim

k→∞
qnk
�.
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Remark 8.4.

a. The above theorem can be phrased as follows: There is a sequence (qn)n∈N of fractions such
that for any x ∈ R one can find a subsequence (qnj )j∈N of (qn)n which converges to x.

b. What is remarkable about thm.8.3: A single sequence (qn)n is so rich that its ingredients can be
used to approximate any item in the uncountable! set R

c. Let A := {x ∈ R : x2 5 2} = [ −
√

2,
√

2 ] and let AQ := A ∩ Q = {q ∈ Q : q2 5 2}. A is of such

a shape that for any x ∈ A the partial sums xk = m +
k∑
j=1

dj10−j which converge to x belong

to AQ. (Why? Especially, why also for x = ±
√

2?) �

8.4 Exercises for Ch.8

Exercise 8.3. Prove prop.8.17 on p.146 for the case that lim
n→∞

xn exists in R :

Let (xn)n be a sequence of real numbers such that limn→∞ xn exists. Let K ∈ N. For n ∈ N let
yn := xn+K . Then (yn)n has the same limit. �

Exercise 8.4. Prove cor.8.3 on p.148:
Let xn, yn ∈ R be two sequences of real numbers. Assume there is K ∈ N such that xn = yn for all
n = K. Then

lim sup
n→∞

xn = lim sup
n→∞

yn and lim inf
n→∞

xn = lim inf
n→∞

yn. �

Exercise 8.5. Prove cor.8.4 on p.148:
Let xn, yn ∈ R be two sequences of real numbers both of which have limits. Assume there is K ∈ N
such that xn 5 yn for all n = K. Then

lim
n→∞

xn 5 lim
n→∞

yn. �

8.5 Addenda to Ch.8 (Real functions)

The following belong after def.8.4 (Supremum and Infimum of unbounded and
empty sets).

Proposition 8.14. Let A ⊆ B ⊆ R.

a. Then inf(A) = inf(B) and sup(A) 5 sup(B).
b. If bothA andB have a min then min(A) = min(B). If bothA andB have a max then max(A) 5

max(B).

Proof:
b follows from a because if a set has a minimum then it equals its infimum and if a set has a maximum then
it equals its supremum
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We now prove a for suprema. The proof for infima is similar. First we note that if at least one of the sets is
empty or not bounded above then the proof is trivial. 69 We may assume that both A and B are not empty
and bounded above.

It follows from A ⊆ B that any upper bound of B also is an upper bound of A.

In particular sup(B) ∈ Auppb , hence sup(A) = min(Auppb) 5 sup(B). �

Definition 8.15 (Translation and dilation of sets of real numbers). Let A ⊆ R 70 and α, b ∈ R. We
define

λA+ b := {λa+ b : a ∈ A}.(8.69)

In particular, for λ = ±1, we obtain

A+ b = {a+ b : a ∈ A},(8.70)
−A = {−a : a ∈ A}. �(8.71)

Proposition 8.15 (The sup of a set is positively homogeneous). Let A be a non–empty subset of R and
let λ ∈ R=0. Then 71

sup(λA) = λ sup(A).(8.72)

Proof: (8.72) holds for λ = 0 because

sup(0A) = sup({0}) = 0 = 0 · sup(A).

So we may assume that λ > 0. If B ⊆ R, let Buppb := {u ∈ R : u is upper bound of B}. Note that

u ∈ Auppb ⇔ u = a ∀a ∈ A ⇔ λu = λa ∀a ∈ A ⇔ λu ∈ (λA)uppb .(8.73)

It follows from sup(A) ∈ Auppb that λ sup(A) ∈ (λA)uppb , hence λ sup(A) = min
(
(λA)uppb

)
= sup(λA).

It remains to show that λ sup(A) 5 sup(λA).
We substitute v

λ for u in (8.73) and obtain v
λ ∈ Auppb ⇔ v ∈ (λA)uppb .

It follows from sup(λA) ∈ (λA)uppb that sup(λA)
λ ∈ Auppb , hence sup(λA)

λ = min
(
Auppb

)
= sup(A). This

proves λ sup(A) 5 sup(λA). �

The next two propositions (prop.8.16 and prop.8.17) belong before prop.8.4
(convergent⇒ bounded).

The following proposition shows that the limit behavior of a sequence is a property of its tail, i.e., it does not
depend on the first finitely many indices.

69 Note that if A is not bounded above then the same holds for the superset B and that if B is empty then A is empty.
70 See also def.16.3 in ch.16.2.3
71 Recall that λA = {λa : a ∈ A}. See def.8.15 on p.145.
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Proposition 8.16. Let xn, yn ∈ R be two sequences of real numbers. Assume there is K ∈ N such that
xn = yn for all n = K. Let L ∈ R. Then

lim
n→∞

xn = L ⇔ lim
n→∞

yn = L, lim
n→∞

xn = ±∞ ⇔ lim
n→∞

yn = ±∞.

Proof:

Case 1: lim
n→∞

xn = L.

Let δ > 0. Then there exists N ′ ∈ N such that

|xj − L| < δ for all j = N ′.(8.74)

Let N := max(K,N ′). It follows from N = K, N = N ′ xn = yn for all n = K and (8.74) that

|yj − L| = |xj − L| < δ for all j = N ′.(8.75)

This proves that yn converges to L.

Case 2: lim
n→∞

xn =∞.

Let M ∈ R. It follows from xn →∞ and def.10.10 that there exists N ′ ∈ N such that

|xj | > M for all j = N ′.(8.76)

Let N := max(K,N ′). It follows from N = K, N = N ′ xn = yn for all n = K and (8.76) that

|yj − L| = |xj − L| > M for all j = N ′.(8.77)

This proves that limn→∞ yn =∞.

Case 3: lim
n→∞

xn = −∞.
This is true according to the already proven case 2, applied to the sequences (−xn)n and (−yn)n. �

Proposition 8.17. [See B/G prop.10.16]

Let (xn)n be a sequence of real numbers such that limn→∞ xn exists. Let K ∈ N. For n ∈ N let yn := xn+K .
Then (yn)n has the same limit.

Proof: Case 1: lim
n→∞

xn = L ∈ R.

The proof is left as exercise 8.3.

Case 2: lim
n→∞

xn =∞.
Let M ∈ R. It follows from xn →∞ and def.10.10 that there exists N ∈ N such that

|xj | > M for all j = N.(8.78)

Let j = N . Then j +K = N and it follows from (8.78) that

|yj | = |xj+K | > M.(8.79)

This proves that limn→∞ yn =∞.

Case 3: lim
n→∞

xn = −∞.
This is true according to the already proven case 2, applied to the sequences (−xn)n and (−yn)n. �
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The following example belongs before def.8.12 (limsup and liminf of a sequence
of real functions) on p.140 in ch.8.2.

Example 8.6. The following are examples of sequences of real–valued functions.

a. fn : [0, 1]→ R; x 7→ xn is a sequence of real–valued functions.
b. Let Ω := {(x, y) ∈ R2 : x2 + y2 5 1}. be the unit circle in the Euclidean plane. Then

ϕn : Ω→ R; ϕn(x, y) :=
√
x2 + y2 is a sequence of real–valued functions.

c. Let f := R→ R be a (fixed, but arbitrary) function which is infinitely often differentiable
at all its arguments, i.e., Dnf(x0) = f (n)(x0) = dnf

dxn

∣∣
x=x0

exists for all x0 ∈ R and all
n ∈ N. Then hn : R→ R; x 7→ Dnf(x) is a sequence of real–valued functions. �

Prop.8.18 and cor.8.3 and cor.8.4 belong after thm.8.2 (Characterization of
limits via limsup and liminf) on p.139.

Proposition 8.18. Let xn, x′n ∈ R be two sequences of real numbers. Assume there is K ∈ N such that
xn 5 x′n for all n = K. Then

lim inf
n→∞

xn 5 lim inf
n→∞

x′n and lim sup
n→∞

xn 5 lim sup
n→∞

x′n.

Proof:

We only prove prove the limsup inequality because once we have that, we apply it to the sequences (−xn)n
and (−x′n)n which satisfy −x′n 5 −xn for all n = K. We obtain

− lim inf
n→∞

x′n = lim sup
n→∞

(−x′n) 5 lim sup
n→∞

(−xn) = − lim inf
n→∞

xn,

hence lim infn→∞ xn 5 lim infn→∞ x
′
n and this proves the liminf inequality of the proposition.

Case 1: Both sequences are bounded.

Let u := lim supn xn and u′ := lim supn x
′
n. We assume the contrary that u > u′. Then ε := u−u′

2 > 0.

According to cor.8.2 on p.136 there are infinitely many xn1 , xn2 , . . . such that xnj > u− ε. At most finitely
of those nj can be less than K. We discard those and there still are infinitely many nj = K such that
xnj > u− ε.

As x′i = xi for all i = K, it follows that there are infinitely many nj such that

x′nj
= xnj > u− ε = u′ + ε.

We employ cor.8.2 a second time. It also states that there are at most finitely many x′nj
such that x′nj

= u′+ε.
We have reached a contradiction.

Case 2: Not both sequences are bounded above.
If both are bounded below, lim infn xn 5 lim infn x

′
n is obtained just as in case 1, otherwise this is covered in

case 3. We now observe what happens to the limits superior.
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Case 2a: xn is not bounded above.
Then neither is x′n and we that all tailsets for both sequences have sup = ∞, hence lim supn xn =
lim supn x

′
n =∞.

Case 2b: x′n is not bounded above.
Then all tailsets for x′n have sup =∞, hence lim supn x

′
n =∞, hence lim supn xn 5 lim supn x

′
n.

Case 3: Not both sequences are bounded below.
If both are bounded above, lim supn xn 5 lim supn x

′
n is obtained just as in case 1, otherwise this is covered

in case 2. We now observe what happens to the limits inferior.

Case 2a: x′n is not bounded below.
Then neither is xn and we that all tailsets for both sequences have inf = −∞, hence lim infn xn =
lim infn x

′
n =∞.

Case 2b: xn is not bounded above.
Then all tailsets for xn have inf = −∞, hence lim infn xn = −∞, hence lim infn xn 5 lim infn x

′
n.

�

Here is the first corollary to prop.8.18.

Corollary 8.3. Let xn, yn ∈ R be two sequences of real numbers. Assume there is K ∈ N such that xn = yn
for all n = K. Then

lim sup
n→∞

xn = lim sup
n→∞

yn and lim inf
n→∞

xn = lim inf
n→∞

yn.

Proof:

�

Here is the second corollary to prop.8.18.

Corollary 8.4. Let xn, yn ∈ R be two sequences of real numbers both of which have limits. Assume there is
K ∈ N such that xn 5 yn for all n = K. Then

lim
n→∞

xn 5 lim
n→∞

yn.

Proof:
�
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9 Vectors and Vector spaces (Understand this!)

9.1 RN : Euclidean Space

Most if not all of the material of this chapter with the exception of ch.9.2.2 (Normed Vector Spaces) on p.162
is familiar to anyone who took a linear algebra course or, in case of two or three dimensional space, to those
who took a course in multivariable calculus.

9.1.1 N–Dimensional Vectors

This following definition of a vector is much more specialized than what is usually understood among math-
ematicians. For them, a vector is an element of a “vector space” . You can find later in the document the
definition of a vector space ((9.4) on p.155) What you see here is a definition of vectors of “finite dimension”.

Definition 9.1 (N–dimensional vectors). A vector is a finite, ordered collection ~v =
(x1, x2, x3, . . . , xN ) of real numbers x1, x2, x3, . . . , xN . “Ordered” means that it matters which num-
ber comes first, second third, . . . If the vector has N elements then we say that it is N–dimensional
. The set of all N–dimensional vectors is written as RN . �

You are encouraged to go back to the section on cartesian products (5.4 on p.101) to review what was said
there about RN = R× R×+ · · · × R︸ ︷︷ ︸

N times

. Here are some examples of vectors:

Example 9.1 (Two–dimensional vectors). The two–dimensional vector with coordinates x = −1.5
and y =

√
2 is written (−1.5,

√
2) and we have (−1.5,

√
2) ∈ R2. Order matters, so this vector is

different from (
√

2,−1.5) ∈ R2. �

Example 9.2 (Three–dimensional vectors). ~vt = (3−t, 15,
√

5t2 + 22
7 ) ∈ R3 with coordinates x = 3−t,

y = 15 and z =
√

5t3 + 22
7 is an example of a parametrized vector (parametrized by t). Each specific

value of t defines an element of ∈ R3, e.g., ~v−2 = (5, 15,
√

20 + 22
7 ). Note that

F : R→ R3 t 7→ F (t) = ~vt

defines a mapping from R into R3 in the sense of definition ( 4.6 ) on p.77. Each argument s has

assigned to it one and only one argument ~vs = (3− s, 15,
√

5s2 + 22
7 ) ∈ R3.

Or, is it rather that we have three functions

x(·) : R→ R t→ x(t) = 3− t.
y(·) : R→ R t→ y(t) = 15.

z(·) : R→ R t→ z(t) =
√

5t2 + 22
7

and t→ ~vt = (x(t), y(t), z(t)) is a vector of three real valued functions x(·), y(·), z(·)?

Both points of view are correct and it depends on the specific circumstances in which way you want
to interpret ~vt. �
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Example 9.3 (One–dimensional vectors). Let us not forget about the one–dimensional case: A one-
dimensional vector has a single coordinate.

For example, ~w1 = (−3) ∈ R1 with coordinate x = −3 ∈ R and ~w2 = (5.7a) ∈ R1 with coordinate
x = 5.7a ∈ R are one–dimensional vectors. ~w2 is not a fixed number but parametrized by a.

Mathematicians do not distinguish between the one–dimensional vector (x) and its coordinate
value, the real number x. For brevity, they will simply write ~w1 = −3 and ~w2 = 5.7a. �

Example 9.4 (Vectors as functions). An N–dimensional vector ~x = (x1, x2, x3, · · · , xN ) can be inter-
preted as a real function (remember: a real function is one which maps it arguments into R)

f~x(·) : {1, 2, 3, · · · , N} → R m 7→ xm

f~x(1) = x1, f~x(2) = x2, · · · , f~x(N) = xN ,
(9.1)

i.e., as a real function whose domain is the natural numbers 1, 2, 3, · · · , N . This goes also the other
way around: given a real function f(·) : {1, 2, 3, · · · , N} → R we can associate with it the vector

~vf(·) := (f(1), f(2), f(3), · · · , f(N))

~vf1 = f(1), ~vf2 = f(2), , · · · , ~vfN = f(N) �
(9.2)

9.1.2 Addition and Scalar Multiplication for N–Dimensional Vectors

Definition 9.2 (Addition and scalar multiplication in RN ). Given are two N–dimensional vectors
~x = (x1, x2, . . . , xN ) and ~y = (y1, y2, . . . , yN ) and a real number α.

We define the sum ~x+ ~y of ~x and ~y as the vector ~z with the components

(9.3) z1 = x1 + y1; z2 = x2 + y2; . . . ; zN = xN + yN ;

We define the scalar product α~x of α and ~x as the vector ~w with the components

(9.4) w1 = αx1; w2 = αx2; . . . ; wN = αxN . �

Figure 9.1 below describes vector addition.

Adding two vectors ~v and ~w means that you take one of them, say ~v, and shift it in parallel (without rotating
it in any way or flipping its direction), so that its starting point moves from the origin to the endpoint of
the other vector ~w. Look at the picture and you see that the vectors ~v, ~w and ~v shifted form three pages of
a parallelogram. ~v + ~w is then the diagonal of this parallelogram which starts at the origin and ends at the
endpoint of ~v shifted.

9.1.3 Length of N–Dimensional Vectors and the Euclidean Norm

It is customary to write ‖~v‖2 for the length, sometimes also called the Euclidean norm of the vector ~v.

Example 9.5 (Length of one–dimensional vectors). For a vector ~v = x ∈ R its length is its absolute
value ‖~v‖2 = |x|. This means that ‖ − 3.57‖2 = | − 3.57| = 3.57 and ‖

√
2‖2 = |

√
2| ≈ 1.414. �
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~v

~w

~v shifted

~v + ~w

Figure 9.1: Adding two vectors.

Example 9.6 (Length of two–dimensional vectors). We start with an example. Look at ~v = (4,−3).
Think of an xy-coordinate system with origin (the spot where x-axis and y-axis intersect) (0, 0).
Then ~v is represented by an arrow which starts at the origin and ends at the point with coordinates
x = 4 and y = −3 (see figure 9.2). How long is that arrow?

Z
Z
Z
Z
Z
Z
Z
ZZ~

-~a

~v B

Figure 9.2: Length of a 2–dimensional vectors.

Think of it as the hypothenuse of a right angle triangle whose two other sides are the horizontal
arrow from (0, 0) to (4, 0) (the vector ~a = (4, 0) ) and the vertical line B between (4, 0) and (4,−3).
Note thatB is not a vector because it does not start at the origin! Obviously (I hope this is obvious)
we have ‖~a‖2 = 4 and length–of(B) = 3. Pythagoras tells us that

‖~v‖22 = ‖~a‖22 +
(
length–of–B

)2
and we obtain for the vector (4,−3) that ‖~v‖2 =

√
16 + 9 = 5.

The above argument holds for any vector ~v = (x, y) with arbitrary x, y ∈ R. The horizontal leg
on the x-axis is then ~a = (x, 0) with length |x| =

√
x2 and the vertical leg on the y-axis is a line
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equal in length to ~b = (0, y) the length of which is |y| =
√
y2 The theorem of Pythagoras yields

‖(x, y)‖22 = x2 + y2 which becomes, after taking square roots on both sides,

(9.5) ‖(x, y)‖2 =
√
x2 + y2 �

Example 9.7 (Length of three–dimensional vectors). This is not so different from the two–
dimensional case above. We build on the previous example. Let ~v = (4,−3, 12). Think of an
xyz-coordinate system with origin (the spot where x-axis, y-axis and z-axis intersect) (0, 0, 0). Then
~v is represented by an arrow which starts at the origin and ends at the point with coordinates x = 4,
y = −3 and z = 12. How long is that arrow?

Remember what the standard 3–dimensional coordinate system looks like: The x-axis goes from
west to east, the y-axis goes from south to north and the z-axis goes vertically from down below
to the sky. Now drop a vertical line B from the point with coordinates (4,−3, 12) to the xy–plane
which is “spanned” by the x-axis and y-axis. This line will intersect the xy–plane at the point with
coordinates x = 4 and y = −3 (and z = 0. Why?)

Note that B is not a vector because it does not start at the origin! It should be clear that
length–of(B) = |z| = 12.

Now we connect the origin (0, 0, 0) with the point (4,−3, 0) in the xy–plane which is the endpoint
ofB.

We can forget about the z–dimension because this arrow is entirely contained in the xy–plane. Mat-
ter of fact, it is a genuine two–dimensional vector ~a = (4,−3) because it starts in the origin. Observe
that~a has the same values 4 and−3 for its x– and y–coordinates as the original vector ~v. 72 We know
from the previous example about two–dimensional vectors that

‖~a‖22 = ‖(x, y)‖22 = x2 + y2 = 16 + 9 = 25.

At this point we have constructed a right angle triangle with a) hypothenuse ~v = (x, y, z) where we
have x = 4, y = −3 and z = 12, b) a vertical leg with length |z| = 12 and c) a horizontal leg with
length

√
x2 + y2 = 5. Pythagoras tells us that

‖~v‖22 = z2 + ‖(x, y)‖22 = 144 + 25 = 169 or ‖~v‖2 = 13.

None of what we just did depended on the specific values 4, −3 and 12. Any vector (x, y, z) ∈ R3

is the hypothenuse of a right triangle where the square lengths of the legs are z2 and x2 + y2. This
means we have proved the general formula ‖(x, y, z)‖2 = x2 + y2 + z2 or

(9.6) ‖(x, y, z)‖ =
√
x2 + y2 + z2 �

The previous examples show how to extend the concept of “length” to vector spaces of any finite dimension:

Definition 9.3 (Euclidean norm). Let n ∈ N and ~v = (x1, x2, . . . , xn) ∈ Rn be an n–dimension vector.
The Euclidean norm ‖~v‖2 of ~v is defined as follows:

(9.7) ‖~v‖2 =
√
x1

2 + x2
2 + . . .+ xn2 =

√√√√ n∑
j=1

xj2. �

72 You will learn in the chapter on vector spaces that the vector ~a = (4,−3) is the projection on the xy–coordinates
π1,2(·) : R3 → R2 (x, y, z) 7→ (x, y) of the vector ~v = (4,−3, 12) . (see Example 9.19) on p.161)
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This definition is important enough to write the special cases for n = 1, 2, 3 where ‖~v‖2 coincides with the
length of ~v:

1− dim : ‖(x)‖2 =
√
x2 = |x|

2− dim : ‖(x, y)‖2 =
√
x2 + y2

3− dim : ‖(x, y, z)‖2 =
√
x2 + y2 + z2

(9.8)

Proposition 9.1 (Properties of the Euclidean norm). Let n ∈ N. Then the Euclidean norm, viewed as a
function

‖ · ‖2 : Rn // R ~v = (x1, x2, . . . , xn) � // ‖~v‖2 =

√
n∑
j=1

xj2

has the following three properties:

‖~v‖2 = 0 ∀~v ∈ Rn and ‖~v‖2 = 0 ⇔ ~v = 0(9.9a)
‖α~v‖2 = |α| · ‖~v‖2 ∀~v ∈ Rn, ∀α ∈ R(9.9b)
‖~v + ~w‖2 5 ‖~v‖2 + ‖~w‖2 ∀ ~v, ~w ∈ Rn(9.9c)

positive definiteness
absolute homogeneity
triangle inequality

Proof:
a. It is certainly true that ‖~v‖2 = 0 for any n–dimensional vector ~v because it is defined as +

√
K

where the quantity K is, as a sum of squares, non–negative. If 0 is the zero vector with coordinates
x1 = x2 = . . . = xn = 0 then obviously ‖0‖2 =

√
0 + . . .+ 0 = 0. Conversely, let ~v = (x1, x2, . . . , xn)

be a vector in Rn such that ‖~v‖2 = 0. This means that

√
n∑
j=1

xj2 = 0 which is only possible if everyone of

the non–negative xj is zero. In other words, ~v must be the zero vector 0.

b. Let ~v = (x1, x2, . . . , xn) ∈ Rn and α ∈ R . Then

‖α~v‖2 =

√√√√ n∑
j=1

(αxj)
2 =

√√√√ n∑
j=1

α2αxj2 =

√√√√α2

n∑
j=1

αxj2 =
√
α2

√√√√ n∑
j=1

αxj2

=
√
α2‖~v‖2 = |α| · ‖~v‖2

because it is true that
√
α2 = |α| for any real number α (see assumption 2.1 on p.17).

c. The proof will only be given for n = 1, 2, 3.
n = 1n = 1n = 1 : (9.9.c) simply is the triangle inequality for real numbers (see (2.2) on 18) and we are done.
n = 2, 3n = 2, 3n = 2, 3 : Look back at the picture about addition of vectors in the plane or in space (see p.151). Remember
that for any two vectors ~v and ~w you can always build a triangle whose sides have length ‖~v‖2, ‖~w‖2 and
‖~v + ~w‖2. It is clear that the length of any one side cannot exceed the sum of the lengths of the other two
sides, so we get specifically ‖~v + ~w‖2 5 ‖~v‖2 + ‖~w‖2 and we are done.

The geometric argument is not exactly an exact proof but I used it nevertheless because it shows the origin
of the term "triangle inequality" for property (9.9.c). An exact proof will be given for arbitrary n ∈ N as a
consequence of the so–called Cauchy–Schwartz inequality (cor.9.1). The inequality itself is stated and proved
in prop.9.9 on p.164 in the section which discusses inner products (dot products) on vector spaces. �
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9.2 General Vector Spaces

9.2.1 Vector spaces: Definition and Examples

Part of this follows [3] Brin, Matthew and Marchesi, Gerald: Linear Algebra, a text for Math 304, Spring
2016.

Mathematicians are very fond of looking at very different objects and figuring out what they have in common.
They then create an abstract concept whose items have those properties and examine what they can conclude.
For those of you who have had some exposure to object oriented programming: It’s like defining a base class,
e.g., "mammal", that possesses the core properties of several concrete items such as "horse", "pig", "whale"
(sorry – can’t require that all mammals have legs). We have looked at the following items that seem to be quite
different:

real numbers
N–dimensional vectors
real functions

Well, that was disingenuous. I took great pains to explain that real numbers and one–dimensional vectors are
sort of the same (see 9.3 on p.150). Besides I also explained that N–dimensional vectors can be thought of as
real functions on the domain X = {1, 2, 3, · · · , N{. (see 9.4 on p.150). Never mind, I’ll introduce you now
to vector spaces as sets of objects which you can "add" and multiply with real numbers according to rules
which are guided by those that apply to addition and multiplication of ordinary numbers.

Here is quick reminder on how we addN–dimensional vectors and multiply them with scalars (real numbers)
(see (9.1.2) on p.150). Given are two N–dimensional vectors
~x = (x1, x2, . . . , xN ) and ~y = (y1, y2, . . . , yN ) and a real number α. Then the sum ~z = ~x+ ~y of ~x and
~y is the vector with the components

z1 = x1 + y1; z2 = x2 + y2; . . . ; zN = xN + yN ;

and the scalar product ~w = α~x of α and ~x is the vector with the components

w1 = αx1; w2 = αx2; . . . ; wN = αxN ;

Example 9.8 (Vector addition and scalar multiplication). We use N = 2 in this example:
Let a = (−3, 1/5), b = (5,

√
2) We add those vectors by adding each of the coordinates separately:

a+ b = (2, 1/5 +
√

2)

and we multiply a with a scalar λ ∈ R, e.g. λ = 100, by multiplying each coordinate with λ:

100a = 100(−3, 1/5) = (−300, 20). �

In the last example I have avoided using the notation "~x" with the cute little arrows on top for vectors. I did
that on purpose because this notation is not all that popular in Math even for N–dimensional vectors and
definitely not for the more abstract vectors as elements of a vector space. Here now is the definition of a vector
space, taken almost word for word from the book "Introductory Real Analysis" (Kolmogorov/Fomin [8]). This
definition is quite lengthy because a set needs to satisfy many rules to be a vector space.
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Definition 9.4 (Vector spaces (linear spaces)). A non–empty set V of elements x, y, z, . . . is called a
vector space or linear space if it satisfies the following:

A. Any two elements x, y ∈ V uniquely determine a third element x+ y ∈ V , called the sum of x
and y with the following properties:

1. x+ y = y + x ( commutativity );

2. (x+ y) + z = x+ (y + z) ( associativity );

3. There exists an element 0 ∈ V , called the zero element, or zero vector, or null vector, with
the property that x+ 0 = x for each x ∈ V ;

4. For every x ∈ V , there exists an element −x ∈ V , called the negative of x, with the property
that x+ (−x) = 0 for each x ∈ V . When adding negatives, then there is a convenient short
form. We write x− y as an abbreviation for x+ (−y);

B. Any real number α and element x ∈ V together uniquely determine an element αx ∈ V (some-
times also written α · x), called the scalar product of α and x. It has the following properties:

1. α(βx) = (αβ)x;

2. 1x = x;

C. The operations of addition and scalar multiplication obey the two distributive laws

1. (α+ β)x = αx+ βx;

2. α(x+ y) = αx+ αy;

The elements of a vector space are called vectors. �

Definition 9.5 (Subspaces of vector spaces). Let V be a vector space and let A ⊆ V be a non–empty
subset of V with the following property: For any x, y ∈ A and α ∈ R the sum x + y and the scalar
product αx also belong to A. Then A is called a subspace of V .

The set {0}which contains the null vector 0 of V as its single element is called the nullspace. �

Remark 9.1 (Closure properties).

a. Note that if α = 0 then αx = 0. it follows that the null vector belongs to any subspace.
b. We ruled out the case A = ∅ but did not require that A be a strict subset of V ((2.3) on

p.12). In other words, the entire vector space V is a subspace of itself.
c. It is trivial to verify that the nullspace {0} is a subspace. �

Proposition 9.2 (Subspaces are vector spaces). A subspace of a vector space is a vector space, i.e., it
satisfies all requirements of definition (9.4).
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Proof: None of the equalities that are part of the definition of a vector space magically ceases to be valid just
because we look at a subset. The only thing that could go wrong is that some of the expressions might not
belong to A anymore. I’ll leave it to you to figure out why this won’t be the case, but I’ll show you the proof
for the second distributive law of part C.

We must prove that for any x, y ∈ A and λ ∈ R

λ(x+ y) = λx+ λy :

First, x + y ∈ A because a subspace contains the sum of any two of its elements. It follows that λ(x + y)
as product of a real number with an element of A again belongs to A because it is a subspace. Hence the left
hand side of the equation belongs to A.

Second, both λx and λy belong to A because each is the scalar product of λ with an element of A and this set
is a subspace. It follows for the same reason that the right hand side of the equation as the sum of two elements
of the subspace A belongs to A.

Equality of λ(x+ y) and λx+ λy is true because it is true if we look at x and y as elements of V . �

Remark 9.2 (Closure properties). If a subset B of a larger set X has the property that certain oper-
ations on members of B will always yield elements of B, then we say that B is closed with respect
to those operations. �

A subspace is a subset of a vector space which is closed with respect to vector addition and scalar
multiplication.

You have already encountered the following examples of vector spaces:

Example 9.9 (Vector space R). The real numbers R are a vector space if you take the ordinary addi-
tion of numbers as "+" and the ordinary multiplication of numbers as scalar multiplication. �

Example 9.10 (Vector space Rn). More general, the sets Rn of n–dimensional vectors are vector
spaces when you define addition and scalar multiplication as in (9.2) on p.150. To see why, just look
at each component (coordinate) separately and you just deal with ordinary real numbers. �

The following remark should be thought of as the definition of the very important function spaces
FFF (X,R), BBB(X,R), CCC (X,R).

Example 9.11 (Vector spaces of real functions). Let X be an arbitrary, non–empty set. Then

FFF (X,R) := {f(·) : f(·) is a real function on X}(9.10)

denotes the set of all real functions with domain X 73 and

BBB(X,R) := {g(·) : g(·) is a bounded real function on X}
73 Note that FFF (X,R) = RX (see remark 5.2, p.103 which follows def.5.5 of the Cartesian Product of a family of sets.)
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denotes the subset of all bounded real functions with domain X .

Let A ⊆ R. Then

CCC (A,R) := {ψ(·) : ψ(·) is a continuous real function on A}

denotes the subset of FFF (X,R) of all real continuous functions on X .

We list separately the case X = [a, b]] whre a, b ∈ R such that a < b. Then

CCC ([a, b],R) := {h(·) : h(·) is a continuous real function for a 5 x 5 b}.

denotes the set of all contnuous real functions with domain [a, b]. Note that, for continuous func-
tions, we had to restrict our choice of domain to subsets of real numbers because there is no notion
of continuity for functions on abstract domains (and codomains). 74

If you define addition and scalar multiplication as in (4.13) on p.90, then each of these sets of real–
valued functions becomes a vector space for the following two reasons:

I: You can verify properties A, B, C of a vector space by looking at the function values for a specific
argument x ∈ X because then you just deal with ordinary real numbers.

II: The sum of two bounded functions and the product of a bounded function with a scalar is
a bounded function. In other words, “+′′ associates with any two elements f, g ∈ BBB(X,R) a third
item f+g ∈BBB(X,R) and “·′′ associates with any f ∈BBB(X,R) and α ∈ R a third item α·f ∈BBB(X,R).

Likewise, the sum of two continuous functions and the product of a continuous function with a
scalar is a continuous function. As for bounded functions, “+′′ associates with any two elements
f, g ∈ CCC ([a, b],R) a third item f + g ∈ CCC ([a, b],R) and “·′′ associates with any f ∈ CCC ([a, b],R) and
α ∈ R an item α · f ∈ CCC ([a, b],R).

It follows from the above that all three function sets are vector spaces and also that 1) BBB(X,R) is a
subspace of FFF (X,R), 2) CCC (X,R) is a subspace of FFF (X,R).

We will see in ch.11 (Compactness) on p.230 that continuous functions defined on a closed interval
are bounded. It follows that

CCC ([a, b],R) ⊆ BBB([a, b],R) ⊆ FFF ([a, b],R).

We deduce from this that 3) CCC ([a, b],R) also is a subspace of BBB([a, b],R).

It should be noted though that, for example, continuous function need not be bounded on open
intervals ]a, b[, as the example f(x) = 1

x demonstrates for a = 0 and b = 1. �

Here are some more examples.

Example 9.12 (Subspace {(x, y) : x = y} ). The set V := {(x, x) ∈ R2 : x ∈ R} of all vectors in the
plane with equal x and y coordinates has the following property: For any two vectors ~x = (a, a) and
~y = (b, b) ∈ V (a, b ∈ R) and real number α the sum ~x+ ~y = (a+ b, a+ b) and the scalar product

74 We will generalize in ch.10.2 (Continuity) on p.197 the concept of continuity to functions f : X → Y where both X
and Y are so–called metric spaces.
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α~x = (αa, αa) have equal x–and y–coordinates, i.e., they again belong to V . Moreover the zero–
vector 0 with coordinates (0, 0) belongs to V . It follows that the subset L of R2 is a subspace of R2

(see (9.5) on p.155). �

A proof for the following is omitted even though it is not difficult:

Example 9.13 (Subspace {(x, y) : y = αx} ). Any subset of the form

Vα := {(x, y) ∈ R2 : y = αx}

is a subspace of R2 (α ∈ R). Draw a picture: Vα is the straight line through the origin in the xy–plane
with slope α. �

Example 9.14 (Embedding of linear subspaces). The last example was about the subspace of a bigger
space. Now we switch to the opposite concept, the embedding of a smaller space into a bigger
space. We can think of the real numbers R as a part of the xy–plane R2 or even 3–dimensional space
R3 by identifying a number a with the two-dimensional vector (a, 0) or the three-dimensional
vector (a, 0, 0). Let M < N . It is not a big step from here that the most natural way to uniquely
associate anN–dimensional vector with anM–dimensional vector ~x := (x1, x2, . . . , xM ) by adding
zero-coordinates to the right:

~x := (x1, x2, . . . , xM , 0, 0, . . . , 0︸ ︷︷ ︸
N−M times

) �

Example 9.15 (All finite–dimensional vectors). Let

S :=
⋃
n∈N

Rn = R1 ∪ R2 ∪ . . . ∩ Rn ∪ . . .

be the set of all vectors of finite (but unspecified) dimension.

We can define addition for any two elements ~x, ~y ∈ S as follows: If ~x and ~y both happen to have
the same dimension N then we add them as usual: the sum will be x1 + y1, x2 + y2, . . . , xN + yN ,.
If not, then one of them, say ~x will have dimension M smaller than the dimension N of ~y. We now
define the sum ~x+ ~y as the vector

~z := (x1 + y1, x2 + y2, . . . , xM + yM , yM+1, yM+2, . . . , yN )

which is hopefully what you expected to happen. �

Example 9.16 (All sequences of real numbers). Let RN =
∏
j∈N

R (see (5.5) on p.103). Is this the same

set as S from the previous example? The answer is No. Can you see why? I would be surprised
if you do, so let me give you the answer: Each element x ∈ S is of some finite dimension, say
N , meaning that that it has no more than N coordinates. Each element y ∈ RN is a collection of
numbers y1, y2, . . . none of which need to be zero. In fact, RN is the vector space of all sequences of
real numbers. Addition is of course done coordinate by coordinate and scalar multiplication with
α ∈ R is done by multiplying each coordinate with α.

There is again a natural way to embed S into RN as follows: We transform anN–dimensional vector
(a1, a2, . . . , aN ) into an element of RN (a sequence (aj)j∈N) by setting aj = 0 for j > N . �
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Definition 9.6 (linear combinations). Let V be a vector space and let x1, x2, x3, . . . , xn ∈ V be a
finite number of vectors in V . Let α1, α2, α3, . . . , αn ∈ R. We call the finite sum

(9.11)
n∑
j=0

αjxj = α1x1 + α2x2 + α3x3 + . . .+ αnxn

a linear combination of the vectors xj . The multipliers α1, α2, . . . are called scalars in this context.
�

In other words, linear combinations are sums of scalar multiples of vectors. You should understand that the
expression in (9.11) always is an element of V , no matter how big n ∈ N was chosen:

Proposition 9.3 (Vector spaces are closed w.r.t. linear combinations). Let V be a vector space
and let x1, x2, x3, . . . , xn ∈ V be a finite number of vectors in V . Let α1, α2, α3, . . . , αn ∈ R. Then the

linear combination
n∑
j=0

αjxj also belongs to V . Note that this is also true for subspaces because those are

vector spaces, too.

Proof: Trivial. �

Proposition 9.4. Let V be a vector space and let (Wi)i∈I be a family of subspaces of V .
Let W :=

⋂[
Wi : i ∈ I

]
. Then W is a subspace of V .

Proof: It suffices to show that W is not empty and that any linear combination of items in W belongs to W .
As 0 ∈Wi for each i ∈ I , it follows that 0 ∈W , hence W 6= ∅.

Let x1, x2, . . . xk ∈ W and α1, α2, . . . αk ∈ R(k ∈ N). Let x :=
∑k

j=1 αjxj . Then x ∈ Wi for all i because
each Wi is a vector space, hence x ∈W . �

Definition 9.7 (Linear span). Let V be a vector space and A ⊆ V . Then span(A) := the set of all
linear combinations of vectors in A is called the span or linear span of A. In other words,

span(A) = {
k∑
j=1

αjxj : k ∈ N, αj ∈ R, xj ∈ A (1 5 j 5 k) }. �(9.12)

Proposition 9.5. Let V be a vector space and A ⊆ V . Then span(A) is a subspace of V .

Proof: Let yj ∈ span(A) for j = 1, 2, . . . k, i.e. yj is a linear combination of vectors xj,1, xj,2, . . . xj,nj ∈ A.
But then any linear combination of y1, y2, . . . yk is a linear combination of the vectors

(x1,1, x1,2, . . . x1,n1), (x2,1, x2,2, . . . x2,n2), . . . , (xk,1, xk,2, . . . xk,nk
). �

Theorem 9.1. Let V be a vector space and A ⊆ V . Let V := {W ⊆ V : W ⊇ A and W is a subspace of V }.
Then span(A) =

⋂[
W : W ∈ V

]
.

Clearly, span(A) ⊇ A It follows from prop.9.5 that span(A) ∈ V, hence span(A) ⊇
⋂[

W : W ∈ V
]
.

On the other hand, Any subspace W of V that contains A also contains all its linear combinations, hence
span(A) ⊆W for all W ∈ V. But then span(A) ⊆

⋂[
W : W ∈ V

]
. �
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Remark 9.3 (Linear span(A) = subspace generated by A). Let V be a vector space and A ⊆ V .
Theorem 9.1 justifies to call span(A) := the subspace generated by A. �

Definition 9.8 (linear mappings). Let V1, V2 be two vector spaces.

Let f(·) : V1 → V2 be a mapping with the following properties:

f(x+ y) = f(x) + f(y) ∀x, y ∈ V1 additivity(9.13a)
f(αx) = αf(x) ∀x ∈ V1, ∀α ∈ R homogeneity(9.13b)

Then we call f(·) a linear mapping. �

Note 9.1 (Note on homogeneity). We encountered homogeneity when looking at the properties of
the Euclidean norm ((9.9) on p.153), but homogeneity is defined differently there in that you had to
take the absolute value |α| instead of α. �

Remark 9.4 (Linear mappings are compatible with linear combinations). We saw in the last propo-
sition that vector spaces are closed with respect to linear combinations. Linear mappings and linear
combinations go together very well in the following sense:

Remember that for any kind of mapping x 7→ f(x) , f(x) was called the image of x. Now we can
express what linear mappings are about like this:

A: The image of the sum is the sum of the image

B: The image of the scalar multiple is the scalar multiple of the image

C: The image of the linear combination is the linear combination of the images

Mathematicians express this by saying that linear mappings preserve or are compatible with linear
combinations. �

Proposition 9.6 (Linear mappings preserve linear combinations). Let V1, V2 be two vector spaces.

Let f(·) : V1 → V2 be a linear map and let x1, x2, x3, . . . , xn ∈ V1 be a finite number of vectors in the
domain V1 of f(·). Let λ1, λ2, λ3, . . . , λn ∈ R. Then f(·) preserves any such linear combination:

(9.14) f(
n∑
j=0

λjxj) =
n∑
j=0

λjf(xj).

Proof:
First we note that f(λjxj) = λjf(xj) for all j because linear mappings preserve scalar multiples and the
proof is done for n = 1. Because they also preserve the addition of any two elements, the proposition holds for
n = 2. We prove the general case by induction (see (2.11) on p.18). Our induction assumption is

f(

n−1∑
j=0

λjxj) =

n−1∑
j=0

λjf(xj).

We use it in the third equality of the following:

f(

n∑
j=0

λjxj) = f(

n−1∑
j=0

λjxj +λnxn) = f(

n−1∑
j=0

λjxj)+f(λnxn) =

n−1∑
j=0

λjf(xj)+f(λnxn) =

n∑
j=0

λjf(xj)
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Here are some examples of linear mappings.

Example 9.17 (Projection on the first coordinate). Let N ∈ N. The map

π1(·) : RN → R (x1, x2, . . . , xN ) 7→ x1

is called the projection on the first coordinate or the first coordinate function.

Example 9.18 (Projections on any coordinate). More generally, let N ∈ N and 1 5 j 5 N . The map

πj(·) : RN → R (x1, x2, . . . , xN ) 7→ xj

is called the projection on the jth coordinate or the jth coordinate function.

It is easy to see what that means if you set N = 2: For the two–dimensional vector
~v := (3.5,−2) ∈ R2 you get π1(~v) = 3.5 and π2(~v) = −2. �

Example 9.19 (Projections on any lower dimensional space). In the last two examples we projected
RN onto a one–dimensional space. More generally, we can project RN onto a vector space RM of
lower dimension M (i.e., we assume M < N ) by keeping M of the coordinates and throwing away
the remaining N −M . Mathematicians express this as follows:

Let M,N, i1, i2, . . . , iM ∈ N such that M < N and 1 5 i1 < i2 < · · · < iM 5 N . The map

(9.15) πi1,i2,...,iM (·) : RN → RM (x1, x2, . . . , xN ) 7→ (xi1 , xi2 , . . . , xiM )

is called the projection on the coordinates i1, i2, . . . , iM . 75 �

Example 9.20. Let x0 ∈ A. The mapping

(9.16) εx0 : FFF (A,R)→ R; f(·) 7→ f(x0)

which assigns to any real function on A its value at the specific point x0 is a linear mapping because

if h(·) =
n∑
j=0

ajfj(·) then

εx0(
n∑
j=0

ajfj(·)) = εx0(h(·)) = h(x0) =

n∑
j=0

ajfj(x0) =
n∑
j=0

ajεx0(fj(·))

and this proves the linearity of the mapping εx0(·). The mapping εx0(·) is called the abstract
integral with respect to point mass at x0. �

Lemma 9.1 (F ◦ span = span ◦ F ). [3] Brin/Marchesi Linear Algebra, general lemma 4.1.7: Let V,W be
two vector spaces and F : V →W a linear mapping from V to W . Let A ⊆ V . Then

F (span(A)) = span(F (A)).(9.17)
75 You previously encountered an example where we made use of the projection

π1,2(·) : R3 → R2 (x, y, z) 7→ (x, y).

This was in the course of computing the length of a 3–dimensional vector (see (9.5) on p.150).
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Proof: See Brin/Marchesi Linear Algebra, general lemma 4.1.7. �

Definition 9.9 (Linear dependence and independence). Let V be a vector space and A ⊆ V
a. A is called linearly dependent if the following is true: There exist dis-

tinct vectors x1, x2, . . . xk ∈ A and scalars α1, α2, . . . αk ∈ R (k ∈ N) such

that not all scalars αj are zero (1 5 j 5 k) and
k∑
j=1

αjxj = 0.

b. A is called linearly independent if A is not linearly dependent, i.e., if
the following is true: Let x1, x2, . . . xk ∈ A and α1, α2, . . . αk ∈ R (k ∈ N).

If
k∑
j=1

αjxj = 0 then αj = 0 for all 1 5 j 5 k. �

Definition 9.10 (Basis of a vector space). Let V be a vector space and B ⊆ V . B is called a basis of
V if a. B is linearly independent and b. span(B) = V . �

Lemma 9.2. Let V be a vector space and A ⊆ V linearly independent. If span(A) ( V and y ∈ span(A){

then A′ := A ∪ {y} is linearly independent.

Proof:
Let x1, x2, . . . xk ∈ A′ and α1, α2, . . . αk ∈ R (k ∈ N) such that

k∑
j=1

αjxj = 0(9.18)

We must show that each αj is zero.

Case 1: y 6= xj for all j:
Then y ∈ A and it follows from the linear independence of A that each αj is zero.

Case 2: y = xj0 for some 1 ≤ j0 5 k:
We first show that αj0 = 0: Otherwise

xj0 =
∑
j 6=j0

−αj
αj0

xj(9.19)

is a linear combination of elements of A, contrary to the assumption that xj0 = y ∈ span(A){ and we have
shown that αj0 = 0.

It follows from (9.18) that ∑
j 6=j0

αjxj = 0(9.20)

and It follows as in case 1 from the linear independence of A that if j 6= j0 then αj also is zero. �

9.2.2 Normed Vector Spaces (Study this!)

Definition 9.3 on p.152 in ch.9.1.3 (Length of N–Dimensional Vectors and the Euclidean Norm) gave the
definition of the Euclidean norm ‖~x‖2 =

∑N
j=1 x

2
j in RN . We saw that in dimensions n = 1, 2, 3 that ‖~x‖2
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equals the length of the vector ~x and that prop.9.1 on p. 153 “proved” informally for n = 1, 2, 3 that ‖ · ‖2
satisfies the following three properties:

a. positive definiteness,
b. absolute homogeneity,
c. triangle inequality.

In this chapter we define the norm ‖x‖ of a vector x in an abstract vector space as a function which satisfies
the above three properties, and hence generalizes the concept of the length of a vector in N–dimensional space
to more general vector spaces. Before we give give this definition, we first introduce the concept of an inner
product x • y of two vectors x and y. We will see that some of the most important norms, the Euclidean norm
among them, can be derived from inner products.

The following definition of inner products and proof of the Cauchy–Schwartz inequality were taken from
"Calculus of Vector Functions" (Williamson/Crowell/Trotter [13]).

Definition 9.11 (Inner products). Let V be a vector space with a function

•(·, ·) : V × V → R; (x, y) 7→ x • y := •(x, y)

which satisfies the following properties:

x • x = 0 ∀x ∈ V and x • x = 0 ⇔ x = 0(9.21a)
x • y = y • x ∀x, y ∈ V(9.21b)
(x+ y) • z = x • z + y • z ∀ x, y, z ∈ V(9.21c)
(λx) • y = λ(x • y) ∀ x, y ∈ V ∀ λ ∈ R(9.21d)

positive definiteness
symmetry
additivity
homogeneity

We call such a function an inner product. 76 �

Note that additivity and homogeneity of the mapping x 7→ x • y for a fixed y ∈ V imply linearity of that
mapping and the symmetry property implies that the mapping y 7→ x • y for a fixed x ∈ V is linear too. In
other words, an inner product is binear in the following sense:

Definition 9.12 (Bilinearity). Let V be a vector space with a function

F (·, ·) : V × V → R; (x, y) 7→ F (x, y).

F (·, ·) is called bilinear if it is linear in each component, i.e., the mappings

F1 :V → R; x 7→ F (x, y)

F2 :V → R; y 7→ F (x, y)

are both linear. �

Proposition 9.7 (Algebraic properties of the inner product). Let V be a vector space
with inner product •(·, ·). Let a, b, x, y ∈ V . Then

(a+ b) • (x+ y) = a • x + b • x + a • y + b • y(9.22a)
(x+ y) • (x+ y) = x • x + 2(x • y) + y • y(9.22b)
(x− y) • (x− y) = x • x − 2(x • y) + y • y(9.22c)

76 also called dot product, e.g., in [3] Brin/Marchesi Linear Algebra, ch.6, Orthogonality.
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Proof of a:

(a+ b) • (x+ y) = (a+ b) • x + (a+ b) • y
= a • x + b • x + a • y + b • y.

We used linearity in the second argument for the first equality and linearity in the first argument for the
second equality.

Proof of b and c: Left as an exercise.

The following is the most important example of an inner product.

Proposition 9.8 (Inner product on RN )). Let N ∈ N. Then the real–valued function

(9.23) (~v, ~w) 7→ x1y1 + x2y2 + . . .+ xNyN =
N∑
j=1

xjyj

is an inner product on RN × RN .

Proof:

a. For ~v = ~w we obtain ~v • ~v =

N∑
j=1

x2
j and positive definiteness of the inner product follows from

N∑
j=1

x2
j = 0 ⇔ x2

j = 0 ∀j ⇔ xj = 0 ∀j

b. Symmetry is clear because xjyj = yjxj .
c. Additivity follows from the fact that (xj + yj)zj = xjzj + yjzj .
d. Homogeneity follows from the fact that (λxj)yj = λ(xjyj). �

Proposition 9.9 (Cauchy–Schwartz inequality for inner products). Let V be a vector space with an
inner product

•(·, ·) : V × V → R; (x, y) 7→ x • y := •(x, y)

Then
(x • y)2 5 (x • x) (y • y).

Proof:
Step 1: We assume first that x • x = y • y = 1. Then

0 5 (x− y • x− y)

= x • x− 2x • y + y • y = 2− 2(x • y)

where the first equality follows from proposition (9.7) on p.163.
This means 2(x • y) 5 2, i.e., x • y 5 1 = (x • x) (y • y) where the last equality is true because we had
assumed x • x = y • y = 1. The Cauchy–Schwartz inequality is thus true under that special assumption.

Step 2: General case: We do not assume anymore that x • x = y • y = 1. If x or y is zero then the Cauchy–
Schwartz inequality is trivially true because, say if x = 0 then the left hand side becomes

(x • y)2 = (0x • y)2 = 0(x • y)2 = 0
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whereas the right hand side is, as the product of two non–negative numbers x • x and y • y , non–negative.

So we can assume that x and y are not zero. On account of the positive definiteness we have x • x > 0 and
y • y > 0. This allows us to define u := x/

√
x • x and v := y/

√
y • y. But then

u • u = (x • x)/
√
x • x2

= 1

v • v = (y • y)/
√
y • y2 = 1.

We have already seen in step 1 that u • v 5 1. It follows that

(x • y)/(
√
x • x√y • y) = (x/

√
x • x) • (y/

√
y • y) 5 1

We multiply both sides with
√
x • x√y • y,

x • y 5
√
x • x√y • y.

We replace x by −x and obtain
−(x • y) 5

√
x • x√y • y.

Think for a moment about the meaning of the absolute value and it is clear that the last two inequalities
together prove that

|x • y| 5
√
x • x√y • y.

We square this and obtain
(x • y)2 5 (x • x) (y • y)

and the Cauchy–Schwartz inequality is proved. �

Definition 9.13 (sup–norm of bounded real functions). Let X be an arbitrary, non-empty set. Let
f : X → R be a bounded real function on X , i.e., there exists a (possibly very large) number K such
that |f(x)| 5 K for all x ∈ X . Let

‖f‖∞ := sup{|f(x)| : x ∈ X}(9.24)

We call ‖f‖∞ the supremum norm or sup–norm of the function f . �

Proposition 9.10 (Properties of the sup norm). Let X be an arbitrary, non–empty set. Let

BBB(X,R) := {h(·) :h(·) is a bounded real function on X}

(see example 9.11 on p. 156). Then the function

‖ · ‖∞ : BBB(X,R)→ R+, h 7→ ‖h‖∞ = sup{|h(x)| : x ∈ X}

which assigns to a bounded function on X its sup–norm satisfies the following:

‖f‖∞ = 0 ∀ f ∈BBB(X,R) and ‖f‖∞ = 0 ⇔ f(·) = 0(9.25a)
‖αf(·)‖∞ = |α| · ‖f(·)‖∞ ∀ f ∈BBB(X,R),∀ α ∈ R(9.25b)
‖f(·) + g(·)‖∞ 5 ‖f(·)‖∞ + ‖g(·)‖∞ ∀ f, g ∈BBB(X,R)(9.25c)

positive definiteness
absolute homogeneity
triangle inequality
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The proof is left as exercise 9.1.

Note 9.2. We previously discussed the Euclidean norm

(9.26) ‖~x‖2 =

√√√√ n∑
j=1

xj2

for n–dimensional vectors ~x = (x1, x2, . . . , xn). You saw in (9.1) on p.153 that it satisfies positive
definiteness, absolute homogeneity and the triangle inequality, just like the sup–norm. Those are
properties which you associate with the length or size of an object. A very rich mathematical theory
can be developed for a generalized definition of length which is based just on those properties. �

As mentioned before, mathematicians like to define new objects that are characterized by a certain set of
properties. As an example we had the definition of a vector space which encompasses objects as different as
finite–dimensional vectors and real functions. Accordingly we give a special name to a function defined on a
vector space which satisfies positive definiteness, homogeneity and the triangle inequality.

Definition 9.14 (Normed vector spaces). Let V be a vector space. A norm on V is a real function

‖ · ‖ : V → R x 7→ ‖x‖

with the following three properties:

‖x‖ = 0 ∀x ∈ V and ‖x‖ = 0 ⇔ x = 0(9.27a)
‖αx‖ = |α| · ‖x‖ ∀x ∈ V,∀α ∈ R(9.27b)
‖x+ y‖ 5 ‖x‖+ ‖y‖ ∀ x, y ∈ V(9.27c)

positive definiteness
absolute homogeneity
triangle inequality

We call V a normed vector space and we write (V, ‖ · ‖) instead of V when we wish to emphasize
what norm on V we are dealing with. �

Remark 9.5. A vector space may be endowed with more than one norm. Here are two examples.

a. It is shown in prop.9.11 below that if x 7→ ‖x‖ is a norm on a vector space V and β > 0 then
x 7→ β · ‖x‖ also is a norm on V .

b. The p–norms on the vector space Rn which will be defined next. �

Definition 9.15 (p–norms for Rn). Let p = 1. Then

x 7→ ‖x‖p :=
( n∑
j=1

xj
p
)1/p

(9.28)

is a norm on Rn). This norm is called the p-norm .

The Euclidean norm is a p–norm; it is the 2-norm. A proof that ‖ · ‖p is in fact a norm is not given in
this document except for p = 2 (see cor.9.1 on p.168). �
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Proposition 9.11. Let (V, ‖ · ‖) be a normed vector space and let γ > 0. Let p : V → R be defined as
p(x) := γ‖x‖. Then p also is a norm.

Proof: Left as an exercise. �

Definition 9.16 (Norm for an inner product). Let V be a vector space with an inner product

•(·, ·) : V × V → R; (x, y) 7→ x • y

Then

‖ · ‖• : x 7→ ‖x‖• :=
√

(x • x)(9.29)

is called the norm associated with the inner product •(·, ·). �

The following theorem shows that it is justified to call ‖x‖• :=
√

(x • x) a norm.

Theorem 9.2 (Inner products define norms). Let V be a vector space with an inner product

•(·, ·) : V × V → R; (x, y) 7→ x • y

Then
‖ · ‖• : x 7→ ‖x‖ =

√
(x • x)

defines a norm on V

Proof:
Positive definiteness : follows immediately from that of the inner product.

Absolute homogeneity : Let x ∈ V and λ ∈ R. Then

‖λx‖• =
√

(λx) • (λx) =
√
λλ(x • x)) = |λ|

√
x • x = |λ|‖x‖•.

Triangle inequality : Let x, y ∈ V . Then

‖x+ y‖•2 = (x+ y) • (x+ y)

= x • x + 2(x • y) + y • y
5 x • x + 2|x • y| + y • y
5 x • x + 2

√
x • x√y • y + y • y

= ‖x‖•2 + 2‖x‖• ‖y‖• + ‖y‖•2

=
(
‖x‖• + ‖y‖•

)2
.

The second equation uses bilinearity and symmetry of the inner product. The first inequality expresses the
simple fact that α 5 |α| for any number α. The second inequality uses Cauchy–Schwartz. The next equality
just substitutes the definition ‖x‖• =

√
(x • x) of the norm. The next and last equality is the binomial

expansion (a+ b)2 = a2 + 2ab+ b2 for the ordinary real numbers a = ‖x‖• and b = ‖y‖•.

We take square roots in the above inequality ‖x+ y‖•2 5
(
‖x‖• + ‖y‖•

)2 and obtain ‖x + y‖• 5
‖x‖• + ‖y‖•, the triangle inequality we set out to prove. �

It was stated in prop.9.1 on p. 153 that the Euclidean norm is in fact a norm but only positive definiteness
and homogeneity were proved. We now can easily complete the proof.
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Corollary 9.1. The Euclidean norm in Rn defined as ‖(x1, x2, . . . , xn)‖2 =

√
n∑
j=1

xj2 (see def. 9.3 on

p.152) is a norm.

Proof: This follows from the fact that

~x • ~y =
n∑
j=1

xjyj where ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn) ∈ Rn

defines an inner product on Rn×Rn (see prop.9.8) for which ‖(x1, x2, . . . , xn)‖2 is the associated norm. �

We are now going to look at an inner product on the vector space CCC ([a, b],R) of all continuous real–valued
functions on the interval [a, b] which was defined in example 10.8 on p.202. We use the terminology of [11]
Stewart, J: Single Variable Calculus) for the following.

Definition 9.17. Let a, b ∈ R, a < b and assume that f, g : [a, b]→ R are integrable (example 4.19 on
p.83) functions.

a. We call the definite integral
∫ b

a
f(x)dx the net area between the graph of f , the x–axis,

and the vertical lines through (a, 0) (y = a) and (b, 0) (y = b). The above integral treats
areas above the x–axis as positive and below the x–axis as negative, i.e., the net area is
the difference between the areas above the x–axis and those below the x–axis.

b. We call
∫ b

a
|f(x)|dx the area between the graph of f , the x–axis, and the vertical lines

y = a and y = b. Note that f(x) has been replaced by its absolute value |f(x)|. In contrast
to the net area, areas below the x–axis are also counted positive. �

c. We call
∫ b

a
f(x)− g(x)dx the net area between the graphs of f and g and the vertical lines

y = a and y = b. We call
∫ b

a
|f(x)− g(x)|dx the area between the graphs of f and g and

the vertical lines y = a and y = b. �

Example 9.21. Let f : [−1, 1]; x 7→ 4x3. The antiderivative (see example 4.19 on p.83) of f . is x4

and we compute net area and area as follows:

a. Net area =
∫ 1

(−1)
4x3dx = x4

∣∣∣1
−1

= 1− 1 = 0;

b. Area =
∫ 1

(−1)
4|x3|dx = −x4

∣∣∣0
−1

+ −x4
∣∣∣1
0

=
(
0− (−1)

)
+
(
1− 0

)
= 2. �

Let a, b ∈ R such that a < b. We recall from example 10.8 on p.202 that CCC ([a, b],R) denotes the vector space
of all continuous real–valued functions on the interval [a, b]. We further remember from example 4.19 on
p.83) that continuous functions are integrable. This allows us to compare for f ∈ CCC ([a, b],R) the expressions

‖f‖∞ = sup{|f(x)| : x ∈ X},
∫ b

a
|f(x)|dx, and

∫ b

a

(
f(x)

)2
dx.(9.30)
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All three expressions give in a sense the size of f . The sup–norm measures it as the biggest possible dis-
placement from zero, the integral over the absolute value measures the area between the gaps of the functions
x 7→ f(x) and x 7→ 0, and the last expression does the same with the square of f . In many respects the use of
areas is considered superior to using the biggest difference to zero.

Squaring f rather than using its absolute value has some mathematical advantages. One of them is that this
will define an inner product on CCC ([a, b],R). We will discuss that now.

Proposition 9.12. Let a, b ∈ R such that a < b. Then the mapping

(f, g) 7→ f • g :=

∫ b

a
f(x)g(x)dx(9.31)

defines an inner product on f ∈ CCC ([a, b],R) . �

Proof: We must prove positive definiteness, symmetry, and linearity in the left argument. In the following let
f, g, h ∈ CCC ([a, b],R) and λ ∈ R.

a. Positive definiteness: It follows from f2(x) = 0 that f • f =
∫ b
a f

2(x)dx = 0. Clearly, if 0 denotes
as usual the zero function x 7→ 0 then 0 • 0 = 0. It remains to show that if

∫ b
a f

2(x)dx = 0 then f = 0.
The proof will be deferred until we given the rigorous definition of a continuus function. You can find it in
prop.10.29 on p.228.

b. Symmetry:

f • g =

∫ b

a
f(x)g(x)dx =

∫ b

a
g(x)f(x)dx = g • f.

c. Additivity and homogeneity: This can be deduced from the well–known formulas∫ b

a
f(x) + g(x)dx =

∫ b

a
f(x)dx +

∫ b

a
g(x)dx and

∫ b

a
λg(x)dx = λ

∫ b

a
g(x)dx.

as follows:

(f + g) • h =

∫ b

a

(
f(x) + g(x)

)
h(x)dx =

∫ b

a
f(x)h(x)dx +

∫ b

a
g(x)h(x)dx = f • h+ g • h,

(9.32)

(λf) • g =

∫ b

a
λf(x)g(x)dx = λ

∫ b

a
f(x)g(x)dx = λ(f • g). �(9.33)

According to def.9.16 (norm for an inner product) and thm.9.2 (inner products define norms) we now define
the norm associated with f • g =

∫ b
a f(x)g(x)dx.

Definition 9.18 (L2–Norm for continuous functions). Let a, b ∈ R such that a < b. Let f • g be the
the following inner product on the space CCC ([a, b],R) of all continuous functions [a, b]→ R:

f • g :=

∫ b

a
f(x)g(x)dx.(9.34)
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The associated norm

‖ · ‖L2 : f 7→ ‖f‖• =

√∫ b

a
f2(x)dx(9.35)

is called the L2–norm. of f . �

We saw in def.9.15 that the Euclidean norm is the p–norm ‖~x‖p =
( n∑
j=1

xj
p
)1/p

for the special case p = 2.

There is an analogue for the L2 norm.

Definition 9.19 (Lp–norms for Rn). Let a, b ∈ R such that a < b, f ∈ CCC ([a, b],R), and p = 1. Then

f 7→ ‖f‖Lp :=
(∫ b

a
|f(x)|p

)1/p
(9.36)

is a norm on CCC ([a, b],R). This norm is called the Lp–norm of f . .

We saw that ‖ · ‖Lp is in fact a norm for p = 2. The proof for general p = 1 is not given in this
document. �

In chapter 10 on the topology of real numbers (p. 171) you will learn about metric spaces as a concept that
generalizes the measurement of distance (or closeness, if you prefer) for the elements of a non–empty set.

9.3 Exercises for Ch.9

Exercise 9.1. Prove prop.9.10 on p.165: Let X be an arbitrary, non–empty set. Then the function
‖ · ‖∞ : BBB(X,R)→ R+, h→ ‖h‖∞ = sup{|h(x)| : x ∈ X} defines a norm. �

Exercise 9.2. Prove prop.9.7 (Algebraic properties of the inner product) on p.163:

Let V be a vector space with inner product •(·, ·). Let a, b, x, y ∈ V . Then

a. (a+ b) • (x+ y) = a • x + b • x + a • y + b • y
b. (x+ y) • (x+ y) = x • x + 2(x • y) + y • y
c. (x− y) • (x− y) = x • x − 2(x • y) + y • y �

Exercise 9.3. Prove prop.9.11 on p.167: Let (V, ‖ · ‖) be a normed vector space and let γ > 0. Let
p : V → R be defined as p(x) := γ‖x‖. Then p also is a norm. �

Exercise 9.4. Prove that the p–norm (see def.9.15 on p.166) is a norm on Rn for the special case p = 1:

‖~x‖1 =
n∑
j=1

|xj | �
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10 Metric Spaces

There is a branch of Mathematics, called topology, which deals with the concept of closeness. The concept of
limits of a sequence (xn)n is based on closeness: The points of the sequence must get “arbitrarily close” to its
limit as n→∞. Continuity of functions also can be phrased in terms of closeness: They map arbitrarily close
elements of the domain to arbitrarily close elements of the codomain. In the most general setting Topology
is about neighborhoods of a point without having the concept of measuring the distance of two points. We
mostly won’t deal with such a level of generality in this document. Instead we’ll we’ll focus on sets X that
are equipped with a distance function.

10.1 The Topology of Metric Spaces (Study this!)

A metric is a real function of two arguments which associates with any two points x, y ∈ X their "distance"
d(x, y).

It is clear how you measure the distance (or closeness, depending on your point of view) of two numbers
x and y: you plot them on an x–axis where the distance between two consecutive integers is exactly one
inch, grab a ruler and see what you get. Alternate approach: you compute the difference. For example, the
distance between x = 12.3 and y = 15 is x− y = 12.3− 15 = −2.7. Actually, we have a problem: There
are situations where direction matters and a negative distance is one that goes into the opposite direction
of a positive distance, but we do not want that in this context and understand the distance to be always
non–negative, i.e.,

dist(x, y) = |y − x| = |x− y|
More importantly, you must forget what you learned in your in your science classes: “Never ever talk about
a measure (such as distance or speed or volume) without clarifying its dimension”. Is the speed measured in
miles per hour our inches per second? Is the distance measured in inches or miles or micrometers? In the
context of metric spaces we measure distance simply as a number, without any dimension attached to it. For
the above example, you get

dist(12.3, 15) = |12.3− 15| = 2.7.

In section 9.1.3 on p.150 it is shown in great detail that the distance between two two–dimensional vectors
~v = (v1, v2) and ~w = (w1, w2) is

dist(~v, ~w) =
√

(w1 − v1)2 + (w2 − v2)2

and the distance between two three–dimensional vectors ~v = (v1, v2, v3) and ~w = (w1, w2, w3) is

dist(~v, ~w) =
√

(w1 − v1)2 + (w2 − v2)2 + (w3 − v3)2.

In the next chapter we will generalize the concept of distance to more general objects.

10.1.1 Definition and Examples of Metric Spaces

Definition 10.1 (Metric spaces). Let X be an arbitrary, non–empty set.
A metric on X is a real function of two arguments

d(·, ·) : X ×X → R, (x, y) 7→ d(x, y)
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with the following three properties: 77

d(x, y) = 0 ∀x, y ∈ X and d(x, y) = 0 ⇔ x = y(10.1a)
d(x, y) = d(y, x) ∀x, y ∈ X(10.1b)
d(x, z) 5 d(x, y) + d(y, z) ∀ x, y, z ∈ X(10.1c)

positive definiteness
symmetry
triangle inequality

The pair (X, d(·, ·)), usually just written as (X, d), is called a metric space. We’ll write X for short
if it is clear which metric we are talking about. �

To appreciate that last sentence, you must understand that there can be more than one metric on X . See the
examples below.

Remark 10.1 (Metric properties). Let us quickly examine what those properties mean.

“Positive definite”: The distance is never negative and two items x and y have distance
zero if and only if they are equal.

“symmetry”: the distance from x to y is no different to that from y to x. That may
come as a surprise to you if you have learned in Physics about the dis-
tance from point a to point b being the vector ~v that starts in a and ends
in b and which is the opposite of the vector ~w that starts in b and ends
in a, i.e., ~v = −~w . In this document we care only about size and not
about direction.

“Triangle inequality”: If you directly walk from x to z then this will take less time than if you
make a stopover at an intermediary y. �

Remark: Do not make the mistake and think of X as a set of numbers or vectors! For example, we might deal
with

X := { all students who are currently taking this class }.

We can define the distance of any two students s1 and s2 as

d(s1, s2) =

{
0 for s1 = s2,

1 for s1 6= s2.

We will learn later in this subchapter that the above function is called the discrete metric on X and satisfied
indeed the definition of a metric. 78 �

The triangle inequality generalizes to more than two terms.

Proposition 10.1. Let (X, d) be a metric space. Let n ∈ N and x1, x2, . . . , xn ∈ X . Then

d(x1, xn) 5
n−1∑
j=1

d(xj , xj+1) = d(x1, x2) + d(x2, x3) + d(xn−1, xn).(10.2)

77 If you forgot the meaning of X ×X , it’s time to review the definition of a cartesian product (def.4.1 in ch.4.1 on
p.72.

78 see def.10.3 on p.174 and prop.10.2 directly thereafter.
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The proof is left as exercise 10.1.

Before we give some examples of metric spaces, here is a theorem that tells you that a vector space with a norm
(see def.9.14 on p.166), becomes a metric space as follows:

Theorem 10.1 (Norms define metric spaces). Let (V, ‖ · ‖) be a normed vector space. Then the function

d‖·‖(·, ·) : V × V → R=0; (x, y) 7→ d‖·‖(x, y) := ‖y − x‖(10.3)

defines a metric space (V, d‖·‖).

The proof is left as exercise 10.2.

Definition 10.2 (Metric induced by a norm). We say that the metric d‖·‖(·, ·) defined by (10.3) is
induced by the norm ‖ · ‖. We also say that d‖·‖(·, ·) is derived from the norm ‖ · ‖ or that d‖·‖(·, ·)
is associated with the norm ‖ · ‖. �

Here are some examples of metric spaces.

Example 10.1 ((R with d|·|(a, b) = |b − a|). According to thm.10.1 (R, d|·|) is a metric space because
the Euclidean norm |·| is a norm on R = R1.

Here is a direct proof; It is obvious that if x, y are real numbers then the difference x− y, and hence
its absolute value, is zero if and only if x = y and that proves positive definiteness.

Symmetry follows from d|·|(x, y) = |x− y| = |−(y − x)| = |y − x| = d|·|(y, x).

The triangle inequality for a metric follows from |a+ b| 5 |a|+ |b| (see prop.2.2 on p.18):

d|·|(x, z) = |x− z| = |(x− y)− (z − y)|
5|x− y|+ |z − y| = d|·|(x, y) + d|·|(z, y) = d|·|(x, y) + d|·|(y, z). �

Example 10.2 (bounded real functions with d‖·‖∞f, g) = sup–norm of g(·)− f(·) ).

d‖·‖∞(f, g) = ‖g − f‖∞ = sup{|g(x)− f(x)| : x ∈ X}(10.4)

is a metric on the set BBB(X,R) of all bounded real functions on X . This follows from thm.10.1 and
prop.9.10 on p. 165, according to which (BBB(X,R), ‖ · ‖∞) is a normed vector space.

We will see in ch.10.1.2 on p.174 that ‖g − f‖∞ is a good measure for the difference of the functions
f and g .....

Example (continuous real functions on [a,b] with d‖·‖L2
(f, g) = L2–norm of g(·)− f(·) ).

..... and that an often even better measure is that of the area difference between their graphs which
is given by the netric

d‖·‖L2
(f, g) = ‖g − f‖L2 =

√∫ b

a

(
g(x)− f(x)

)2
dx.

(see def.9.18 on p.169) �
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Example 10.3 (RN with the Euclidean metric).

d‖·‖2(~x, ~y) =

√
(y1 − x1)2 + (y2 − x2)2 + . . .+ (yN − xN )2 =

√√√√ N∑
j=1

(yj − xj)2

This follows from the fact that the Euclidean norm is a norm on the vector space RN (see cor.9.1 on
p.168.) �

Just in case you think that all metrics are derived from norms, here is a counterexample.

Definition 10.3 (Discrete metric). Let X be non–empty. Then the function

d(x, y) =

{
0 for x = y

1 for x 6= y

on X ×X is called the discrete metric on X. �

The above definition makes sense because of the following proposition.

Proposition 10.2. The discrete metric satisfies the properties of a metric.

Proof: Obviously the function is non–negative and it is zero if and only if x = y. Symmetry is obvious too.

The triangle inequality d(x, z) 5 d(x, y) + d(y, z) is clear in the special case x = z. (Why?)

So let us assume x 6= z. But then x 6= y or y 6= z or both must be true. (Why?) That means that

d(x, z) = 1 5 d(x, y) + d(y, z)

and this proves the triangle inequality. �

10.1.2 Measuring the Distance of Real Functions

How do we compare two functions? Let us make our lives easier: How do we compare two real functions f(·)
and g(·)? One answer is to look at a picture with the graphs of f(·) and g(·) and look at the shortest distance
|f(x)− g(x)| as you run through all x. That means that the distance between the functions f(x) = x
and g(x) = x2 is zero because f(1) = g(1) = 1. The distance between f(x) = x+ 1 and g(x) = 0 (the
x–axis) is also zero because f(−1) = g(−1) = 0.

Do you really think this is a good way to measure closeness? You really do not want two items to have zero
distance unless they coincide. It’s a lot better to look for an argument x where the value |f(x)− g(x)| is
largest rather than smallest. Now we are ready for a proper definition.

Definition 10.4 (Distance between real functions). Let X be an arbitrary, non-empty set and let
f(·), g(·) : X → R be two real functions on X . We define the distance between f(·) and g(·) as

d∞(f, g) = ‖f(·)− g(·)‖∞ = sup{|f(x)− g(x)| : x ∈ X},(10.5)

i.e., as the metric induced by the sup–norm on the set BBB(X,R) of all bounded real function on X .
�
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Remark 10.2. We have previously encountered the formula (10.5) in example 10.2 on p.173. We
will see in prop.10.18 on p.209 of ch.10.3.1 on convergence of function sequences that the sup–norm
induced metric is suitable to measure what will be called “uniform convergence” of real functions.
As a metric, the distance measure of two functions f, g satisfies positive definiteness, symmetry and
the triangle inequality. We have seen in other contexts what those properties mean.

“Positive definite”: The distance is never negative and two functions f(·) and g(·) have distance
zero if and only if they are equal, i.e., if and only if f(x) = g(x) for each argument x ∈ X .

“Symmetry”: the distance from f(·) to g(·) is no different than that from g(·) to f(·). Symmetry
implies that you do not obtain a negative distance if you walk in the opposite direction.

“Triangle inequality”: If you directly compare the maximum deviation between two functions f(·)
and h(·) then this will never be more than than using an intermediary function g(·) and adding the
distance between f(·) and g(·) to that between g(·) and h(·). �

Remark 10.3. The following picture illustrates the last definition. Plot the graphs of f and g as
usual and find the the spot x0 on the x–axis for which the difference |f(x0)− g(x0)| (the length
of the vertical line that connects the two points with coordinates (x0, f(x0)) and (x0, g(x0))) has the
largest possible value. The domain of f and g is the subset of R that corresponds to the thick portion
of the x–axis.

- x

6
y

x0

d∞(f, g)

Figure 10.1: Distance of two real functions.

This figure allows you to visualize for a given δ > 0 and f : X → R the “δ–neighborhood” of f(·)
defined as

(10.6) Nδ(f) := {g : X → R : d(∞f, g) < δ} = {g(·) : X → R : sup
x∈X
|f(x)− g(x)| < δ},

i.e., the set of all functions g(·) with distance less than δ from f(·).

You draw the graph of f(·) + δ (the graph of f(·) shifted up north by the amount of δ) and the graph
of f(·)− δ (the graph of f(·) shifted down south by the amount of δ). Any function g(·) which stays
completely inside this band, without actually touching it, belongs to the δ–neighborhood of f(·).
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Figure 10.2: δ–neighborhood of a real function.

In other words, assuming that the domain A is a single, connected chunk and not a collection of
several separate intervals, the δ–neighborhood of f(·) is a "band" whose contours are made up on
the left and right by two vertical lines and on the top and bottom by two lines that look like the
graph of f(·) itself but have been shifted up and down by the amount of δ. �

10.1. (unlabeled) Remark:

We saw in def.9.17, example 9.21 and def.9.18 on pp.168 that both

dL1(f, g) := d‖·‖L1 (f,g) = ‖g − f‖L1 =

∫ b

a
|g(x)− f(x)|dx,

dL2(f, g) := d‖·‖L2 (f,g) = ‖g − f‖L2 =

∫ b

a
(g(x)− f(x)2dx,

are often better suitable than the distance derived from the sup–norm to measure the distance of
two functions. One of the drawbacks from a teaching perspective is that there is no picture like
figure 10.2 to visualize the set of all functions with an L1–distance or L2–distance from a given
function.

10.1.3 Neighborhoods and Open Sets

A. Given a point x0 ∈ R (a real number) and ε > 0, we can look at

Nε(x0) = (x0 − ε, x0 + ε) = {x ∈ R : x0 − ε < x < x0 + ε}
= {x ∈ R : d(x, x0) = |x− x0| < ε}

(10.7)

which is the set of all real numbers x with a distance to x0 of strictly less than a number ε (the open interval
with end points x0 − ε and x0 + ε). (see example (10.1) on p.173).

B. Given a point ~x0 = (x0, y0) ∈ R2 (a point in the xy–plane), we can look at

Nε(~x0) = {~x ∈ R2 : ‖~x− ~x0‖ < ε}
= {(x, y) ∈ R2 : (x− x0)2 + (y − y0)2 < ε2}

(10.8)
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which is the set of all points in the plane with a distance to ~x0 of strictly less than a number ε (the open disc
around ~x0 with radius ε from which the points on the boundary (those with distance equal to ε) are excluded).

C. Given a point ~x0 = (x0, y0, z0) ∈ R3 (a point in the 3–dimensional space), we can look at

Nε(~x0) = {~x ∈ R3 : ‖~x− ~x0‖ < ε}
= {(x, y, z) ∈ R3 : (~x− ~x0)2 + (~y − ~y0)2 + (~z − ~z0)2 < ε2}

(10.9)

which is the set of all points in space with a distance to ~x0 of strictly less than a number ε (the open ball
around ~x0 with radius ε from which the points on the boundary (those with distance equal to ε) are excluded).

D. Given a normed vector space (V, ‖ · ‖) and a vector x0 ∈ V , we can look at

(10.10) Nε(x0) = {x ∈ V : ‖x− x0‖ < ε}

which is the set of all vectors in V with a distance to x0 of strictly less than a number ε (the open set around
x0 with ”radius” ε from which the points on the boundary (those with distance equal to ε) are excluded).

E. Given a bounded real valued function f ∈ BBB(X,R), we can look at the sets Nε(f) (ε > 0) defined in
(10.6) on p.175, i.e., the set of all functions g(·) with distance less than ε from f(·).

F. Given is a closed interval [a, b] (a, b ∈ R). For a continuous (hence bounded) real valued function f ∈
BBB([a, b],R), we can look at the sets

Nε(f) = {g ∈BBB([a, b],R) : ‖g − f‖L2 < ε},

i.e., the set of all functions g(·) such that
√∫ b

a

(
g(x)− f(x)

)2
dx < ε (see def.9.18 on p.169)

There is one more item more general than neighborhoods of elements belonging to normed vector spaces, and
that would be neighborhoods in metric spaces. We have arrived at the final definition:

Definition 10.5 (ε-Neighborhood). Given a metric space (X, d) and an element x0 ∈ X , let

(10.11) Nε(x0) = {x ∈ X : d(x, x0) < ε}

be the set of all elements of X with a distance to x0 of strictly less than the number ε (the open set
around x0 with ”radius” ε from which the points on the boundary (those with distance equal to ε)
are excluded). We call Nε(x0) the ε–neighborhood of x0. �

The following should be intuitively clear: Look at any point a ∈ Nε(x0). You can find δ > 0 such that the
entire δ–neighborhood Nδ(a) of a is contained inside Nε(x0). Just in case you do not trust your intuition,
this is shown in prop. 10.3 just a little bit further down.

It then follows that any a ∈ Nε(x0) is an interior point of Nε(x0) in the following sense:

Definition 10.6 (Interior point). Given is a metric space (X, d).
An element a ∈ A ⊆ X is called an interior point of A if we can find some ε > 0, however small it
may be, so that Nε(a) ⊆ A. �

Definition 10.7 (Open sets). Given is a metric space (X, d).
A set all of whose members are interior points is called an open set. �
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10.2. (unlabeled) Proposition: See this footnote. 79

Let (X, d) be a metric space. Let x, y ∈ X and ε > 0 such that y ∈ Nε(x).

If δ > 0 Then Nδ(y) ⊆ Nδ+ε(x)

.

Proposition 10.3. Nε(x0) is an open set

It is worth while to examine the following proof 80 closely because you can see how the triangle inequality is
put to work.

a ∈ Nε(x0) means that ε− d(a, x0) > 0, say,

ε− d(a, x0) = 2δ(10.12)

where δ > 0. Let b ∈ Nδ(a). The claim is that any such b is an element of Nε(x0). How so?

d(b, x0) 5 d(b, a) + d(a, x0) < δ + (ε− 2δ) = ε− δ < ε

In the above chain, the first inequality is a consequence of the triangle inequality. The second one reflects the
fact that b ∈ Nδ(a) and uses (10.12).

We have proved that for any b ∈ Nδ(a) it is true that b ∈ Nε(x0) hence Nδ(a) ⊆ Nε(x0).

We showed earlier on that any a ∈ Nε(x0) is an interior point of Nε(x0). �

Definition 10.8 (Neighborhoods in Metric Spaces). Let (X, d) be a metric space, x0 ∈ X . Any open
set that contains x0 is called an open neighborhood of x0. Any superset of an open neighborhood
of x0 is called a neighborhood of x0. �

Remark 10.4 (Open neighborhoods are the important ones). You will see that the important neigh-
borhoods are the small ones, not the big ones. The definition above says that for any neighborhood
Ax of a point x ∈ X you can find an open neighborhood Ux of x such that Ux ⊆ Ax.

Because of this there are many propositions and theorems where you may assume that a neighbor-
hood you deal with is open. �

Theorem 10.2 (Metric spaces are topological spaces). The following is true about open sets of a metric
space (X, d):

An arbitrary union
⋃
i∈I

Ui of open sets Ui is open.(10.13a)

A finite intersection U1 ∩ U2 ∩ . . . ∩ Un (n ∈ N) of open sets is open.(10.13b)
The entire set X is open and the empty set ∅ is open.(10.13c)

79 This is lemma 11.1 on p.241. The proof is elementary, and understandable with what you know so far. It cannot be
moved here at this time because doing so would change the indexing of subsequent lemmata

80 A shorter proof can be given if the previous proposition is used.
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Proof of a: Let U :=
⋃
i∈I

Ui and assume x ∈ U . We must show that x is an interior point of U . An element

belongs to a union if and only if it belongs to at least one of the participating sets of the union. So there exists
an index i0 ∈ I such that x ∈ Ui0 .

Because Ui0 is open, x is an interior point and we can find a suitable ε > 0 such that Nε(x) ⊆ Ui0 . But
Ui0 ⊆ U , hence Nε(x) ⊆ U . It follows that x is interior point of U . But x was an arbitrary point of
U =

⋃
i∈I

Ui which therefore is shown to be an open set.

Proof of b: Let x ∈ U := U1 ∩ U2 ∩ . . . ∩ Un. Then x ∈ Uj for all 1 5 j 5 n according to the definition
of an intersection and it is inner point of all of them because they all are open sets. Hence, for each j there is a
suitable εj > 0 such that Nεj (x) ⊆ Uj Now define

ε := min{ε1, ε2, ε3, . . . , εn}

Then ε > 0 and 81

Nε(x) ⊆ Nεj (x) ⊆ Uj (1 5 j 5 n), hence Nε(x) ⊆
n⋂
j=1

Uj .

We have shown that an arbitrary x ∈ U is interior point of U and this proves part b.

Proof of c: First we deal with the set X . Choose any x ∈ X . No matter how small or big an ε > 0 you choose,
Nε(x) is a subset ofX . But then x is an inner point ofX , so all members of x are inner points and this proves
that X is open.
Now to the empty set ∅. You may have a hard time to accept the logic of this statement: All elements of ∅
are interior points. But remember, the premise “let x ∈ X” is always false and you may conclude from it
whatever you please (see ch.3 (Logic). �

This last theorem provides the underpinnings for the definition of abstract topological spaces which will be
touched upon in ch.10.1.5 on p.181.

10.1.4 Convergence

You have already encountered the precise definition of the convergence of sequences of real numbers in ch.8.1.
It is only a small step to generalize this concept to all metric spaces and therefore also to all normed vector
spaces.

Definition 10.9 (convergence of sequences in metric spaces). Given is a metric space (X, d).
We say that a sequence (xn) of elements of X converges to a ∈ X for n→∞ if almost all of the xn
will come arbitrarily close to a in the following sense:

Let δ be an arbitrarily small positive real number. Then there is a (possibly extremely large) integer
n0 such that all xj belong to Nδ(a) just as long as j = n0. To say this another way: Given any
number δ > 0, however small, you can find an integer n0 such that

(10.14) d(a, xj) < δ for all j = n0

81 by the way, this is the exact spot where the proof breaks down if you deal with an infinite intersection of open sets:
the minimum would have to be replaced by an infimum and there is no guarantee that it would be strictly larger than
zero.
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We write either of

(10.15) a = lim
n→∞

xn or xn → a

and we call a the limit of the sequence (xn)

There is an equivalent way of expressing convergence towards a: No matter how small a neighbor-
hood of a you choose: at most finitely many of the xn will be located outside that neighborhood.
�

Theorem 10.3 (Limits in metric spaces are uniquely determined). Let (X, d) be a metric space .
Let (xn)n be a convergent sequence in X Then its limit is uniquely determined.

Proof: Otherwise there would be two different points L1, L2 ∈ X such that both lim
n→∞

xn = L1 and
lim
n→∞

xn = L2 Let ε := d(L1, L2)/2. There will be N1, N2 ∈ N such that

d(xn, L1) < ε ∀n = N1 and d(xn, L2) < ε ∀n = N2.

It follows that, for n = max(N1, N2), 82

d(L1, L2) 5 d(L1, xn) + d(xn, L2) < 2ε = d(L1, L2)

and we have reached a contradiction. �

The remainder of this chapter belongs to ch.8.1 (Minima, Maxima, Infima and
Suprema) where convergence in R is discussed.

Convergence is an extremely important concept in Mathematics, but it excludes the case of sequences such
as xn := n and yn := −n (n ∈ N). Intuition tells us that xn converges to ∞ and yn converges to −∞
because we think of very big numbers as being very close to +∞ and very small numbers (i.e., very big ones
with a minus sign) as being very close to −∞.

Definition 10.10 (Limit infinity). For this definition we do not deal with an arbitrary metric space
but specifically with X = R and d(x, y) = |b− a|. Given a real number K > 0, we define

NK(∞) := {x ∈ R : x > K}(10.16a)
NK(−∞) := {x ∈ R : x < −K}(10.16b)

We call NK(∞) the K-neighborhood of∞ and NK(−∞) the K-neighborhood of −∞.
We say that a sequence (xn) has limit∞ and we write either of

(10.17) xn →∞ or lim
n→∞

xn =∞

if the following is true for any (big) K: There is a (possibly extremely large) integer n0 such that all
xj belong to NK(∞) just as long as j = n0.
We say that the sequence (xn) has limit −∞ and we write either of

(10.18) xn → −∞ or lim
n→∞

xn = −∞

82 You could have used N1 +N2 instead. Do you see why?
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if the following is true for any (big) K: There is a (possibly extremely large) integer n0 such that all
xj belong to NK(−∞) just as long as j = n0. �

Note 10.1 (Notation for limits of monotone sequences). Let (xn) be a non-decreasing sequence of
real numbers and let yn be a non-increasing sequence. If ξ = limk→∞ xk (that limit might be +∞)
then we write suggestively

xn ↗ ξ (n→∞)

If η = limj→∞ yj (that limit might be −∞) then we write suggestively

yj ↘ η (j →∞) �

Remark 10.5 (No convergence or divergence to infinity).

The majority of mathematicians agrees that there is no “convergence to
∞” or “divergence to ∞”. Rather, they will state that a sequence has
the limit∞. �

10.1.5 Abstract Topological spaces

Theorem 10.2 on p.178 gives us a way of defining neighborhoods for sets which do not have a metric.

Definition 10.11 (Abstract topological spaces). Let X be an arbitrary non-empty set and let U be a
set of subsets 83 of X whose members satisfy the properties a, b and c of (10.13) on p.178:

An arbitrary union
⋃
i∈I

Ui of sets Ui ∈ U belongs to U,(10.19a)

U1, U2, . . . , Un ∈ U (n ∈ N) ⇒ U1 ∩ U2 ∩ . . . ∩ Un ∈ U,(10.19b)
X ∈ U and ∅ ∈ U.(10.19c)

Then (X,U) is called a topological space The members of U are called “open sets” of (X,U) and the
collection U of open sets is called the topology of X . �

Definition 10.12 (Topology induced by a metric). Let (X, d) be a metric space and let Ud be the set
of open subsets of (X, d), i.e., all sets U ⊆ X which consist of interior points only: for each x ∈ U
there exist ε > 0 such that

Nε(x) = {y ∈ X : d(x, y) < ε} ⊆ U

(see (10.6) on p.177). We have seen in theorem (10.2) that those open sets satisfy the conditions of
the previous definition. In other words, (X,Ud) defines a topological space. We say that its topology
is induced by the metric d(·, ·) or that it is generated by the metric d(·, ·). If there is no confusion
about which metric we are talking about, we also simply speak about the metric topology.

83 We encountered subsets of 2X with special properties previously when looking at rings of sets in def.2.12 (Rings and
Algebras of Sets) on p.19.
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Let X be a vector space with a norm ‖ · ‖. Remember that any norm defines a metric d‖·‖(·, ·) via
d‖·‖(x, y) = ‖x− y‖ (see (10.1) on p.173). Obviously, this norm defines open sets

U‖·‖ := Ud‖·‖

on X by means of this metric. We say that this topology is induced by the norm ‖ · ‖ or that it is
generated by the norm ‖ · ‖. If there is no confusion about which norm we are talking about, we
also simply speak about the norm topology. �

Example 10.4 (Discrete topology). Let X be non–empty. Def.10.3 on p.174 gave the discrete metric
as the function

d(x, y) =

{
0 for x = y

1 for x 6= y.

The associated topology is

Ud = 2X = {A : A ⊆ X}.

Note that the discrete metric defines the biggest possible topology on X , i.e., the biggest possible
collection of subsets of X whose members satisfy properties a, b, c of definition 10.11 on p.181. We
call this topology the discrete topology of X . �

Example 10.5 (Indiscrete topology). Here is an example of a topology which is not generated by a
metric. Let X be an arbitrary non–empty set and define U := {∅, X}. Then (X,U) is a topological
space. This is trivial because any intersection of members of U is either ∅ (if at least one member is
∅) or X (if all members are X). Conversely, any union of members of U is either ∅ (if all members
are ∅) or X (if at least one member is X).

The topology {∅, X} is called the indiscrete topology of X . It is the smallest possible topology on
X . �

Definition 10.13 (Base of the topology). Let (X,U) be a topological space.

A subset B ⊆ U of open sets is called a base of the topology if any nonempty open set U can be
written as a union of elements of B:

(10.20) U =
⋃
i∈I

Bi (Bi ∈ B for all i ∈ I)

where I is a suitable index set which of course will in general depend on U . �

We note that, because X itself is open, (10.20) implies that X =
⋃ [

B : B ∈ B
]
.

Definition 10.14 (Neighborhoods and interior points in topological spaces). Let x ∈ X and A ⊆ X .
It is not assumed that A be open. A is called a neighborhood of x and x is called an interior point
of A if you can find an open set U such that

(10.21) x ∈ U ⊆ A. �

10.3. (unlabeled) Proposition:

Let (X, d) be a metric space and let B := {N1/k(x) : x ∈ X, k ∈ N}. Then B is a base of the topology
for the associated topological space (X,Ud).
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The proof is left as exercise 10.9.

Definition 10.15 (Second axiom of countability). Let (X,U) be a topological space.
We say that X satisfies the second axiom of countability or X is second countable if we can find
a countable base for U. �

Theorem 10.4 (Euclidean space RN is second countable). Let

(10.22) B := { N1/n(q) : q ∈ QN , n ∈ N }.

Here QN = {q = (q1, . . . , qN ) : qj ∈ Q, 1 5 j 5 N} is the set of all points in RN with rational coordinates.
Then B is a countable base.

Proof (outline): We recall from cor.7.4 on p. 123 that QN is countable. Let U ∈ U be an arbitrary open set in
X . Any x ∈ U is inner point of U , hence we can find some nx ∈ N such that the entire 3

nx
–neighborhood

N3/nx
(x) is contained within U . As any vector can be approximated by vectors with rational coordinates,

there exists q = qx ∈ QN such that d(x, qx) < 1/nx. Draw a picture and you see that both x ∈ N1/nx
(qx)

and N1/nx
(qx) ⊆ N3/nx

(x). In other words, we have

x ∈ N1/nx
(qx) ⊆ U

for all x ∈ U . But then
U ⊆

⋃ [
N1/nx

(qx) : x ∈ U
]
⊆ U

and it follows that U is the (countable union of the sets N1/nx
(qx). �

We’ll conclude this chapter with a summary of what we have learned about the classification of sets with a
concept of closeness of points.

Remark 10.6 (Classification of topological spaces). We have seen the following:

a. RN is an inner product spaces (see (9.8) on p.164).
b. All inner product spaces are normed spaces (see (9.2) on p.167).
c. All normed spaces are metric spaces (see (10.1) on p.173).
d. All metric spaces are topological spaces. (see (10.11) on p.181 and (10.12) on p.181).

10.1.6 Neighborhood Bases (?)

Note that this chapter is starred, hence optional.

Definition 10.16 (Neighborhood base). Let (X,U) be a topological space.

The set of subsets of X

(10.23) N(x) := {A ⊆ X : A is a neighborhood of x}

is called the neighborhood system of x

Given a point x ∈ X , any subset B := B(x) ⊆ N(x) of the neighborhood system of x is called a
neighborhood base of x if it satisfies the following condition: For any A ∈ N(x) you can find a
B ∈ B(x) such that B ⊆ A. �
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In many propositions where proving closeness to some element is the issue, It often suffices to show that
something is true for all sets that belong to a neighborhood base of x rather than having to show it for all
neighborhoods of x. The reason is that often only the small neighborhoods matter and a neighborhood basis
has “enough” of those.

Definition 10.17 (First axiom of countability). Let (X,U) be a topological space.
We say that X satisfies the first axiom of countability or X is first countable if we can find for
each x ∈ X a countable neighborhood base. �

Proposition 10.4 (ε-neighborhoods are a base of the topology). Let (X, d) be a metric space. Then the
set B1 := {Nε(x) : x ∈ X, ε > 0} is a base for the topology of (X, d) (see 10.13 on p.182) and the same is
true for the “thinner” set B2 := {N1/n(x) : x ∈ X,n ∈ N}.

Proof: To show that B1 (resp., B2) is a base we must prove that any open subset of X can be written as a
union of (open) sets all of which belong to B1 (resp., B2). We prove this for B2.

Let U ⊆ X be open. As any x ∈ U is an interior point of U we can find some ε = ε(x) > 0 such that
Nε(x)(x) ⊆ U . We note that for any such ε(x) there is n(x) ∈ N such that 1/n(x) 5 ε(x).

We observe that U ⊆
⋃[

N1/n(x)(x) : x ∈ U
]
⊆ U .

The first inclusion follows from the fact that {x} ⊆ N1/n(x)(x) for all x ∈ U and the second inclusion follows
from N1/n(x)(x) ⊆ U and the inclusion lemma (lemma 5.1 on p.99).

It follows that U =
⋃[

N1/n(x)(x) : x ∈ U
]

and we have managed to represent our open U as a union of
elements of B2. This proves that B2 is a base for the topology of (X, d).

As B2 ⊆ B1 it follows that B1 also is such a base. �

Theorem 10.5 (Metric spaces are first countable). Let (X, d) be a metric space. ThenX is first countable.

Proof (outline): For any x ∈ X let

(10.24) B(x) := { N1/n(x) : n ∈ N }.

Then B(x) is a neighborhood base of x. �

10.1.7 Metric Subspaces

Definition 10.18 (Metric subspaces). Given is a metric space (X, d) and a non–empty A ⊆ (X, d).
Let d

∣∣
A×A : A× A→ R≥0 be the restriction d

∣∣
A×A(x, y) := d(x, y)(x, y ∈ A) of the metric d to A× A

(see def.4.11 on p.89). It is trivial to verify that (A, d
∣∣
A×A) is a metric space in the sense of def.10.1

on p.171. We call (A, d
∣∣
A×A) a metric subspace of (X, d) and we call d

∣∣
A×A the metric induced by

d or the metric inherited from (X, d). �

Remark 10.7.
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Metric subspaces comes with their own collections of open and closed sets, neighborhoods,
ε-neighborhoods, convergent sequences, ...
You must watch out when looking at statements and their proofs whether those concepts
refer to the entire space (X, d) or to the subspace (A, d

∣∣
AxA

). �

Notations 10.1.

a) Because the only difference between d and dA×A is the domain, it is customary to write d
instead of dA×A to make formulas look simpler if doing so does not give rise to confusion.

b) We often shorten “open in (A, d
∣∣
A×A)” to “open in A”, “closed in (A, d

∣∣
A×A)” to “closed

in A”, “convergent in (A, d
∣∣
A×A)” to “convergent in A”, ..... �

Definition 10.19 (Traces of sets in a metric subspace). Let (X, d) be a metric space and A ⊆ X a
nonempty subset of X , viewed as a metric subspace (A, d

∣∣
A×A) of (X, d) (see def.10.18 on p.184).

Let Q ⊆ X . We call Q ∩A the trace of Q in A.

For ε > 0 and a ∈ A let Nε(a) be the ε-neighborhood of a (in (X, d)). We write

NA
ε (a) := Nε(a) ∩A,

i.e., NA
ε (a) is defined as the trace of Nε(a) in A. �

Proposition 10.5 (Open sets in A as traces of open sets in X). Let (X, d) be a metric space and A ⊆ X
a nonempty subset of X .

a. Let ε > 0 and a ∈ A. Then

NA
ε (a) = {x ∈ A : d

∣∣
A×A(x, a) < ε}.(10.25)

Because

NA
ε (a) = Nε(a) ∩A.(10.26)

It follows that each ε-neighborhood in the subspace A is the trace of an ε-neighborhood in X .

b. More generally, a set U ⊆ A is open in A if and only if there is an open V ⊆ in (X, d) such that

U = V ∩A,(10.27)

i.e., U is the trace of a set V which is open in X .

Proof of a: First we prove (10.26). As d
∣∣
A×A is the restriction of d to A×A it follows that

NA
ε (a) = Nε(a) ∩A = {x ∈ X : d(x, a) < ε} ∩A

= {x ∈ A : d
∣∣
A×A < ε} ∩A = {x ∈ A : d

∣∣
A×A < ε}

This finishes the proof of a.

Proof of b: First we show that if V is open in X then U := V ∩A is open in the subspace A.
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Let x ∈ U . We must prove that x is an interior point of U with respect to (A, d
∣∣
A×A) of (X, d).

Because x ∈ V and V is open in X , there is ε > 0 such that Nε(x) ⊆ V . It follows that

NA
ε (x) = Nε(x) ∩ A ⊆ V ∩ A = U and NA

ε (x) is open in A, hence x is interior point of U with respect to
the subspace (A, d

∣∣
A×A).

Finally we prove that if U ∈ A is open in A there is V ⊆ X open in X such that U = V ∩A:

We can write U =
⋃[

NA
ε(x)(x) : x ∈ U

]
for suitable ε(x) > 0 (see the proof of prop.10.4 on p.184).

Let V :=
⋃[

Nε(x)(x) : x ∈ U
]

we have

V ∩A = A ∩
⋃[

Nε(x)(x) : x ∈ U
]

=
⋃[

Nε(x)(x) ∩A : x ∈ U
]

=
⋃[

NA
ε(x)(x) : x ∈ U

]
= U

(the second equalitity follows from prop.5.2 on p.100). This finishes the proof. �

The last proposition justifies to define subspaces of abstract topological spaces as follows.

Definition (Topological subspaces)

Let (X,U) be a topological space and A ⊆ X . We say that V ⊆ A is open in A if V is the trace of an open
set in X , i.e., if there is some U ∈ U such that V = U ∩ A. We denote the collection of all open sets in A as
UA, i.e.,

UA = {V ∩A : Y ∈ U}.

We call (A,UA) a topological subspace or also just a subspace of (X,U). �

10.4 (Topological subspaces are topological spaces). (unlabeled) Proposition:

Let (X,U) be a topological space, A ⊆ X , and let UA be the collection of all open sets in A. Then
(A,UA) is a topological space, i.e., it satisfies the definition def.10.11 on p.181 of an abstract topo-
logical space.

Proof: Left as an exercise.

Remark 10.8 (Convergence does not extend to subspaces). Let A ⊆ (X, d) and an ∈ A.

a. Note that convergence of the sequence an in the space (X, d) (i.e., there exists x ∈ X such
that x = lim

n→∞
an), does NOT imply convergence of the sequence in the space (A, d

∣∣
A×A):

Such is only the case if x ∈ A.
b. assume there exists x ∈ X such that lim

n→∞
an = x. We have the following dichotomy:

Case 1 – x ∈ A: Then an converges in the subspace (A, d
∣∣
A×A) (and in (X, d)).

Case 2 – x ∈∈ A{: Then an converges in (X, d) but not in (A, d
∣∣
A×A).

�
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10.1.8 Bounded Sets and Bounded Functions

Definition 10.20 (bounded sets). Given is a subset A of a metric space (X, d). The diameter of A is
defined as

(10.28) diam(∅) := 0, diam(A) := sup{d(x, y) : x, y ∈ A} if A 6= ∅.

We call A a bounded set if diam(A) <∞. �

Proposition 10.6. Given is a metric space (X, d) and a nonempty subset A. The following are equivalent:

a. diam(A) <∞ i.e., A is bounded.(10.29)
b. There is a γ > 0 and x0 ∈ X such that A ⊆ Nγ(x0).(10.30)
c. For all x ∈ X there is a γ > 0 such that A ⊆ Nγ(x).(10.31)

Proof of “b⇒ a”: For any x, y ∈ A we have

d(x, y) 5 d(x, x0) + d(x0, y) 5 2γ

and it follows that diam(A) 5 2γ.

Proof of “a⇒ b”: Pick an arbitrary x0 ∈ A and let γ := diam(A) . Then

y ∈ A → d(x0, y) 5 sup
x∈A

d(x, y) 5 sup
x,z∈A

d(x, z) = diam(A) = γ.

It follows that A ⊆ Nγ(x0).

Proof of “c⇒ a”: We pick an arbitrary x0 ∈ A which is possible as A is not empty. Then there is γ = γ(x0)
such that A ⊆ Nγ(x0). For any y, z ∈ A we then have

d(y, z) 5 d(y, x0) + d(x0, z) 5 2γ

and it follows that diam(A) 5 2γ <∞.

Proof of “a⇒ c”: Given x ∈ X , pick an arbitrary x0 ∈ A and let γ := d(x, x0) + diam(A). Then

y ∈ A → d(x, y) 5 d(x, x0) + d(x0, y) 5 d(x, x0) + sup
u∈A

d(u, y)

5 d(x, x0) + sup
u,z∈A

d(u, z) = d(x, x0) + diam(A) = γ.

It follows that A ⊆ Nγ(x). �

10.1.9 Contact Points and Closed Sets

If you look at any closed interval [a, b] = {y ∈ R : a 5 y 5 b} of real numbers, then all of its points are
interior points, except for the end points a and b. On the other hand, a and b are contact points according to
the following definition which makes sense for any abstract topological space.
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Definition 10.21 (Contact points). Given is a topological space (X,U).
Let A ⊆ X and x ∈ X (x may or may not to belong to A). x is called a contact point 84 of A if

(10.32) A ∩N 6= ∅ for any neighborhood N of x. �

The following theorem shows that we can characterize contact points of subsets of metric spaces by means of
sequences.

Theorem 10.6 (Sequence criterion for contact points in metric spaces). Given is a metric space (X, d).
Let A ⊆ X and x ∈ X . Then x is a contact point of A if and only if there exists a sequence x1, x2, x3, . . . of
members of A which converges to x.

Proof of “⇒”: Let x ∈ X be such that N ∩A 6= ∅ for any neighborhood N of x. Let xn ∈ N1/n(x)∩A. Such
xn exists because the neighborhood N1/n(x) has nonempty intersection with A.

Given ε > 0, let N ∈ N be chosen such that 1/ε < N . This is possible because N is not bounded (above) in
R.

For any j = N we obtain d(xj , x) < 1/j 5 1/N < ε. This proves xn → x.

Proof of “⇐” Let x ∈ X and assume there is (xn)n such that xn ∈ A and xn → x.

We must show that if Ux is a (open) neighborhood of x then Ux ∩A 6= ∅. Let ε > 0 such that Nε(x) ⊆ Ux.

It follows from xn → x that there isN = N(ε) such that xn ∈ Nε(x) for all n = N , especially, xN ∈ Nε(x).
By assumption, xN ∈ A, hence xN ∈ Nε(x) ∩A ⊆ Ux ∩A, hence Ux ∩A 6= ∅. �

Note 10.2. Note that any a ∈ A is a contact point of A but not necessarily the other way around:

a. Let a ∈ A. Then any neighborhood Ua of a contains a, hence UA ∩ A is not empty, hence
a is a contact point of A. This proves that any a ∈ A is a contact point of A.

b. Here is a counterexample which shows that the converse need not be true.
Let (X, d) := R with the standard Euclidean metric and letA be the subset ]0, 1[. We show
now that 0 is a contact point of A.
Any neighborhood A0 of 0 contains for some small enough δ > 0 the entire interval
]− δ, δ[. Let x := min(δ/2, 1/2).
Clearly, x ∈ ]− δ, δ[ ⊆ A0 and x ∈ ]0, 1[ = A.
It follows that x ∈ A ∩ A0. As A0 was an arbitrary neighborhood of 0, we have proved
that 0 is a contact point of A, even though 0 /∈ A.

c. The above counterexample can be proven much faster if the criterion for contact points
in metric spaces is employed: Let xn := 1/n (n = 2) Then xn ∈ ]0, 1[ for all n and the
sequence converges to 0. It follows that 0 is a contact point of ]0, 1[. �

Note 10.3 (Contact points vs Limit points). Besides contact points there also is the concept of a limit
point. Here is the definition (see [9] Munkres, a standard book on topology):

Given is a metric space (X, d). Let A ⊆ X and a ∈ X . a is called a limit point or cluster point or
point of accumulation ofA if any neighborhoodU of a intersectsA in at least one point other than a.
This definition excludes “isolated points” 85 of A from being limit points of A. �

84 German: Berührungspunkt - see [12] Von Querenburg, p.21
85 a ∈ A is called an isolated point of A if there is a neighborhood U of a such that U ∩A = {a}.

188



Definition 10.22 (Closed sets). Given is a metric space (X, d)
and a subset A ⊆ X . We call

(10.33) Ā := {x ∈ X : x is a contact point of A}

the closure of A. A set that contains all its contact points is called a closed set. �

Remark 10.9. It follows from note 10.2.a that A ⊆ Ā. �

Proposition 10.7. The complement of an open set is closed.

Proof of 10.7: Let A be an open set. Each point a ∈ A is an interior point which can be surrounded by a
δ-neighborhood Nδ(a) which, for small enough δ, will be entirely contained within A.

Let B = A{ = X \ A and assume x ∈ X is a contact point of B. We want to prove that B is a closed set, so
we must show that x ∈ B.

We assume the opposite and show that this will lead to a contradiction. So let us assume that x /∈ B.

That means, of course, that x belongs to B’s complement which is A. But A is open, so x is an interior point
of A. It follows that there is a neighborhood Nδ(x) surrounding x which is entirely contained in A, hence
Nδ(x) ∩B = ∅.

On the other hand we assumed that x is a contact point of B. This implies that Nδ(x) intersects B.

We have proved on one hand that Nδ(x)∩B = ∅ and on the other hand that there are points in B which also
are contained in Nδ(x).

We have reached a contradiction. �

Proposition 10.8. The complement of a closed set is open.

We will give two complete proofs of the above. The first one makes use of criterion for contact points (theorem
10.6) and works with sequences. The second proof is based on the definition of contact points and works with
neighborhoods and interior points.

a. First proof of prop.10.8:
Let A be closed set. Let B = A{ = X \ A. If B is not open then there must some be b ∈ B which is not an
interior point of B.

We show now that this assumption leads to a contradiction.

Because b is not an interior point of B, there is no δ-neighborhood, for whatever small δ, that entirely belongs
to B. So, for each j ∈ N, there is an xj ∈ N1/j(b) which does not belong to B, i.e., xj ∈ A.

We have constructed a sequence xj which is entirely contained in A and which also converges to b. The latter
is true because, for any j, all but finitely many members are contained in N1/j(b).

The closed set A contains all its contact points and it follows from the criterion for contact points that b ∈ A.

But we had assumed at the outset that b ∈ B which is the complement of A and we have a contradiction. �

b. Alternate proof of prop.10.8 which is entirely based on the concept of neighborhoods and interior points:
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Let A be closed set. Let B = A{ = X \A. Let b ∈ B.

The closed set A contains all its contact points, so b /∈ A implies that b is not a contact point of A: according
to def.10.21 there exists some neighborhood V of b such that V ∩A = ∅, i.e., V ⊆ A{ = B.

We have proved that an arbitrary b ∈ B is an interior point of B, i.e., the complement B of the closed set A
is open. �

Theorem 10.7 (Open iff complement is closed). Let (X, d) be a metric space and A ⊆ X . Then A is open
if and only if A{ is closed.

Proof: Immediate from prop.10.7 and prop.10.8 �

Remark 10.10. a. We have seen that def.10.21 for contact points and hence def.10.22 for closed sets
are entirely based on the concept of neighborhood which itself is entirely based on that of open
sets. It follows that those two definitions make perfect sense not only in metric spaces but, more
generally, in abstract topological spaces (X,U) which are characterized by the set U of all open
subsets of X (see def.10.11 on p.181).

b. Moreover the proof for prop.10.7 (complements of open sets are closed) and the first proof for
prop.10.8 (complements of closed sets are open) are based on those definitions and do not employ
specific properties of metric spaces either; theorem 10.7 also works for abstract topological spaces.

c. Matter of fact, many books define closed sets as the complements of open sets and only afterwards
define contact points as we did. No surprise then that our definition of closed sets becomes their
theorem: It is proved from those definitions that closed sets are exactly those that contain all their
contact points. �

Definition 10.23 (Contact points and closed Sets in topological spaces). 86 Given is an abstract topo-
logical space (X,U).

Let A ⊆ X and x ∈ X (x may or may not to belong to A). x is called a contact point of A if

A ∩N 6= ∅ for any neighborhood N of x.

We call

Ā := {x ∈ X : x is a contact point of A}

the closure of A. A set that contains all its contact points is called a closed set. �

Remark 10.11. We note that A ⊆ Ā: Let a ∈ A and let Va be a neighborhood of a. Because a ∈ Va,
we obtain a ∈ Va ∩A, hence Va ∩A 6= ∅, hence a ∈ Ā.

It follows that A is closed if and only if A = Ā (which justifies the name “closure of A” for Ā.) �

Proposition 10.9. Let (X,U) be a topological space.

The closed sets of X satisfy the following property:

(10.34) a. An arbitrary intersection of closed sets is closed.
b. A finite union of closed sets is closed.
c. The entire set X is closed and ∅ is closed.

86 see def.10.21 and def.10.22 for the following definitions in metric spaces.
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Proof of a: The proof is an easy consequence of De Morgan’s law (the duality principle for sets) (see (5.1) on
p.99). Observe that X is a universal set because all members U of U and their complements U{ are subsets of
X .

Let (Cα) be an arbitrary familiy of closed sets. Then Uα := C{α is an open set for each α. Observe that
C{α = Uα because the complement of the complement of any set gives you back that set. Let C :=

⋂
α
Cα.

Then
C{ =

(⋂
α

Cα
){

=
⋃
α

C{α =
⋃
α

Uα.

In other words C{ is an arbitrary union of open sets which is open by the very definition of open sets of a
topological space. We have proved a.

Proof of b: Let C1, C2, . . . Cn be closed sets. Then Uj := C{j is an open set for each j. Let C :=
⋃

15j5n
Cj .

Then
C{ =

(⋃
j

Cj
){

=
⋂
j

C{j . =
⋂
j

Uj

Hence, C{ is the intersection of finitely many open sets. This shows that C{ is open, i.e., C is closed. We have
proved b.

Proof of c: Trivial because
X{ = ∅ and ∅{ = X.

�

10.1.10 Completeness in Metric Spaces

Often you are faced with a situation where you need to find a contact point a and all you have is a sequence
which behaves like one converging to a contact point in the sense of inequality 10.14 (page 179)

Definition 10.24 (Cauchy sequences). Given is a metric space (X, d).
A sequence (xn) in X is called a Cauchy sequence 87 or, in short, it is Cauchy if it has the following
property: Given any whatever small number ε > 0 , you can find a (possibly very large) number
n0 such that

(10.35) d(xi, xj) < ε for all i, j = n0

This is called the Cauchy criterion for convergence of a sequence. �

Example 10.6 (Cauchy criterion for real numbers). In R we have d(x, y) = |x− y| and the Cauchy
criterion requires for any given ε > 0 the existence of n0 ∈ N such that

(10.36) |xi − xj | < ε for all i, j = n0 �

Proposition 10.10. A Cauchy sequence in a metric space is bounded.
87 so named after the great french mathematician Augustin–Louis Cauchy (1789–1857) who contributed massively to

the most fundamental ideas of Calculus.
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Proof: Let (xn)n be a Cauchy sequence in a metric space (X, d). There is N = N(1/2) such that d(xi, xj) <
1/2 for all i, j = N . In particular, d(xi, xN ) < 1/2.

Let M := max{d(xj , xN ) : j < N}. We obtain for any two indices i, j ∈ N that

d(xi, xj) 5 d(xi, xN ) + d(xN , xj).

d(xi, xN ) is bounded by M in case that i < N and by 1/2 if i = N ; hence d(xi, xN ) < 1/2 + M . We use
the same reasoning to conclude that d(xN , xj) < 1/2 +M and obtain d(xi, xj) < 1 + 2M . This proves the
boundedness of (xn)n. �

The following theorem of the completeness of the set of all real numbers 88 states that any Cauchy sequence
converges to a real number. This is a big deal: To show that a sequence has a finite limit you need not provide
the actual value of that limit. All you must show is that this sequence satisfies the Cauchy criterion. One can
say that this preoccupation with proving existence rather than computing the actual value is one of the major
points which distinguish Mathematics from applied Physics and the engineering disciplines.

Here is the formal definition of a complete set in a metric space.

Definition 10.25 (Completeness in metric spaces). Given is a metric space (X, d). A subset A ⊆ X
is called complete if any Cauchy sequence (xn) with elements in A converges to an element of A.
�

Remark 10.12.

a. In particular, X itself is complete if any Cauchy sequence in X converges.
b. A is complete as a subset of (X, d) iff ((A, d

∣∣
A×A) is complete “in itself”. �

Theorem 10.8 (Completeness of the real numbers). The following is true for the real numbers with
the metric d(a, b) = |b− a| but will in general be false for arbitrary metric spaces: Let (xn) be a Cauchy
sequence in R. then there exists a real number L such that L = lim

n→∞
xn.

Proof: It follows from prop.10.10 that xn is bounded, hence (xn)n possesses finite liminf and limsup. 89 We
now show that lim inf

n→∞
xn = lim sup

n→∞
xn.

Let ε > 0 and N ∈ N such that |xi − xj | 5 ε for all i, j = N .

Let Tn := {xj : j = n} be the tail set of the sequence (xn)n. Let αN := inf TN , βN := supTN .

There is some i = N such that |xi − αN | = xi − αN 5 ε and there is some j = N such that |βN − xj | =
βN − xj 5 ε. It follows that

0 5 βN − αN = |βN − αN | 5 |βN − xj | + |xj − xi| + |xi − αN | 5 3ε.

Further, if k = N then Tk ⊆ TN , hence αk = αN and βk 5 βN . It follows that

βk − αk 5 βN − αN 5 3ε.

88 Remember the completeness axiom for R (axiom 8.1 on p.125) which states that any subset A of R which possesses
upper bounds has a least upper bound (the supremum sup(A)). This axiom was needed to establish the validity of
thm.8.2 (Characterization of limits via limsup and liminf) on p.139, a theorem which will be used in this chapter to prove
the completeness of R as a metric space.

89 See ch.8.1 (Minima, Maxima, Infima and Suprema).
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But then

0 5 lim sup
k→∞

xk − lim inf
k→∞

xk = inf
k
βk − sup

k
αk 5 βN − αN 5 3ε.

ε > 0 was arbitrary, hence lim sup
k→∞

xk = lim inf
k→∞

xk.

Figure 10.3: ε-δ continuity

.

Part 3: It follows from theorem 8.2 on p.139 that the sequence (xn)n converges to L := lim sup
k→∞

xk and the

proof is finished. �

Now that the completeness of R has been established, it is not very difficult to see that N–dimensional space
RN also is complete.

Theorem 10.9 (Completeness of RN ). Let (~xn) be a Cauchy sequence in RN .
Then there exists a vector ~a ∈ RN such that ~a = lim

n→∞
~xn.

Proof (outline): Let ~xj = (xj,1, xj,2, . . . , xj,N ) be Cauchy in RN . For fixed k, each coordinate sequence (xj,k)j
is Cauchy because, if ε > 0, there exists K ∈ N such that if i, j = K then ‖~xi − ~xj‖2 < ε. Hence

|xi,k − xj,k| =
√
|xi,k − xj,k|2 5

√√√√ N∑
k=1

|xi,k − xj,k|2 = ‖~xi − ~xj‖2 < ε.

It follows from the completeness of R as a metric space that there exist real numbers

a1, a2, a3, . . . , aN such that ak = lim
n→∞

xn,k (1 5 k 5 N).

For a given number ε we can find natural numbers n0,1, n0,2, . . . , n0,N such that

|xn,k − ak| <
ε

N
for all n = n0,j and for all 1 5 k 5 N.
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Let n? := max(n0,1, n0,2, . . . , n0,N ). It follows that

d(~xn − ~a) =

√√√√ N∑
k=1

|xn,k − ak|2 5
√
N ·

( ε
N

)2
=

ε√
N
5 ε for all n = n?. �

Example 10.7 (Approximation of decimals). The following illustrates Cauchy sequences and com-
pleteness in R. Take any real number x = 0 and write it as a decimal:

x = m +
∞∑
j=1

dj · 10−j (m ∈ Z, dj ∈ {0, 1, 2, . . . , 9})

As was explained in (2.9) on (p.17), anything that can be written as a decimal number is a real
number. Let’s say, x starts out on the left as

x = 258.1408926584207531 . . .

We define as xk the leftmost part of x, truncated k digits after the decimal points:

x1 = 258.1, x2 = 258.14, x3 = 258.140, x4 = 258.1408, x5 = 258.14089, . . .

We further define yk the leftmost part of x, truncated k digits after the decimal points, but the
rightmost digit incremented by 1 (where you then might obtain a carry-over to the left when you
add 1 to 9)

y1 = 258.2, y2 = 258.15, y3 = 258.141, y4 = 258.1409, y5 = 258.14090, . . .

then the sequence (xn) is non-decreasing: xn+1 = xn for all n and the sequence (yn) is non-
increasing: yn+1 5 yn for all n. We have the sandwiching property: xn 5 x 5 yn for all n. Both
sequences are Cauchy because

d(xn+i, xn+j) = |xn+i − xn+j | 5 10−n → 0 (n→ ∞),

d(yn+i, yn+j) = |yn+i − yn+j | 5 10−n → 0 (n→ ∞).

It follows that both sequences have limits. It is obvious that x = lim
n→∞

xn = lim
m→∞

ym.

What just has been illustrated is that there a natural way to construct for a given x ∈ R Cauchy
sequences that converge towards x. The completeness principle states that the reverse is true: For
any Cauchy sequence there is an element x towards which the sequence converges. �

We won’t really talk about completeness in general until the chapter on compact spaces. Just to mention one
of the simplest facts about completeness:

Theorem 10.10 (Complete sets are closed). Any complete subset of a metric space is closed.
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Figure 10.4: complete ⇒ closed

.

Proof: Let (X, d) be a metric space andA ⊆ X . Let a ∈ X be a contact point of A. The theorem is proved if
we can show that a ∈ A.

a) We employ prop.10.21 on p.188: A point x ∈ X is a contact point of A if and only if A ∩ V 6= ∅ for any
neighborhood V of x.

Let m ∈ N. Then N1/m(a) is a neighborhood of the contact point a, hence hence A
⋂
N1/m(a) 6= ∅ and we

can pick a point from this intersection which we name xm.

b) We prove next that (xm)m is Cauchy. Let ε > 0 and let N ∈ N be such that N > 1/ε. if j ∈ N and k ∈ N
both exceed N then

d(xj , xk) 5 d(xj , a) + d(a, xk) 5
1

j
+

1

k
5

ε

2
+
ε

2
= ε.

It follows that the sequence (xj) is Cauchy.

c) Because A is complete, this sequence must converge to some b ∈ A. But b cannot be different from a
Otherwise we could “separate” a and b by two disjoint neighborhoods: choose the open ρ–balls Nρ(a) and
Nρ(b) where ρ is one half the distance between a and b (see the proof of thm.10.3 on p.180).

Only finitely many of the xn are allowed to be outside Nρ(a) and the same is true for Nρ(b). That is a
contradiction and it follows that b = a, i.e., a ∈ A.

d) We summarize: if a is a contact point of A then a ∈ A. It follows that A is closed. �

The following is the reverse of thm.10.10.

Theorem 10.11 (Closed subsets of a complete space are complete). Let (X, d) be a complete metric
space and let A ⊆ X be closed. Then A is complete, i.e., the metric subspace (A, d

∣∣
A×A) is complete.

Proof: Let (xn)n be a Cauchy sequence in A. We must show that there is a ∈ A such that xn → a. (xn) also
is Cauchy in X because the Cauchy criterion is entirely specified in terms of members of the sequence (xn).

Because X is complete there exists x ∈ X such that xn → x. All xn belong to A. According to thm.10.6
(Sequence criterion for contact points in metric spaces), x is a contact point of A.
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As the set A is assumed to be closed, it contains all its contact points. It follows that x ∈ A, i.e., the arbitrary
Cauchy sequence (xn) in A converges to an element of A. We conclude that A is complete. �

Theorem 10.12 (Convergent sequences are Cauchy). Let (xn)n be a convergent sequence in a metric
space (X, d). Then (xn)n is Cauchy.

Proof: Let L ∈ X and xn → L. Let ε > 0. There exists N ∈ N such that

k = N ⇒ d(xk, L) < ε/2.(10.37)

It follows from (10.37) that, for any i, j = N ,

i, j = N ⇒ d(xi, xj) 5 d(xi, L) + d(L, xj) < ε/2 + ε/2 = ε.

It follows that the sequence satisfies (10.35) of the definition of a Cauchy sequence (def. 10.24 on p.191). �

Proposition 10.11. Let (xn)n be a Cauchy sequence in a metric space (X, d) such that some subsequence
xnj converges to a limit L. Then ANY subsequence of (xn)n converges to L. This is true in particular for the
full sequence x1, x2, . . . , i.e., (xn)n is a convergent sequence.

Proof: Let n1 < n2 < n3 . . . be such that xnj converges to L. For k ∈ N let yk := xnk
.

Let ε > 0. Convergence yj → L implies that there is N ∈ N such that

d(yj , L) < ε/2 for all j = N.(10.38)

Because (xj) is Cauchy there also exists N ′ ∈ N such that

d(xi, xj) < ε/2 for all i, j = N ′.(10.39)

Let K := max(nN , N
′) and j = K. Then

d(xj , L) 5 d(xj , yK) + d(yK , L)

It follows from nK = K and j = K and (10.39) that d(xj , yK) = d(xj , xnK ) < ε/2 and it follows from
(10.38) that d(yK , L) < ε/2. We conclude that d(xj , L) < ε for all j = K and this proves convergence
xj → L. �
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10.2 Continuity (Study this!)

10.2.1 Definition and Characterizations of Continuous Functions

Informally speaking a continuous function
f(·) : R // R x � // y = f(x)

is one whose graph in the xy plane is a continuous line without any disconnections or gaps. This can be stated
slightly more formal by saying that if the x-values are closely together then the f(x)-values must be closely
together too. The latter makes sense for any sets X , Y where closeness can be measured, i.e., for metric spaces
(X, d1) and (Y, d2). Here is the formal definition:

Definition 10.26 (Sequence continuity). Given are two metric spaces (X, d1) and (Y, d2). LetA ⊆ X ,
x0 ∈ A and let f : A → Y be a mapping from A to Y . We say that f is sequence continuous at x0

and we write

(10.40) lim
x→x0

f(x) = f(x0)

if the following is true for any sequence (xn) with values in A:

(10.41) if xn → x0 then f(xn)→ f(x0).

In other words, the following must be true for any sequence (xn) in A and x0 ∈ A:

(10.42) lim
n→∞

xn = x0 ⇒ lim
n→∞

f(xn) = f( lim
n→∞

xn) = f(x0).

We say that f is sequence continuous if f is sequence continuous at x0 for all x0 ∈ A. �

Remark 10.13. Important points to notice:
a) It is not enough for the above to be true for some sequences that converge to x0. Rather,

it must be true for all such sequences!
b) We restrict our universe to the domain A of f : x0 and the entire sequence (xn)n∈N must

belong to A because there must be function values for all x-values. In other words, f is
continuous at x0 ∈ A if and only if f is continuous at x0 in the metric subspace (A, d

∣∣
A×A).

�

Definition 10.27 (ε-δ continuity). Given are two metric spaces (X, d1) and (Y, d2). Let A ⊆ X ,
x0 ∈ A and let f(·) : A → Y be a mapping from A to Y . We say that f(·) is ε-δ continuous at x0 if
the following is true: For any (whatever small) ε > 0 there exists δ > 0 such that either one of the
following equivalent statements is satisfied:
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(10.43) f
(
Nδ(x0) ∩A

)
⊆ Nε(f(x0)),

(10.44) d1(x, x0) < δ ⇒ d2(f(x), f(x0)) < ε for all x ∈ A.

We say that f(·) is ε-δ continuous if f(·) is ε-δ continuous at a for all a ∈ A. �

Figure 10.5: ε-δ continuity

.

Remark 10.14. We recall from thm.10.25 on p.185 that

Nδ ∩A = NA
δ (a) = {x ∈ A : d

∣∣
A×A(x, a) < δ}.

Hence, (10.43) states that f is ε-δ continuous at x0 if and only if f
(
NA
δ (x0)

)
⊆ Nε(f(x0)). �

Theorem 10.13 (ε-δ characterization of continuity). Let (X, d1) and (Y, d2) be two metric spaces. Let
A ⊆ X , x0 ∈ A and let f(·) : A→ Y be a mapping from A to Y . Then f is sequence continuous at x0 if and
only if f is ε-δ continuous at x0.

In particular f is sequence continuous if and only if f is ε-δ continuous.

a)⇒a)⇒a)⇒: Proof that sequence continuity implies ε-δ-continuity:
We assume to the contrary that there exists some function f which is sequence continuous but not ε-δ-
continuous at x0, i.e., there exists some ε > 0 such that neither (10.43) nor the equivalent (10.44) is true for
any δ > 0.

a.1. In other words, No matter how small a δ we choose, there is at least one x = x(δ) ∈ A such that
d1(x, x0) < δ but d2(f(x), f(x0)) = ε. In particular we obtain for δ := 1/m(m ∈ N) that

(10.45) there exists some xm ∈ N1/m(x0) ∩A; such that; d2(f(xm), f(x0)) = ε.
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a.2. We now show that the sequence (xm)m∈N converges to x0: Let γ > 0. There exists N = N(γ) ∈ N so
big that N > 1/γ, i.e., 1/N < γ. As xm ∈ N1/m(x0), we obtain for all m = N that

d1(xm, x0) < 1/m 5 1/N < γ.

This proves that xm → x0.

a.3. Clearly, the sequence
(
f(xm)

)
m∈N does not converge to f(x0) as that requires d2(f(xm), f(x0)) < ε

for all sufficiently big m, contrary to (10.45) which implies that there is not even one such m. In other words,
the function f is not sequence continuous, contrary to our assumption. We have our contradiction.

b)⇐b)⇐b)⇐: Proof that ε-δ-continuity implies sequence continuity:
Let xn → x0. Let yn := f(xn) and y := f(x0). We must prove that yn → y as n→∞.

b.1. Let ε > 0. We can find δ > 0 such that (10.43) and hence (10.44) is satisfied. We assumed that xn → x0.
Hence there exists N := N(δ) ∈ N such that d1(xn, x0) < δ for all n = N .

b.2. It follows from (10.44) that d2(yn, y) = d2(f(xn), f(x0)) < ε for all n = N . In other words, yn → y as
n→∞ and the proof of “⇐” is finished.

Finally, the equivalence f is ε-δ continuous ⇔ f is ε-δ continuous. �

From now on we can use the terms “ε-δ continuous at x0” and “sequence continuous at x0” interchangeably
for functions between metric spaces and we will simply speak about continuity of f at x0.

Note: In this space belong thm.10.18 on p.228 and def.def-x:cont-func-topol-
spaces (Continuity for topological spaces). See the addenda to this chapter.

[1] B/G: Art of Proof defines in appendix A, p.136, continuity of a function f as follows: “f−1(open) =
open”. The following proposition proves that their definition coincides with the one given here: the validity of
(10.43) for all x0 ∈ X .

a) In the interest of simplicity f now is defined on all of X and not just on some subset A of X . Note
that the general case of f : A → Y is covered by replacing (X, d1) with (A, d1

∣∣
A×A), i.e., we deal with

f : (A, d1

∣∣
A×A)→ (Y, d2).

b) Also note that this next proposition addresses continuity of f for all x ∈ X and not at a specific x0.

Proposition 10.12 (“f−1(open) = open” continuity). Let (X, d1) and (Y, d2) be two metric spaces and
let f(·) : X → Y be a mapping from X to Y . Then f(·) is continuous if and only if the following is true: Let
V be an open subset of Y . Then the inverse image f−1(V ) is open in X . 90

Proof of “⇒”: Let V be an open set in Y . Let U := f−1(V ), a ∈ U and b := f(a). Then b ∈ V by the
definition of inverse images. b is inner point of the open set V and there is ε > 0 such that Nε(b) ⊆ V .

90 This is easily extended to f : A→ Y (∅ 6= A ⊆ X) by demanding that f−1(V ) is open in (A, d
∣∣
A×A

).
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It follows from def.10.27 (ε-δ continuity) that there is δ > 0 such that f(Nδ(a)) ⊆ Nε(b). It follows from the
monotonicity of direct and inverse images and prop.6.1 on p.112 that

Nδ(a) ⊆ f−1
(
f(Nδ(a))

)
⊆ f−1(Nε(b)) ⊆ f−1(V ) = U.

It follows that the arbitrarily chosen a ∈ U is an interior point of U and this proves that U is open.

Proof of “⇐”: We now assume that all inverse images of open sets in Y are open in X .

Let a ∈ X, b = f(a) and ε > 0. We must find δ > 0 such that f(Nδ(a)) ⊆ Nε(b).

Let U := f−1
(
Nε(b)

)
. Then U is open as the inverse image of the open neighborhood Nε(b) and there will be

δ > 0 such that Nδ(a) ⊆ U . It follows from the monotonicity of direct and inverse images and prop.6.6 on
p.112 that

f
(
Nδ(a)

)
⊆ f(U) = f

(
f−1(Nε(b))

)
= Nε(b) ∩ f(X) ⊆ Nε(b). �

Remark 10.15 (continuity for real functions of real numbers). Let (X, d1) = (Y, d2) = R. In this case
equation (10.44) on p.198 becomes

|x− x0| < δ ⇒ |f(x)− f(x0)| < ε. �

Proposition 10.13 (continuity of the identity mapping). Let X, d) be a metric space and

idX : X → X; x 7→ x

be the identity function on X. Then idX is continuous.

Proof: Given any ε > 0, let δ := ε. Let x, y ∈ X . Assume that d(x, y) < δ. Then

d(idX(x), idX(y)) = d(x, y) < δ = ε

and we have satisfied condition (10.44) of the ε− δ characterization of continuity. 91 This proves that the
identity mapping is continuous. �

10.2.2 Continuity of Constants and Sums and Products

For all the following, unless stated differently, let (X, d) be a metric space and A ⊆ X , A 6= ∅. Let

f : A→ R, g : A→ R

be two real functions which both are continuous in a point x0 ∈ A. Moreover, let a, b ∈ R. You can think of
any fixed number a as a function

a(·) : A→ R;x 7→ a.

In other words, the function a(·) assigns to each x ∈ X one and the same value a. We called such a function
a constant function (see (4.14) on p.90).

91 Actually, we have proved a very strong form of continuity. Generally speaking, δ = δ(ε, x0) is tailored not only to
the given ε, but also to the particular argument x0 at which continuity needs to be verified. We were able to find δ which
does not depend on the argument x0 but only on ε. We will learn later that this makes idX uniformly continuous on its
domain X . See def.10.29 (Uniform continuity of functions) on p.204.
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Proposition 10.14 (Rules of arithmetic for continuous real–valued functions). Given is a metric space
(X, d). Let the functions

f(·), g(·), f1(·), f2(·), f3(·), . . . , fn(·) : A −→ R

all be continuous at x0 ∈ A ⊆ X . Then

a. Constant functions are continuous everywhere on A.
b. The product fg(·) : x 7→ f(x)g(x) is continuous at x0. Specifically, af(·)x 7→ a · f(x) is

continuous at x0 and, using −1 as a constant, −f(·) : x 7→ −f(x) is continuous at x0.
c. The sum f + g(·) : x 7→ f(x) + g(x) is continuous at x0.

d. Any linear combination 92
n∑
j=0

ajfj(·) : x 7→
n∑
j=0

ajfj(x) is continuous in x0.

Proof of a: Let ε > 0. We do not even have to look for a suitable δ to restrict the distance between two
arguments x and x0 because it is always true that |a(x)− a(x0)| = |a− a| = 0 < ε This proves a.

Proof of b: Let xn ∈ A for all n ∈ N such that xn → x0 as n → ∞. All we need to show is f(xn)g(xn) →
f(x0)g(x0). It follows from prop.8.6 (Rules of arithmetic for limits) on p.130 that limn→∞ f(xn)g(xn) =
f(x0)g(x0). This proves b.

Proof of c: Let xn ∈ A for all n ∈ N such that xn → x0 as n → ∞. We must show f(xn) + g(xn) →
f(x0)+g(x0). It follows from prop.8.6 (Rules of arithmetic for limits) on p.130 that limn→∞ f(xn)+g(xn) =
f(x0) + g(x0). This proves c.

proof of d (outline): The proof is done by (strong) induction.

Base case: For n = 2 the proof is obvious from parts a, b and c.

Induction step: Write

n+1∑
j=0

ajfj(x) =
( n∑
j=0

ajfj(x)
)

+ an+1fn+1(x) = I + II.

The left term “I” is continuous by the induction assumption and the entire sum I + II then is continous as
the sum of two continuous functions (proved in c). This proves d. �

Remark 10.16. Given a metric space (X, d), what is the opposite of lim
k→∞

xk = L?

Beware! It is NOT the statement that lim
k→∞

xk 6= L because such a statement would mislead you to

believe that such a limit exists, it just happens not to coincide with L

The correct answer: There exists some ε > 0 such that for all N ∈ N there exists some natural
number j = j(N) such that j ≥ N and d(xj , L) ≥ ε. �

It is easy to prove from the above remark the following:

Proposition 10.15 (Opposite of continuity). A sequence (xk)k with values in (X, d) does not have L ∈ X
as its limit if and only if there exists some ε > 0 and n1 < n2 < n3 < · · · ∈ N such that d(xnj , L) ≥ ε for
all j. In other words, we can find a subsequence (xnj )j which completely stays out of some ε–neighborhood
of L.

92See def.9.6 (linear combinations) on p.159
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The proof is left as exercise 10.18.

10.2.3 Function Spaces of Continuous Functions

Example 10.8 (Vector spaces of continuous real functions). Let (X, d) be a metric space. We saw in
example 9.11 (Vector spaces of real functions) on p.156 that the set

CCC (X,R) := {f(·) : f(·) is a continuous real function on X}(10.46)

of all real continuous functions on X is a vector space. The “sup–norm”

‖f(·)‖∞ = sup{|f(x)| : x ∈ X}

(see (9.13) on p.165) is not a real function on all of CCC (X,R) because ‖f(·)‖∞ = +∞ for any un-
bounded f(·) ∈ CCC (X,R). To avoid complications from dealing with∞, we often prefer to use the
subspace

CCCBBB(X,R) := {h(·) : h(·) is a bounded continuous real function on X}
(see prop.9.10 on p. 165) of the normed vector space BBB(X,R) of all bounded real functions on X .

On this subspace the sup–norm truly is a real function in the sense that ‖f(·)‖∞ <∞. �

10.2.4 Continuity of Polynomials (Understand this!)

Definition 10.28 (polynomials). Anything that has to do with polynomials takes place in R and not
on a metric space.

Let A be subset of the real numbers and let p(·) : A→ R be a real function on A. p(·) is called a
polynomial. if there is an integer n = 0 and real numbers a1, a2, . . . , an which are constant (they do
not depend on x) so that p(·) can be written as a sum

(10.47) p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n =
n∑
j=0

ajx
j .

In other words, polynomials are linear combinations of the monomials x→ xk (k ∈ (N)0 . �

(10.48) === DELETED === Kept as a placeholder to keep the numbering in sync.

Proposition 10.16 (All polynomials are continuous).

Proof: It suffices to show that the monomials mj(x) := xj are continuous for all j = 0, 1, 2, . . . because all
polynomials are linear combinations of monomials and we only need to apply prop.10.14, part d.

The monomial m0(·) is continuous because it is the constant function x → 1; m1(·) : x → x is continuous
because this is the identity mapping on R and we know from prop.10.13 on p.200 that identities are always
continuous.

But if m1(·) is continuous, so is the product m2(·) = m1(·)m1(·). The same is true for the product m3(·) =
m2(·)m1(·). A simple proof by induction yields continuity of the product mj(·) = mj−1(·)m1(·) for any
choice of j > 0. We have shown that all monomials are continuous, and so are polynomials as their linear
combinations. �
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Proposition 10.17 (Vector space property of polynomials). Sums and scalar products of polynomials are
polynomials.

Proof of a. Additivity:
Let

p1(x) = a0 + a1x+ a2x
2 + . . .+ anx

n
1 =

n1∑
j=0

ajx
j

and

p2(x) = b0 + b1x+ b2x
2 + . . .+ bnx

n
2 =

n2∑
j=0

bjx
j

be two polynomials. We may assume that n1 5 n2. Let an1+1 = an1+2 = . . . = an2 = 0. Then p1(x) =
n2∑
j=0

ajx
j , hence

p1(x) + p1(x) =

n2∑
j=0

ajx
j +

n2∑
j=0

bjx
j

=

n2∑
j=0

(aj + bj)x
j

=

n2∑
j=0

cjx
j (cj := aj + bj)

This proves that the function p1(·) + p2(·) is of the form (10.48) and we have shown that it is a polynomial.
The proof for the sum of more than two polynomials is easily done by induction. See def.2.11 on p.18.

Proof of b. Scalar product:

Let p(x) =

n∑
j=0

ajx
j be a polynomial. Let λ ∈ R. Then

(λp)(x) = λp(x) = λ
n∑
j=0

ajx
j =

n∑
j=0

λajx
j =

n∑
j=0

cjx
j (cj := λaj)

This proves that the function λp(·) is of the form (10.47). �

Polnomials may not always be given in their normalized form (10.48) on p.202. Here is an example:

p(x) = a0x
0(1− x)n + a1x

1(1− x)n−1 + a2x
2(1− x)n−2 + . . .+ an−1x

n−1(1− x)1 + anx
n

=
n∑
k=0

akx
k(1− x)n−k

is a linear combination of monomials and hence a polynomial. All you need to do is “multiply out” the
xk(1− x)n−k terms and then regroup the resulting mess. The so called Bernstein polynomials 93

p(x) =
n∑
k=0

(
n

k

)
f(
k

n
)xk(1− x)n−k

93 Here f(·) is a function, not necessarily continuous, on the unit interval [0, 1]. The binomial coefficient
(
n
k

)
is defined

as n!
k!(n−k)!

where 0! = 1 and n! = 1 · 2 · 3 · · ·n for n ∈ !N (see ch.4 of [1] B/G Art of Proof)
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are of that form.

Example 10.9 (Vector space of polynomials). Let A ⊆ R. It follows from (10.17) and (10.16) that the
set

{p(·) : p(·) is a polynomial on A}

of all polynomials on an arbitrary non–empty subset A of the real numbers is a subspace of the
vector space CCC (A,R). (see example (10.8) on p.202. If A is not bounded, the sup–norm

‖f(·)‖∞ = sup{|f(x)| : x ∈ A}

is not a real function on the set of all polynomials on A as its value may be ∞. Matter of fact, it
can be shown that, if A is not bounded, then the only polynomials for which ‖p(·)‖∞ < ∞ are the
constant functions on A. �

10.2.5 Uniform Continuity

It will be proved in theorem 11.12 (Uniform continuity on sequence compact spaces) on p.244 94 that contin-
uous real functions on the compact set [0, 1] are uniformly continuous in the sense of the following definition.
95

Definition 10.29 (Uniform continuity of functions). Let (X, d1), (Y, d2) be metric spaces and let A
be a subset of X . A function

f(·) : A→ Y is called uniformly continuous

if for any ε > 0 there exists a (possibly very small) δ > 0 such that

(10.49) d2(f(x)− f(y)) < ε for any x, y ∈ A such that d1(x, y) < δ. �

Remark 10.17 (Uniform continuity vs. continuity). Note the following:

A.A.A. Condition (10.49) for uniform continuity looks very close to the ε–δ characterization of ordinary
continuity (10.44) on p.198. Can you spot the difference?

Uniform continuity is more demanding than plain continuity because, when dealing with the latter,
you can ask for specific values of both ε and x0 according to which you must find a suitable δ. In
other words, for plain continuity

δ = δ(ε, x0).

In the case of uniform continuity all you get is ε. You must come up with a suitable δ regardless of
what arguments are thrown at you. To write that one in functional notation,

δ = δ(ε).

B.B.B. It follows that uniform continuity implies continuity but the opposite need not be true. �
94 see chapter 11.6 (Continuous Functions and Compact Spaces) on p.242
95 For the special case of (X, d) = (R, d|·|) where d|·|(x, y) = |y−x|, see [1] Beck/Geoghegan, Appendix A.3, “Uniform

continuity”.
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Example 10.10 (Uniform continuity of the identity mapping). Have another look at proposi-
tion(10.13) where we proved the continuity of the identity mapping on a metric space. We chose
δ = ε no matter what value of x we were dealing with and it follows that the identity mapping is
always uniformly continuous. �

Remark 10.18. Now that you have learned the definitions for both continuity and uniform continu-
ity, have another look at example 3.30, p.56 in ch.3.6.3 (Quantifiers for Statement Functions of more
than Two Variables) where it was explained how you could obtain one definition from the other just
by switching around a ∀ quantifier and a ∃ quantifier. �

10.2.6 Continuity of Linear Functions (Understand this!)

Lemma 10.1. Let f : (V, ‖ · ‖)→ (W,
·) be a linear function between two normed vector spaces. Let

a := sup{
f(x)

 : x ∈ V, ‖x‖ = 1},
b := sup{

f(x)
 : x ∈ V, ‖x‖ 5 1},

c := sup{
f(x)


‖x‖

: x ∈ V, x 6= 0}.

Then a = b = c.

Proof: We introduce the following three sets for this proof:

A :={
f(x)

 : x ∈ V, ‖x‖ = 1},
B :={

f(x)
 : x ∈ V, ‖x‖ 5 1},

C :=
{ f(x)


‖x‖

: x ∈ V, x 6= 0
}
.

Proof that a = b:
It follows from A ⊆ B that a 5 b. On the other hand let x ∈ B such that x 6= 0 (if x = 0 then f(x) = 0
certainly could not exceed a). Let y := ‖x‖−1x. Then y ∈ A and ‖x‖−1 = 1, hencef(y)

 =
f(x/‖x‖) = (1/‖x‖)

f(x)
 = f(x)

 .

We conclude that the sup over the bigger set B does not exceed the sup over A, hence a = b.

Proof that a = c:
Let x ∈ C and y := ‖x‖−1x. Then y ∈ A andf(x)

 /‖x‖ =
f(x)/‖x‖

 =
f(x/‖x‖) =

f(y)
 .

It follows that the sup over the bigger set C does not exceed the sup over A, hence c = b. �

Definition 10.30 (norm of linear functions). Let f : (V, ‖ · ‖) → (W,
·) be a linear function

between two normed vector spaces. We denote the quantity a = b = c from lemma 10.1 by ‖f‖, i.e.,
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‖f‖ = sup{
f(x)

 : x ∈ V, ‖x‖ = 1}
= sup{

f(x)
 : x ∈ V, ‖x‖ 5 1}

= sup{
f(x)


‖x‖

: x ∈ V, x 6= 0}.
(10.50)

‖f‖ is called the norm of f . 96

We note that ‖f‖ need not be finite. �

Theorem 10.14 (Continuity criterion for linear functions). Let f : (V, ‖ · ‖) → (W,
·) be a linear

function between two normed vector spaces. Then the following are equivalent.

A. f is continuous at x = 0,
B. f is continuous in all points of V ,
C. f is uniformly continuous on V ,
D. ‖f‖ <∞ .

Moreover, we then have f(x)
 5 ‖f‖ · ‖x‖ for all x ∈ V.(10.51)

Proof: Clearly we have C⇒ B⇒ A. We now show A⇒ D.

It follows from the continuity of f at 0 that there exists δ > 0 such that

if z ∈ V and ‖z‖ < δ then
f(z)

 =
f(z)− f(0)

 < 1.(10.52)

Let x ∈ V such that ‖x‖ 5 1. Then ‖δ/2 · x‖ 5 δ/2 < δ, hence, according to (10.52),

δ/2 ·
f(x)

 =
f(δ/2 · x)

 < 1, hence
f(x)

 < 2/δ.

Because this last inequality is true for all
f(x)

 < 2/δ for all x ∈ V with norm bounded by 1, it follows
that

‖f‖ = sup{
f(x)

 : x ∈ V, ‖x‖ 5 1} < 2/δ <∞.

We have proved that A⇒ D.

We finally show D⇒ C and we do this in two steps.

First we show D⇒ (10.51). The inequality trivially holds for x = 0 because linearity of f implies f(0) = 0.
If x 6= 0 then ‖x‖ > 0 (norms are positive definite) and the inequality follows from the last characterization
of ‖f‖ in (10.50).

Second step: Let ε > 0 and δ := ε/‖f‖. Let x, y ∈ V such that ‖x−y‖ < δ. If we can prove that this impliesf(x)− f(y)
 < ε, then f is indeed uniformly continuous and the proof is done. We show this as follows.

f(x)− f(y)
 =

f(x− y)
 (10.51)

5 ‖f‖ · ‖x− y‖ < ‖f‖ · δ = ‖f‖ · ε/‖f‖ = ε. �
96 Note that we use the same notation ‖ · ‖ for both the norm on V and the norm of the linear function f . Do not

confuse the two!
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10.3 Function Sequences and Infinite Series

10.3.1 Convergence of Function Sequences (Study this!)

Notation Alert: This chapter makes heavy use of the notation f(·) instead of
f for a function X → R to emphasize when sequences of functions fn(·) are
used and when function values (real numbers) fn(x) are used.

Vectors are more complicated than numbers because an n–dimensional vector v ∈ Rn represents a grouping
of a finite number n of real numbers. Matter of fact, any such vector (x1, x2, x3, · · · , xn) can be interpreted
as a real function (remember: a real function is one which maps it arguments into R)

(10.53) f(·) : {1, 2, 3, · · · , n} → R j 7→ xj

(see (9.4) on p.150).

Next come sequences (xj)j∈N which can be interpreted as real functions

(10.54) g(·) : N→ R j 7→ xj .

Finally we deal with any kind of real function

(10.55) h(·) : X → R x 7→ h(x)

as the most general case.

Now we add more complexity by not just dealing with one or two or three real functions but with an entire
sequence of functions

(10.56) fn(·) : X → R x 7→ fn(x)

For any fixed argument x0 we have a sequence f1(x0), f2(x0), f3(x0), · · · of real numbers which we can
examine for convergence. This sequence may converge for some or all arguments x0 ∈ X to some L =
L(X0) ∈ R. It’s time now for some definitions.

Definition 10.31 (Pointwise convergence of function sequences). Let X be a non-empty set, (Y, d) a
metric space and let fn(·) : X → Y and f(·) : X → Y be functions on X (n ∈ N) . Let A ⊆ X
be a subset of X . We say that fn(·) converges pointwise or, simply, converges to f(·) on A and we
write fn(·)→ f(·) if

(10.57) fn(x)→ f(x) for all x ∈ A. �

Definition 10.32 (Uniform convergence of function sequences). Let X be a non-empty set, (Y, d) a
metric space and let fn(·) : X → Y and f(·) : X → Y be functions on X (n ∈ N) . Let A ⊆ X be a
subset of X . We say that fn(·) converges uniformly to f(·) on A and we write 97

(10.58) fn(·) uc→ f(·)
97 I must confess that “ fn(·) uc→ f(·) ” is a notation that I coined myself because it is not as tedious as writing

“ fn(·)→f(·) uniformly”
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if the following is true: For each ε > 0 (no matter how small) there exists a (possibly huge) number
n0 which can be chosen once and for all, independently of the specific argument x, such that

(10.59) d(fn(x), f(x)) < ε for all x ∈ A and n = n0. �

Remark 10.19 (Uniform convergence implies pointwise convergence). Look at definition (10.9) on
p.179 of convergence of sequences. Note that (10.59) implies, for any given x ∈ A, ordinary conver-
gence f(x) = lim

n→∞
fn(x). The reason is that the number n0 = n0(ε) chosen in (10.59) will also satisfy

(10.14) (p.179) for xn = fn(x) and a = f(x).

In other words, unform convergence implies pointwise convergence. But what is the difference
between pointwise and uniform convergence? The difference is that, for poinwise convergence, the
number n0 will depend on both ε and x: n0 = n0(ε, x). In the case of uniform convergence, the
number n0 will still depend on ε but can be chosen independently of the argument x ∈ A. �

Example 10.11 (a. Constant sequence of functions). Let X be a set and let f : X → R be a real
function on X which may or may not be continuous anywhere. Define a sequence of functions

fn : X → R (n ∈ N) as f1 = f2 = · · · = f

i.e.,
f1(x) = f2(x) = · · · = f(x) ∀n ∈ N, ∀x ∈ X.

In other words, we are looking at a constant sequence of functions (not to be confused with a se-
quence of constant functions – seriously!).

Then fn(·) uc→ f(·) . �

Proof of the example: This is trivial. No matter how small an ε and n0 we choose and no matter what
argument x ∈ X we are looking at, we have

|fn(x)− f(x)| = 0 < ε for all x ∈ A and n > n0 �

Example 10.12 (b. Pointwise but not uniformly convergent sequence of functions). Let X = [0, 1],
i.e., X is the closed unit interval {x ∈ R : 0 5 x 5 1} . Let the functions fn be defined as follows
on X :

fn(x) =

{
n2x for 0 5 x 5 1

n
1
x for 1

n 5 x 5 1

Note that both pieces fit together in the point a = 1/n because the “ 1
x definition” gives fn(a) =

1
1/n = n and the “n2x definition” gives the same value n = n2 1

n . We do not give a formal proof that
each fn(·) is continuous in every point of [0, 1]. Just accept this from the fact that the two graphs
flow into each other at the “splicing point” 1/n.

Now we define the function f(·) : [0, 1]→ R as

f(x) =

{
1
x for 0 < x 5 1

0 for x = 0

Then the functions fn(·) converge pointwise but not uniformly to f(·) on the entire unit interval.
�
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Proof of pointwise convergence:
first we inspect the point a = 0. We have f(0) = 0 = n20 = fn(0) and the constant sequence of zeroes
certainly converges to zero. Now assume a > 0. If n > 1/a then fn(a) = 1

a for all such n. We have a
constant sequence ( 1

a ) except for the first finitely many n and this sequence converges to 1
a = f(a). See

prop.8.16 on p.146. We have thus proved pointwise convergence.

Proof that there is no uniform convergence:
To prove that (10.59) is not satisfied, we must find ε > 0 and points xN so that for no matter how big a
natural number N we choose, there will be at least one j > N such that |fj(xN )− f(xN )| = ε. Let N ∈ N
be any natural number and let xN := 1

N2 . Then

fN (xN ) =
N2

N2
= 1,

f2N (xN ) =
(2N)2

N2
= 4.

Hence ∣∣f2N (xN )− fN (xN )
∣∣ = 3.

To recap: We found ε > 0 so that for each N ∈ N there is at least one j = N and xN ∈ [0, 1] such that
|fj(XN )− fN (xN )| > ε : we chose

ε = 2, j = 2N, xN =
1

N2

We have proved that convergence is pointwise but not uniform. �

Proposition 10.18 (Uniform convergence is ‖ ·‖∞ convergence). LetX be a nonempty set and BBB(X,R)
the set of all bounded real functions on X . We remember that this set is a vector space with the norm
‖f‖∞ = sup{|g(x)− f(x)| : x ∈ X} and it is a metric space with the corresponding metric

d‖·‖∞(f, g) = sup{|g(x)− f(x)| : x ∈ X}

(see example 10.2 on p.173). The following is true:

fn(·) uc→ f(·) if and only if fn(·) ‖·‖∞→ f(·).

In other words, the sequence fn converges to f uniformly if and only if it converges to f in the metric space(
BBB(X,R), d‖·‖∞(·, ·)

)
.

Proof of “⇒”: Assume that fn(·) uc→ f(·). Let ε > 0. According to def.10.32 (Uniform convergence of
function sequences) on p.207, there exists an index n0 = n0(ε) (which does not depend on the function
argument x ∈ X) such that

d(fn(x), f(x)) = |fn(x)− f(x)| < ε/2 for all x ∈ X and n = n0.

Note that here here the metric space Y in def.10.32 is R, so d(fn(x), f(x)) becomes |fn(x)−f(x)|. We obtain

‖fn − f‖∞ = sup{|fn(x)− f(x)| : x ∈ X} 5 ε/2 for all n = n0,

i.e., d‖·‖∞(fn, f) < ε for all n = n0. It follows that fn(·) ‖·‖∞→ f(·).
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Proof of “⇐”: Assume that fn
‖·‖∞→ f , i.e., lim

n→∞
fn = f in the metric space

(
BBB(X,R), d‖·‖∞

)
.

Let ε > 0. There exists n0 ∈ N such that

d‖·‖∞(fn, f) = ‖fn − f‖∞ = sup{|fn(x)− f(x)| : x ∈ X} < ε for all n = n0

But then

|fn(x)− f(x)| < ε for all x ∈ X and all n = n0.

This proves fn(·) uc→ f(·). �

The last proposition justifies the next definition.

Definition 10.33 (Norm and metric of uniform convergence). We also call the sup–norm on BBB(X,R)
the norm of uniform convergence on X and its associated metric d‖·‖∞(·, ·) the metric of uniform
convergence on X . �

Theorem 10.15 (Uniform limits of continuous functions are continuous). Let (X, d1) and (Y, d2) be
metric spaces and let fn(·) : X → Y and f(·) : X → Y be functions on X (n ∈ N) . Let x0 ∈ X and
let V ⊆ X be a neighborhood of x0. Assume a) that the functions fn(·) are continuous at x0 for all n and b)
that fn(·) uc→ f(·) on V . Then f is continuous at x0

Proof: Let ε > 0.

A. Uniform convergence fn(·) uc→ f(·) on V guarantees the existence of some N = N(ε) such that

d2

(
fn(x), f(x)

)
<
ε

3
for all x ∈ V and n = N.

In particular, for n = N ,

d2

(
fN (x), f(x)

)
<
ε

3
for all x ∈ V .(10.60)

B. All functions fn and in particular fN are continuous in V . There is δ̃ > 0 such that

d2(fN (x), fN (x0)) <
ε

3
for all x ∈ Nδ̃(x0).(10.61)

C. As x0 is an interior point of V , there exists δ̂ > 0 such that Nδ̂(x0) ⊆ V . Let δ be the smaller of δ̂ and δ̃.

Then (10.60) and (10.61) both hold for any x ∈ Nδ(x0). Because x0 ∈ Nδ(x0) we obtain

d(f(x), f(x0)) 5 d(f(x), fN (x)) + d(fN (x), fN (x0)) + d(fN (x0), f(x0)) <
ε

3
+

ε

3
+

ε

3
= ε.

The proof is finished. �
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10.3.2 Infinite Series

We start by repeating the definition of a sequence given in section 4.2 on p.74: A sequence (xj) is nothing
but a family of things xj which are indexed by integers, usually the natural numbers or the non-negative
integers. We make throughout this entire document the following

Assumption 10.1 (indices of sequences).

Unless explicitly stated otherwise, sequences are always indexed
1, 2, 3, . . . , i.e., the first index is 1 and, given any index, you obtain the
next one by adding 1 to it.

The simplest things that a mathematician deals with are numbers. One nice thing that is always possible with
numbers, is that you can add them. Here is a very simple definition:

Definition 10.34 (Numeric Sequences and Series). A sequence (aj) of real numbers is called a nu-
meric sequence if each aj is a real number. For any such sequence, we can build another sequence
(sn) as follows:

(10.62) s1 := a1; s2 := a1 + a2; s3 := a1 + a2 + a3; · · · sn :=

n∑
k=1

ak

We write this more compactly as

a1 + a2 + a3 + · · · =
∑

ak(10.63)

and we call any such object, which represents a sequence of partial sums, a series. Loosely speaking,
a series is an infinite sum. We call (sn) the sequence of partial sums associated with the series

∑
ak.

We say that the series converges to a real number s and we write

(10.64)
∞∑
k=1

ak = s

if this is true for the associated sequence of partial sums (10.62). We say that the series has limit∞
(has limit −∞) if this true for the associated partial sums and we write

(10.65)
∞∑
k=1

ak =∞ (

∞∑
k=1

ak = −∞). �

Proposition 10.19 (Convergence criteria for series). A series s :=
∑
ak of real numbers converges if and

only if for all ε > 0 there exists no ∈ N such that one of the following is true:∣∣∣ ∞∑
k=n

ak

∣∣∣ < ε for all n = n0(10.66a)

∣∣∣ m∑
k=n

ak

∣∣∣ < ε for all m,n = n0(10.66b)
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Proof: Write

(10.67) s =
∞∑
k=1

ak =
n∑
k=1

ak +
∞∑

k=n+1

ak = sn +
∞∑

k=n+1

ak

Remember the convergence criteria for numeric sequences. Convergence of a sequence (sn) to a real number
s means that for any ε > 0, all but finitely many members sn will be inside the ε–neighborhood Nε(s) of s.
Written in terms of the distance to s this means there exists a suitable n0 ∈ N such that

|s− sn| < ε for all n = n0

(see (10.9) on p.179). According to (10.67) we can write that as∣∣∣ ∞∑
k=n+1

ak

∣∣∣ < ε for all n = n0

which is the same as (10.66.a) because it does not matter whether we look at the sum of all terms bigger than
n or n+ 1.

Alternatively, there was the Cauchy criterion

|si − sj | < δ for all i, j = n0

(see (10.24) on p.191) which ensures convergence to some number swithout specifying what it might actually
be. Again we use (10.67) and obtain, assuming without loss of generality that i < j,∣∣∣ j∑

k=i+1

aj

∣∣∣ < δ for all j > i = n0 �

Corollary 10.1. If a series
∑
aj converges then lim

n→∞
an = 0.

Proof: Let ε > 0. It follows from 10.66b that there is some n0 ∈ N such that |am − 0| =
∣∣ m∑
k=m

ak
∣∣ < ε for

all m = n0. But this means that the sequence an converges to zero. �

Here is a second corollary.

Corollary 10.2 (Dominance criterion 98 ). Let N ∈ N and let
∑
aj and

∑
bj be two series such that

|bk| 5 ak for all k = N . It follows that if
∑
ak converges then

∑
bk converges.

In particular, if |bk| 5 ak for all k ∈ N then
∣∣∣ ∞∑
k=1

bj

∣∣∣ 5 ∞∑
k=1

aj

Proof: Let ε > 0. It follows from 10.66b that there is some n0 ∈ N such that
∣∣ n∑
k=m

ak
∣∣ < ε

for all m,n = n0. Let M := max(n0, N). We obtain∣∣∣ j∑
k=i+1

bj

∣∣∣ 5 j∑
k=i+1

|bj | 5
j∑

k=i+1

aj < ε for all j > i =M.

98 This is a generalization of [1] B/G (Beck/Geoghegan) prop.12.3, p.115.
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We conclude from (10.66b) that
∑
bk converges.

Let sn :=

n∑
k=1

|ak|, s := lim
n→∞

sn, tn :=

n∑
k=1

ak, t := lim
n
tn.

It follows from the triangle inequality that |tn| 5 sn for all n ∈ N, hence |t| = limn |tn| 5 limn sn = s. This
completes the proof. �

Remark: It is very important to remember that a series either converges to a finite number or it diverges. If

it diverges it may be the case that
∞∑
k=1

ak =∞ or
∞∑
k=1

ak = −∞ or there is no limit at all. As an example

for a series which has no limit, look at the oscillating sequence

(10.68) a0 = 1; a1 = −1; a2 = 1; a3 = −1; · · · sn =

n∑
k=0

(−1)n

The above is an example of a series that starts with an index other than 1 (zero). sn obviously does not have
limit +∞ or −∞ because sn is 1 for all even n and 0 for all odd n. Do not make the mistake of thinking that
the limit of the series is zero because you fail to notice the odd indices and only see that s0 = s2 = s4 = · · · =
s2j = 0.

Note that for any j ∈ N we have |sj − sj−1| = 1 because at each step we either add or subtract 1. This
means that no matter what real number a and how big a number n0 ∈ N we choose, it will never be true that
|a− sj | < 1 for all j ∈ N and a cannot be a limit of the series.

Just so you understand the difference between limits and contact points (see (def.10.21) on p.188): Even
though neither (aj)j nor (sj)j has a limit, both have two contact points each. (aj)j has the contact points
{1,−1} and (sj)j has the contact points {0, 1}.

We now turn our attention to convergence properties of series.

Definition 10.35 (Finite permutations). Let N ∈ N and let [N ] := {1, 2, 3, . . . , N} denote the set of
the first N integers. 99 A permutation of [N ] is a mapping

π(·) : [N ]→ [N ]; j 7→ π(j)

which is both surjective: each element k of [N ] is the image π(j) for a suitable j ∈ [N ] and injec-
tive: different arguments i 6= j ∈ [N ] will always map to different images π(i) 6= π(j) ∈ [N ] (see
(4.9) on p.84). Remember that

surjective + injective = bijective

and that under our assumptions the inverse mapping

π−1(·) : [N ]→ [N ]; π(j) 7→ π−1π(j) = j,

which associates with each image π(j) the unique argument j which maps into π(j), exists (see
def. 4.9 on p.84 for properties of the inverse mapping).

It is customary to write

i1 instead of π(1), i2 instead of π(2), . . . , ij instead of π(j), . . . �
99 This notation was copied from chapter 13 (Cardinality) of [1] B/G (Beck/Geoghegan). It has nothing to do with

equivalence classes!
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Definition 10.36 (Permutations of N). A permutation of N is a bijective function

π(·) : N→ N; j 7→ π(j). �

Permutations are the means of describing a A rearrangement or reordering of the members of a finite or
infinite sequence or series. Look at any sequence (aj). Given a permutation π(·) of the natural numbers, we
can form the sequence (bk) := (aπ(k)), i.e.,

b1 = aπ(1), b2 = aπ(2), . . . , bk = aπ(k), . . .

We can use the inverse permutation, π−1(·), to regain the aj from the bj because

bπ−1(k) = aπ−1(π(k)) = ak.

Proposition 10.20. Let (an) be a sequence of non–negative members: an = 0 for all n ∈ N. Then exactly
one of the following is true:

a. the series
∑
an converges (to a finite number). In that case

∞∑
n=1

an =
∞∑
n=1

aπ(n) for any permutation π(·) of N.

b. the series
∞∑
n=1

an has limit ∞. In that case it is true for any permutation π(·) of N that the

reordered series
∞∑
n=1

aπ(n) also has limit∞.

Proof of a: Let bj := aπ(j) and, hence, ak = bπ−1(j). Let N ∈ N . Let

(10.69) α := max{π(j) : j 5 N} and β := max{π−1(k) : k 5 N}.

Note that α = N and β = N . Because all terms aj , bk are non–negative it follows that

N∑
j=1

bj =

N∑
j=1

aπ(j) 5
α∑
k=1

ak 5
α∑
k=1

ak +

∞∑
k=α+1

ak =

∞∑
k=1

ak,

N∑
k=1

ak =

N∑
k=1

bπ−1(k) 5
β∑
j=1

bj 5
β∑
j=1

bj +

∞∑
j=β+1

bj =

∞∑
j=1

bj .

We take limits as N →∞ and it follows that

∞∑
j=1

bj ≤
∞∑
k=1

ak and
∞∑
k=1

ak 5
∞∑
j=1

bj , hence
∞∑
k=1

ak =
∞∑
j=1

bj .

This proves part a of the proposition.

Proof of b: Assume that
∑
aj diverges. Because all terms aj are non–negative, the sequence sn of the partial

sums is non–decreasing and hence has a limit s. s /∈ R because we assumed that
∑
aj is not convergent and

we can rule out s = −∞ because s = a0 = 0. It follows that s =∞.
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Assume to the contrary that there is a rearrangement
∑
bj :=

∑
aπ(j) of

∑
aj which converges to a limit

t ∈ R. According to the already proved part a the rearrangement
∑
aj =

∑
bπ−1(j) converges to the same

(finite) limit t. We have reached a contradiction. �

Definition 10.37 (absolutely convergent series). A series
∑
aj is absolutely convergent if the cor-

responding series
∑
|aj | of its absolute values converges. �

Proposition 10.21. Let
∑
ak be an absolutely convergent series. Then

∑
ak converges and

∣∣ ∞∑
k=1

ak
∣∣ 5 ∞∑

k=1

|ak|.(10.70)

Proof: This follows from the dominance criterion (cor.10.2) �

It follows from prop.10.20 on p.214 that if a series of non-negative terms converges then its value is invariant
under rearrangements of that series. The next theorem states that any absolutely convergent series also has
that property and we will see later 100 that the reverse is also true: Any series whose value is invariant under
rearrangements is absolutely convergent.

Theorem 10.16. 101 Let
∑
ak be an absolutely convergent series. Let π : N → N be a permutation of N,

i.e., the series
∑
bk with bk := aπ(k) is a rearrangement of the series

∑
ak. Then

∑
bk converges and has the

same limit as
∑
ak. 102

Proof: Let ε > 0. Since
∑
|ak| converges, there exists n0 ∈ N such that

n0+m∑
k=n0+1

|ak| 5
∞∑

k=n0+1

|ak| < ε for all m ∈ N.(10.71)

For n ∈ N let sn :=
n∑
k=1

ak and tn :=
n∑
k=1

bk.

Let A := {π(j) : 1 5 j 5 n0} and p0 := max(A). This maximum exists because the set A is finite.

Then p0 = n0. Each of a1, a2, . . . , an0 is a term of sn0 , hence of sp0 .
Moreover each of b1 = aπ(1), b2 = aπ(2), . . . , bp0 = aπ(p0) is a term of tp0 .

Let n, p = p0. Then each of a1, a2, . . . , an0 is a term of sn
and each of b1 = aπ(1), b2 = aπ(2), . . . , bp0 = aπ(p0) is a term of tp.

We recall that p0 was chosen so big that each of a1, . . . , an0 is one of b1, . . . , bp0 .

It follows from all this that each of a1, . . . , an0 is a term both of sn and tp, hence none of those terms appears
in the difference sn − tp. We obtain for big enough m ∈ N (the bigger of max({π(j) : 1 5 j 5 n}) and p)

|sn − tp| 5
n0+m∑
k=n0+1

|ak| < ε.

100 see cor.10.4 on p.222
101 This was proved by the German mathematician Peter Gustav Lejeune Dirichlet (1805-1859).
102 ∑ ak converges according to prop.10.21.
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This implies

|s− tp| 5 |s− sn|+ |sn − tp| 5 |s− sn| +

n0+m∑
k=n0+1

|ak| < |s− sn|+ ε.

We had chosen n = n0 and it follows from (10.71) that |s− sn| < ε, hence |s− tp| < 2ε.

We remember how p was defined and see that it could be any integer = p0, a number which depends (via n0)
only on ε.

To summarize: for all ε > 0 there exists p0 such that p = p0 implies |s − tp| < 2ε. But then lim
p→∞

tp = s.

On the other hand, lim
p→∞

tp = t =
∑
p→∞

bk.

This concludes the proof that
∑
p→∞

ak =
∑
p→∞

bk. �

There are series which are convergent but not absolutely convergent. Such series are given a special name:

Definition 10.38 (conditionally convergent series). A series
∑
aj is called conditionally convergent

if it is convergent but not absolutely convergent. �

We introduce alternating series to give a simple example of a conditionally convergent series.

Definition 10.39 (alternating series). A series
∑
aj is called an alternating series if it is of the form∑

(−1)jaj with either all terms aj being strictly positive or all of them being strictly negative. �

Proposition 10.22 (Leibniz test for alternating series). Let
∑
ak be an alternating series such that the

sequence |ak| is non–increasing: |a1| = |a2| = |a3| = . . . . Then
∑
ak converges.

Proof: Left as an exercise. �

Example 10.13 (Alternating series). The series
∑

(−1)n and the alternating harmonic series∑
(−1)n/n are examples of alternating series.

It is known from calculus that the harmonic series
∑

1/n is divergent:
∞∑
j=1

1

n
=∞. On the other

hand, according to the Leibniz test,
∑

(−1)n/n converges. It follows that the alternating harmonic
series is convergent but not absolutely convergent, i.e., it is conditionally convergent. �

We are going to prove Riemann’s Reordering Theorem, from which it can be easily deduced that if
∑
aj

is conditionally convergent and x ∈ R, a rearrangement
∑
aπj can be found which converges to x. In

preparation we must prove a lemma.

Lemma 10.2. Let
∑
ak be a series. We split it into two series

∑
pk and

∑
qk as follows.

pj is the jth strictly positive member of the sequence (ak)k and qj is the jth strictly negative member of that
sequence.

The following is true:
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a. If
∑
ak is absolutely convergent then both

∑
pk and

∑
qk are (absolutely) convergent.

b. If
∑
ak is convergent but not absolutely convergent then

∑
pk has limit∞ and

∑
qk has limit −∞.

Proof of a: Let α :=
∑∞

i=1 |ai| and let j ∈ N.

Let m be the index such that am is the jth (not mth!) strictly positive member of the sequence (ak)k. Then
each pi for i 5 j is some |ak| for a suitable k 5 m. It follows from m = j that

j∑
i=1

pi 5
m∑
i=1

|ai| 5
∞∑
i=1

|ai| < ∞.

The above is true for all j ∈ N and it follows that
∞∑
i=1

pi < ∞. The proof that
∑
qk has a finite limit is

similar.

Proof of b: The proof will be done in three parts. In part 1 we will show that not both
∑
pk and

∑
qk can

converge. In part 2 we will show that
∑
pk = ∞ and

∑
qk ∈ R leads to a contradiction. In part 3 we will

show that
∑
qk = −∞ and

∑
pk ∈ R leads to a contradiction.

Part 1: Let us assume that
∑
pk <∞ and

∑
qk > −∞.

For any n ∈ N we have

n∑
k=1

|ak| 5
n∑
k=1

pk +
n∑
k=1

(−qk).

This is true because each one of a1, . . . , an is one of the first n strictly positive numbers p1, . . . , pn or one of
the strictly positive numbers −q1, . . . ,−qn or it is zero, in which case it contributes nothing to the series.
Both series

∑
ak and

∑
(−qk) are non–decreasing, hence for each fixed n,

n∑
k=1

|ak| 5
∞∑
k=1

pk −
∞∑
k=1

qk.

It follows that if both
∑
pk and

∑
qk are convergent then so is

∑
|ak|, i.e., this series is absolutely convergent.

We have a contradiction.

Part 2: Let us assume that
∑
pk =∞ and

∑
qk ∈ R.

We fix n ∈ N. Let Mn be the index of pn, i.e., Mn is the smallest index j such that aj = pn. Note that

aMn = pn (?) and Mn = n. (??)

Let
In := {i 5Mn : ai > 0}, Jn := {j 5Mn : ai < 0}.

Then

Mn∑
k=1

ak =
∑
i∈In

ak +
∑
j∈Jn

ak
(?)
=

n∑
i=1

pi +
∑
j∈Jn

ak =
n∑
i=1

pi +
∑

qk.
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It follows from Mn = n that if n→∞ then Mn →∞. It follows that

∑
ak = lim

n→∞

n∑
k=1

ak = lim
n→∞

Mn∑
k=1

ak = lim
n→∞

( n∑
i=1

pi +
∑

qk

)
= ∞,

contrary to the assumption that
∑
ak converges. We have reached a contradiction.

Part 3: Let us assume that
∑
qk =∞ and

∑
pk ∈ R.

We obtain a contradiction by applying part 2 to the series
∑

(−ak). �

Theorem 10.17 (Riemann’s Rearrangement Theorem). 103

Let α, β ∈ R such that α 5 β. and let the series
∑
ak be conditionally convergent. Then a rearrangement∑

bk of
∑
ak exists such that

lim inf
n→∞

n∑
k=1

bk = α and lim sup
n→∞

n∑
k=1

bk = β.

Proof: We may assume that aj 6= 0 for all j ∈ N because those terms do not contribute anything to the partial
sums, hence leave the limit of the series and any rearrangement unchanged.

We split
∑
aj into the series

∑
pj of its positive members and

∑
qj of its negative members in the same way

as was done in lemma 10.2:

pj is the jth strictly positive member of the sequence (ak)k;
qj is the jth strictly negative member of (ak)k.

It was proved in lemma 10.2 that
∞∑
k=1

pk = ∞ and
∞∑
k=1

qk = −∞.

case 1: β = 0.

Let U1 := {k ∈ N : p1+p2+· · ·+pk > β}. U1 is not empty because
∑
pj has limit∞, hence u1 := min(U1)

exists. We call the list p1, p2, . . . , pu1 the first upcrossing of the (unfinished) series
∑
bk.

We now construct the first piece of the desired rearrangement
∑
bk. Let

n1 := u1; b1 := p1, b2 := p2, . . . , bn1 := pu1 ; σ1 :=

n1∑
j=1

bj .

Note that n1 is the first (and so far, only) index n of the series
∑
bk for which

∑n
k=1 bk exceeds β.

Let L1 := {k ∈ N : σ1 +
∑k

j=1 qj < α}. L1 is not empty because
∑
qj has limit−∞, hence l1 := min(L1)

exists. We call the list q1, q2, . . . , ql1 the first downcrossing of
∑
bk.

We add more terms to b1, b2, . . . , bn1 .

n2 := n1 + l1; bn1+1 := q1, bn1+2 := q2, . . . , bn2 := ql1 ; σ2 :=

n2∑
j=1

bj .

103 This was proved by the German mathematician Bernhard Riemann (1826-1866).
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Note that n2 is the first index n of
∑
bk for which

∑n
k=1 bk drops below α.

Let U2 :=
{
k ∈ N : k > u1 and σ2 +

u1+k∑
j=u1+1

pj > β
}

. U2 is not empty because
∞∑

j=u1+1

pj has limit∞, hence

u2 := min(U2) exists. We call pu1+1, pu1+2, · · · , pu2 the second upcrossing of
∑
bk.

We add more terms to b1, b2, . . . , bn2 .

n3 := n2 + u2; bn2+1 := pu1+1, bn2+2 := pu1+2, . . . , bn3 := pu1+u2 ; σ3 :=

n3∑
j=1

bj .

Note that n3 is the second index n of the series
∑
bk for which

∑n
k=1 bk exceeds β.

Let L2 :=
{
k ∈ N : k > l1 and σ3 +

l1+k∑
j=l1+1

qj < α
}

. L2 is not empty because
∞∑

j=l1+1

qj has limit−∞, hence

l2 := min(L2) exists. We call ql1+1, ql1+2, · · · , ql2 the second downcrossing of
∑
bk.

We add more terms to b1, b2, . . . , bn3 .

n4 := n3 + l2; bn3+1 := ql1+1, bn3+2 := ql1+2, . . . , bn4 := ql1+l2 ; σ4 :=

n4∑
j=1

bj .

Note that n4 is the second index n of the series
∑
bk for which

∑n
k=1 bk drops below α.

It should be clear how we proceed. Let us assume that we have constructed the N th upcrossing
puN−1+1, puN−1+2, · · · , puN and from it

n(2N−1) := n(2N−2) + uN ;

b(n(2N−2)+1) := p(u(N−1)+1), b(n(2N−2)+2) := p(u(N−1)+2), . . . , b(n(2N−1)) := puN ,

σ(2N−1) :=

n(2N−1)∑
j=1

bj .

Let us further assume that we have constructed the N th downcrossing
qlN−1+1, qlN−1+2, · · · , qlN and from it

n(2N) := n(2N−1) + lN ;

b(n(2N−1)+1) := q(l(N−1)+1), b(n(2N−1)+2) := q(l(N−1)+2), . . . , bn(2N)
:= qlN ,

σ2N :=

n(2N)∑
j=1

bj .

We proceed to construct the (N + 1)th upcrossing and the (N + 1)th downcrossing as follows.

LetUN+1 :=
{
k ∈ N : k > uN and σ2N +

uN+k∑
j=uN+1

pj > β
}

. UN+1 is not empty because
∞∑

j=uN+1

pj has limit

∞, hence uN+1 := min(UN+1) exists. We call p(uN+1), p(uN+2), · · · , pu(N+1)
the (N + 1)th upcrossing of∑

bk.
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We add more terms to b1, b2, . . . , bn2N .

n(2N+1) := n(2N) + u(N+1);

b(n(2N)+1) := p(uN+1), b(n(2N)+2) := p(uN+2), . . . , b(n(2N+1)) := pu(N+1)
,

σ(2N+1) :=

n(2N+1)∑
j=1

bj .

Let LN+1 :=
{
k ∈ N : k > lN and σ2N+1 +

lN+k∑
j=lN+1

qj < α
}

. LN+1 is not empty because
∞∑

j=lN+1

qj has

limit ∞, hence lN+1 := min(LN+1) exists. We call q(lN+1), q(lN+2), · · · , ql(N+1)
the (N + 1)th down-

crossing of
∑
bk.

We add more terms to b1, b2, . . . , bn(2N+1)
.

n(2(N+1)) := n(2N+1) + l(N+1);

b(n(2N+1)+1) := q(lN+1), b(n(2N+1)+2) := q(lN+2), . . . , b(n2(N+1)) := ql(N+1)
,

σ2(N+1) :=

n2(N+1)∑
j=1

bj .

We have defined by recursion
nN∑
k=1

bk for all N ∈ N

We now show that the increasing sequence (nN )N∈N is not bounded above. We observe that n(2N) is the
number of terms that belong to the first N upcrossings plus the first N downcrossings. Each upcrossing and
each downcrossing must have at least one term because at least one term pj is needed to move a partial sum
from below α to above β and at least one term qj is needed to move a partial sum from above β to below α.
Hence n2N = 2N and this proves that the sequence (nN )N∈N is indeed not bounded above.

It follows that
∑
bk indeed has infinitely many terms.

We note that all positive terms pj and all negative terms qj are being used in sequence, starting with the first
one. This shows that each one of the terms of

∑
ak has become part of

∑
bk and it follows that

∑
bk is indeed

a rearrangement of
∑
ak.

Let sn :=
∑n

j=1 bj . n1, n3, n5, . . . are (precisely the) integers n for which sn > β and n2, n4, n6, . . . are
(precisely the) integers n for which sn < α. There are infinitely many of each and it follows from thm.8.1
(Characterization of limsup and liminf) on p.137 that

lim inf
n→inf

sn 5 α and lim sup
n→inf

sn = β.(10.72)

We now prove that for any ε > 0

lim inf
n→inf

sn = α− ε and lim sup
n→inf

sn 5 β + ε.(10.73)
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Let ε > 0. The terms (an)n of the original series
∑
ak converge to zero because

∑
ak converges (see cor.10.1

on p.212). It follows that there exists n0 ∈ N such that |aj | < ε for all j = n0. We show next that

|pj | = pj < ε and |qj | = −qj < ε for all j = n0.(10.74)

|pj | = pj < ε is true whenever j = n0 because pj is the jth positive member of (an)n, hence pj = ai for
some i = j = n0. Likewise, |qj | = −qj < ε whenever j = n0 because qj is the jth negative member of (an)n,
hence qj = ai for some i = j = n0. We have proved (10.74).

We recall that n1, n3, n5, . . . are precisely the integers n for which sn > β, so

s(n1−1) 5 β, s(n3−1) 5 β, . . . , s(n(2j−1)−1) 5 β, . . . .

But then s(n(2j−1)) 5 β + ε because less than ε was added to the previous term (which is no bigger than β)
for any j so big that the last item in the jth upcrossing is less than ε

It follows from (10.74) that j is certainly big enough if j = n0 because each upcrossing has size of at least
1. This shows that there are at most finitely many indices n such that sn > β + ε and we conclude that
lim supn sn 5 β + ε. A similar reasoning allows us to conclude that lim infn sn = α− ε.

We have proved (10.73) and this impliess, together with (10.72), that

lim inf
n→inf

sn = α and lim sup
n→inf

sn = β.(10.75)

We have proved the theorem for case 1: β = 0

case 2: β < 0. We proceed exactly as in case 1. The only difference is that we start with a downcrossing
that gets us below α rather than an upcrossing to obtain a rearrangement

∑
ck for which a partial sum∑n

j=1 aj exceeds α when n is the last term of an upcrossing and it drops below β when n is the last term of a
downcrossing.

Because aj converges to zero there will again only be finitely many upcrossings and downcrossings with
terms that exceed ε. For all others the partial sums cannot exceed β or drop below α by more than ε and we
conclude as before that

lim inf
n→inf

n∑
k=1

ck = α and lim sup
n→inf

n∑
k=1

ck = β. �(10.76)

Corollary 10.3. Let the series
∑
ak be conditionally convergent and let α ∈ R. Then a rearrangement

∑
bk

of
∑
ak exists such that

lim
n→∞

n∑
k=1

bk = α.

Proof: We apply Riemann’s Reordering Theorem to the special case β = α: There is a rearrangement
∑
bj of∑

aj such that

lim inf
n→∞

n∑
k=1

bk = α and lim sup
n→∞

n∑
k=1

bk = α.
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It follows now from thm.8.2 on p.139 that
∑
bj converges to α. �

We have seen that if a series is absolutely convergent then it is convergent and each rearrangement converges
to the same limit. Here is the reverse.

Corollary 10.4. Let
∑
ak be a convergent series with limit α ∈ R such that each rearrangement

∑
bk also

converges to α.

Then
∑
ak is absolutely convergent.

Proof: We assume to the contrary that
∑
ak is not absolutely convergent. This series is convergent but not

absolutely convergent, hence conditionally convergent. We apply Riemann’s Reordering Theorem and find
that there is a rearrangement of

∑
aj which converges to a different real number, contrary to our assumption.

�

Corollary 10.5 (Dichotomy for convergent series). Let series
∑
ak be a convergent series. Then either a

or b is true:

a. All rearrangements of
∑
ak converge to the same limit.

b. For any α ∈ R there is a rearrangement of
∑
ak which converges to α.

Proof: Either
∑
ak is absolutely convergent and a is true according to Riemann’s Reordering Theorem or the

series it is conditionally convergent and b is true according to cor.10.3. �

10.4 Exercises for Ch.10

10.4.1 Exercises for Ch.10.1

10.4.1.1 Exercises for Ch.10.1.1 (Definition and Examples of Metric Spaces)

Exercise 10.1. Prove prop.10.1 on p.172: Let (X, d) be a metric space. Let n ∈ N and x1, x2, . . . , xn ∈
X . Then

d(x1, xn) 5
n−1∑
j=1

d(xj , xj+1) = d(x1, x2) + d(x2, x3) + d(xn−1, xn). �(10.77)

Exercise 10.2. Prove thm.10.1 (Norms define metric spaces) on p.173: Let (V, ‖ · ‖) be a normed
vectors space. Then the function

d‖·‖(·, ·) : V × V → R=0; (x, y) 7→ d‖·‖(x, y) := ‖y − x‖(10.78)

defines a metric space (V, d‖·‖).

Hint: This proof is very easy. Even the triangle inequality for the metric d(x, y) = ‖x − y‖ follows
easily from the triangle inequality for the norm. �

10.4.1.2 Exercises for Ch.10.1.2 (Measuring the Distance of Real Functions)
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10.4.1.3 Exercises for Ch.10.1.3 (Neighborhoods and Open Sets)

Exercise 10.3. Let A := {(x1, x2) ∈ R2 : x1 > 0, x2 > 0} be the first quadrant in the plane (the points
on the coordinate axes are excluded). Prove that each element of A is an inner point, i.e., A is open
in R2. See the picture for a hint.

Hint: Find for ~a = (a1, a2) small
enough ε such that Nε(~a) ⊆ A

�

10.4.1.4 Exercises for Ch.10.1.4 (Convergence)

Exercise 10.4. Given is a metric space (X, d).
Prove the following: A sequence (xn) of elements of X converges to a ∈ X as n → ∞ iff for any
neighborhood U of a there exists some n0 ∈ N such that the n0–tail set Tn0 = {xj : j = n0} is
contained in U (see def.8.10 (Tail sets of a sequence) on p.133.) �

Exercise 10.5. Prove prop.10.23 on p.225:
Let xn, yn be two sequences in a metric space (X, d). Assume there is K ∈ N such that xn = yn for
all n = K. Let L ∈ X Then

lim
n→∞

xn = L ⇔ lim
n→∞

yn = L. �

Exercise 10.6. Prove prop.10.24 on p.225:
Let xn be a convergent sequence in a metric space (X, d) with limit L ∈ E. Let K ∈ N. For n ∈ N let
yn := xn+K . Then limn→∞(yn)n = L. �

Exercise 10.7. Let fn, f ∈ BBB([0, 1],R) n ∈ N be continuous such that f = lim
n→∞

fn in

(BBB([0, 1], d‖·‖∞)(!) Prove lim
n→∞

∫ 1

0
fn(x)dx =

∫ 1

0
f(x)dx. You must use the ε,N definition of con-

vergence.
Hints: a. No need to mention that continuous functions are both bounded and integrable and
that they attain both max and min on closed and bounded intervals. b. Use the mean value
theorem: For cont. h(·) on [0, 1] let α := min

x∈[0,1]
h(x), β := max

x∈[0,1]
h(x). Then ∃ λ ∈ [α, β] such that

lim
n→∞

∫ 1

0
h(x)dx = λ ( = λ(1− 0). c. Use without proof that

∣∣∣ ∫ 1

0
h(x)dx

∣∣∣ 5 ∫ 1

0
|h(x)|dx for any

integrable h(·) on [0, 1] d. Apply b and c to hn(x) = |fn(x)− f(x)|. (So you deal with αn, λn, βn).

�
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10.4.1.5 Exercises for Ch.10.1.5 (Abstract Topological spaces)

Exercise 10.8. It was stated in example.10.4 on p.182 that the discrete topology which is induced by
the discrete metric d(x, y) = 1 if x 6= y and 0 if x = y is the entire powerset 2X of X . Prove it. �

10.4.1.6 Exercises for Ch.10.1.6 (Neighborhood Bases)

Exercise 10.9. Let (X, d) be a metric space and let B := {N1/k(x) : x ∈ X, k ∈ N}. Then B is a base
of the topology for the associated topological space (X,Ud). �

10.4.1.7 Exercises for Ch.10.1.7 (Metric Subspaces)

Exercise 10.10. Prove prop.10.4 on p.186: Let (X,U) be a topological space, A ⊆ X , and let UA be
the collection of all open sets in A. Then (A,UA) is a topological space, i.e., it satisfies the definition
def.10.11 on p.181 of an abstract topological space. �

10.4.1.8 Exercises for Ch.10.1.8 (Bounded Sets and Bounded Functions)

10.4.1.9 Exercises for Ch.10.1.9 (Contact Points and Closed Sets)

Exercise 10.11. Prove thm.10.25 on p.226: Let (X,U) be a topological space and A ⊆ X . Then
∂A = Ā ∩A{. �

Exercise 10.12. Prove prop.10.26 on p.226: Let (X,U) be a topological space and A ⊆ B ⊆ X . Then
Ā ⊆ B̄. �

Exercise 10.13. Prove rem.10.20 on p.227: Let (X,U) be a topological space and A ⊆ B ⊆ X . Then
Ao ⊆ Bo. �

10.4.1.10 Exercises for Ch.10.1.10 (Completeness in Metric Spaces)

Exercise 10.14. Let (X, d) be a metric space and A ⊆ X , A 6= ∅. Let

γ := γ(A) := inf{d(x, y) : x, y ∈ A and x 6= y}.(10.79)

a. Prove that if γ > 0 then A is complete.

b. The reverse is not true. Find a counterexample. �

Exercise 10.15. Let (X, d) be a metric space and let A ⊆ X be a finite subset. Prove that A is
complete. �

Exercise 10.16. Given is R with the Euclidean metric d(x, y) = |x− y|. We look at N and Q as metric
subspaces of R. We know that Q is not complete.

a. Is N complete as a subspace of Q?
b. Is N complete as a subspace of R?
Prove your answer. �

Exercise 10.17. LetX be a nonempty set with the discrete metric d(x, y) = 1−1{x}(y), i.e., d(x, y) = 0
if x = y and 1 else. Prove that (X, d) is complete. �
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10.4.2 Exercises for Ch.10.2

Exercise 10.18. Prove prop.10.15 (Opposite of continuity) on p.201:

A sequence (xk)k with values in (X, d) does not have L ∈ X as its limit if and only if there exists
some ε > 0 and n1 < n2 < n3 < · · · ∈ N such that d(xnj , L) ≥ ε for all j. �

10.5 Addenda to Ch.10 (Metric spaces)

10.5.1 Misc. Addenda to Metric Spaces

The following definition belongs after remark 10.4 (p.178) of ch.10.1.3 (Neigh-
borhoods and Open Sets).

Definition 10.40 (boundary points). Let A be a subset of the metric space (X, d). x ∈ X is called a
boundary point of A if any neighborhood of x intersects both A and A{. We write ∂A for the set of
all boundary points of A and call this set the boundary of A. �

The next two propositions prop.10.23 and prop.10.24 belong before remark
10.5 (No convergence or divergence to infinity) on p.181. 104

The following proposition shows that the limit behavior of a sequence is a property of its tail, i.e., it does not
depend on the first finitely many indices.

Proposition 10.23. Let xn, yn be two sequences in a metric space (X, d). Assume there is K ∈ N such that
xn = yn for all n = K. Let L ∈ X Then

lim
n→∞

xn = L ⇔ lim
n→∞

yn = L.

Proof:
Left as an exercise. �

Proposition 10.24. Let xn be a convergent sequence in a metric space (X, d) with limit L ∈ E. Let K ∈ N.
For n ∈ N let yn := xn+K . Then limn→∞(yn)n = L.

Proof:
Left as an exercise. �

The following definition belongs after def.10.14 (Neighborhoods and interior
points) on p.182 in ch.10.1.5 (Abstract Topological spaces).

104They are proved for sequences of real numbers in prop.8.16 and prop.8.17 on p.146.
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Definition 10.41 (boundary points in topological spaces). Let (X,U) be a topological space and
A ⊆ X . Then x ∈ X is called a boundary point of A if any neighborhood of x intersects both A and
A{. We write ∂A for the set of all boundary points of A and call this set the boundary of A.

Figure 10.6: Inner points v.s. boundary points.
Source: https://en.wikipedia.org/wiki/Interior_(topology)

We note that this definition is exactly the same as that given for metric spaces (compare def.10.40
on p.225). �

The following proposition belongs to ch.10.1.9 (Contact Points and Closed
Sets) on p.187.

Proposition 10.25. Let (X,U) be a topological space and A ⊆ X . Then

∂A = Ā ∩A{,(10.80)

i.e., x ∈ X is a boundary point of A if and only if x is a contact point of both A and A{.

Proof: Left as an exercise.

The following belongs at the end of ch.10.1.9 (Contact Points and Closed Sets)
on p.187.

Proposition 10.26. Let (X,U) be a topological space and A ⊆ B ⊆ X . Then Ā ⊆ B̄.

The proof is left as exercise 10.12.
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Definition 10.42 (Interior of a set in topological spaces). Let (X,U) be a topological space and A ⊆
X . Let

Ao :=
⋃[

U ∈ U : U ⊆ A
]

(10.81)

be the union of all open subsets of A. We call Ao the interior of A. An alternate notation for Ao is
int(A).

It follows from def.10.11 (abstract topological spaces) on p.181 that Ao is an open set which is, as a
union of subsets of A, also a subset of A. Because Ao is the union of all such sets, it follows that �

The interior Ao of A is the largest of all open subsets of A.

Remark 10.20. Let (X,U) be a topological space.

If A ⊆ B ⊆ X then Ao ⊆ Bo. �(10.82)

Proposition 10.27 (Minimality of the closure of a set). Let (X,U) be a topological space and A ⊆ X .
Then

Ā =
⋂[

C ⊇ A : C is closed
]
.(10.83)

The closure Ā of A is the smallest of all closed supersets of A.

Proof: Let C := {C ⊃ A : C is closed } and let F :=
⋂
C. We need to show that Ā = F .

It follows from prop.10.9.a that F is closed, hence F = F̄ . It follows from C ⊇ A for all C ∈ C that F ⊇ A,
hence F = F̄ ⊇ Ā.

It remains to be shown that F ⊆ Ā. It is true that Ā ∈ C because Ā is a closed set which contains A, hence
Ā ⊇

⋂
C = F . (See prop.10.26 on p.226). �

Proposition 10.28 (Closure of a set as a hull operator 105 ). Let (X,U) be a topological space. We can
think of the closure of sets as a function ¯ : 2X → 2X ; A 7→ Ā. This function has the following properties:

a. ∅̄ = ∅, b. A ⊆ Ā, c. ¯̄A = Ā, d. A ∪B = Ā ∪ B̄.
105 This proposition states that the closure is a so–called closure operator which is defined to be a function

cl : 2X → 2X ; A 7→ cl (A) := Ā

on some abstract, non–empty set X (which need not be a topological space) such that the following are satisfied:

a. (∅) = ∅, b. A ⊆ cl (A), c. cl (cl (A)) = cl (A), d. cl (A ∪B) = cl (A) ∪ cl (B).

It can be shown that if we define
U := {A{ : cl (A) = A}

then (X,U) satisfies the properties of a topological space.
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Proof: a follows from (10.34).c and b follows from remark 10.9.

The proof of c and d is left as exercise ??.

The following proposition is part of ch.10.2.1 (Definition and Characteriza-
tions of Continuous Functions) on p.197. It is used to show that (f, g) 7→∫ b
a f(x)g(x)dx is positive definite on CCC ([a, b],R) (see prop.9.12, p.169).

Proposition 10.29. Let a, b ∈ R such that a < b. and let f : [a, b]→ R be continuous. Then
∫ b
a f

2(x)dx = 0
only if f(x) = 0 for all x ∈ ]a, b[. �

Proof: Assume that there is a < x0 < b such that f(x0) 6= 0. We may assume that f(x0) > 0 (otherwise we
examine the function −f instead). Let ε := f(x0)

2 . As f is continuous at x0 there exists δ > 0 such that

|f(x0)− f(x) < ε|, hence f(x) > f(x0)− ε = ε for all x0 − δ < x < x0 + δ.(10.84)

Let g : [a, b]→ R be defined as follows.

g(x, y) =

{
ε if x0 − δ < x < x0 + δ

0 else.

It follows from (10.84) that |f | = g, hence
∫ b
a f

2(x)dx =
∫ b
a g

2(x)dx = (2δ)ε2 > 0. �

The following theorem belongs after thm.10.13 (ε-δ characterization of conti-
nuity) on p.198.

We saw in the ε-δ continuity definition of a function with metric spaces for both domain and codomain and
the subsequent remark 10.14 that continuity of f : (A, d1

∣∣
A×A) → (Y, d2) in x0 ∈ A was equivalent to

demanding that for any ε–neighborhood of f(x0) there is a δ–neighborhood of x0 such that

f
(
NA
δ (x0)

)
⊆ Nε(f(x0)).

Considering that any neighborhood of a point z in a metric space contains a γ–neighborhood of z for suitably
small γ, the following theorem should not come as a surprise.

Theorem 10.18 (Neighborhood characterization of continuity). Let (X, d1) and (Y, d2) be two metric
spaces. Let A ⊆ X , x0 ∈ A, and let f(·) : A → Y be a mapping from A to Y . Then f is continuous at x0

if and only if for any neighborhood Vf(x0) of f(x0) there exists a neighborhood Ux0 of x0 in the metric space
(X, d1) such that

f(Ux0 ∩A) ⊆ Vf(x0).(10.85)

Equivalently, this can be stated in terms of the subspace (A, d1

∣∣
A×A) as follows. for any neighborhood Vf(x0)

of f(x0) there exists a neighborhood UAx0
of x0 in the metric space (A, d1

∣∣
A×A) such that

f(UAx0
) ⊆ Vf(x0).(10.86)
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a)⇒a)⇒a)⇒): Assume that f is continuous, i.e., ε-δ continuous at a. Let Vf(x0) be a neighborhood of x0.

Then f(x0) is interior point of Vf(x0) and we can find suitable ε > 0 such that Nε(f(x0)) ⊆ Vf(x0). ε-δ
continuity at a implies the existence of δ > 0 such that f

(
Nδ(x0) ∩A

)
⊆ Vf(x0).

This proves both (10.85) (choose Ux0 := Nδ(x0)) and (10.86) (choose UAx0
:= Nδ(x0) ∩A).

b)⇐b)⇐b)⇐): Assume that (10.85) is satisfied for any arbitrary neighborhood Vf(x0) of f(x0).

Let ε > 0. We need to show that there exists δ > 0 such that

f(Nδ(x0) ∩A) ⊆ Nε(f(x0)).(10.87)

Nε(f(x0)) is a neighborhood of f(x0). It follows from (10.85) that there exists a neighborhood Ux0 of x0 such
that

f(Ux0 ∩A) ⊆ Nε(f(x0)).(10.88)

x0 is interior point of any of its neighborhoods. In particular, it is interior to Ux0 .

Accordingly, there exists δ > 0 such that Nδ(x0) ⊆ Ux0 , hence Nδ(x0) ∩ A ⊆ Ux0 ∩ A. It follows from the
monotonicity of the direct image Γ 7→ f(Γ) that

f
(
Nδ(x0) ∩A

)
⊆ f

(
Ux0 ∩A

)
⊆ Nε(f(x0)).(10.89)

The second inclusion relation follows from (10.88). We have proved the existence of δ > 0 such that (10.87)
is satisfied. This finishes the proof of “⇐)”. �

The last theorem allows us to define continuity for functions between abstract topological spaces.

Definition 10.43 (Continuity for topological spaces). Given are two topological spaces (X,U1) and
(Y,U2). Let A ⊆ X , x0 ∈ A and let f(·) : A → Y be a mapping from A to Y . We say that f(·) is
continuous at x0 if the following is true:

For any neighborhood Vf(x0) of f(x0) there exists a neighborhood Ux0 of x0 in the topological space
(X,U1) such that

f(Ux0 ∩A) ⊆ Vf(x0).(10.90)

Equivalently, this can be stated in terms of the subspace (A,U1A) as follows. For any neighborhood
Vf(x0) of f(x0) there exists a neighborhood UAx0

of x0 in (A,U1A) such that

f(UAx0
) ⊆ Vf(x0).(10.91)

We say that f(·) is continuous if f(·) is continuous at a for all a ∈ A. �
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11 Compactness

11.1 Introduction: Closed and Bounded sets in Euclidean space

One of the results that are true forN -dimensional space is the “sequence compactness” of closed and bounded
subsets: Any sequence that lives in such a set has a convergent subsequence. We will discuss that next.

Theorem 11.1 (Convergent subsequences in closed and bounded sets of R). Let A be a bounded and
closed set of real numbers and let (zn) be an arbitrary sequence in A. Then there exists z ∈ A and a subset

n1 < n2 < . . . < nj < . . . of indices such that z = lim
j→∞

znj

i.e., the subsequence (znj ) converges to z.

Proof: Let m be the midpoint between a := inf(A) and b := sup(A). Because A is bounded, a and b must
exist as finite numbers. Let

(11.1) A?1 := A ∩ [a,m]; A?1 := A ∩ [m, b].

Then at least one of A?1, A?1 must contain infinitely many of the zn because A?1 and A?1 form a “covering”
of A (the formal definition will be given later in def.11.4 on p.239), i.e., A?1 ∪ A?1 ⊇ A. We pick one with
infinitely many elements and call it A1. In case both sets contain infinitely many of the zn, it does not matter
which one we pick. We observe that diam(A1) 5 diam(A)/2?

Let m1 be the midpoint between a1 := inf(A1) and b1 := sup(A1). Let

(11.2) A?2 := A1 ∩ [a1,m1]; A?2 := A ∩ [m1, b1].

Then at least one of A?2, A?2 must contain infinitely many of the zn. We pick one with infinitely many
elements and call it A2. In case both sets contain infinitely many of the zn, it does not matter which one we
pick. Note that

diam(A2) 5 diam(A1)/2 5 diam(A)/22

We keep picking the midpoints mj of the sets Aj each of which has at most half the diameter of the previous
one. (Why?) In other words, we have constructed a sequence

A ⊇ A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . . such that

diam(A) = 2diam(A1) = 22diam(A2) . . . = 2ndiam(An) . . .
(11.3)

which means that diam(An) 5 diam(A)/2n → 0 as n→∞.

We pick a subsequence (xj)j = (znj )j of the original sequence (zn)n such that znj ∈ Aj for all j ∈ N. This
is possible because the sets Aj were picked in such a way that each one of them contains infinitely many of the
zk.

The following inequality is true because the sequence of sets (Aj) is “nested”: each Aj is contained in its
predecessor Aj−1. It follows that Am contains all Ak for any k > m and this implies that Am contains all
members xk = znk

, for all k > m. Thus

|xm − xk| 5 diam(Am) 5
diam(A)

2m
for all m and k such that k > m.
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It follows that (xn) is a Cauchy sequence (p.191). According to theorem 10.8 about the completeness of R
(p.192) there is a contact point x such that xn → x for n→∞.
Because A is a closed set it contains all its contact points. It follows that x ∈ A and we have found a
subsequence of the original sequence (zn) which converges to an element of A. �

Theorem 11.2 (Convergent subsequences in closed and bounded sets of RN ). Let A be a bounded and
closed set of RN and let (~zn) be an arbitrary sequence of N–dimensional vectors in A. Then there exists
~z ∈ A and a subset

n1 < n2 < . . . < nj < . . . of indices such that ~z = lim
j→∞

~znj

i.e., the subsequence (~znj ) converges to ~z.

Proof (outline): We review the above proof for R:

The base idea was to chop A in half during each step to obtain a sequence of sets An which become smaller
and smaller in diameter but yet contain infinitely many points. of the original sequence zn.

In higher dimensions we would still find the center point ~mn which is determined by the fact that it is
the center of a γ–neighborhood (N–dimensional ball) that contains An and does so with the smallest radius
possible. We then take the minimal square (in R2) or the minimalN–dimensional cube (in RN ) that is parallel
to the coordinate axes and still contains that sphere or ball.

We then divide that N–dimensional cube (a square in 2 dimensions, a cube in 3 dimensions) into 2N sectors
(4 quadrants in R2, 8 sectors in R3) and partition An into at most 2N pieces by intersecting it with those 2N

sectors).

The set An+1 is then chosen from one of those pieces which contain infinitely many of the zn. Again, we get a
nested sequence An whose diameters contract towards 0. You’ll find more detail about the messy calculations
required in the proof of prop.11.2 on p.233.

Each An contains infinitely many of the ~zk. Now pick ~xj := ~znj where ~znj is one of the infinitely many
members of the original sequence (~zn) which are contained in Aj .

Because Aj ⊆ AK for j = K and lim
K→∞

diam(AK) = 0, we do the following for a given ε > 0: choose K so

big that diam(AK) 5 ε. Note that

if i, j = K then d(~xi, ~xj) = d(~zni , ~znj ) 5 diam(AK) 5 ε.

This is true because ni = i (and nj = j), hence ~xi, ~xj ∈ AK . It follows that the sequence (~xj) is Cauchy. We
have seen in thm.10.9 on p.193 that RN is complete. It follows that ~L := limj→∞ ~xj exists in RN .

The proof is complete if it can be shown that ~L ∈ A.

But we know that all ~xi = ~zni belong to A. ~L is a contact point of A because any neighborhood Nε(~L)
contains an entire tail set of the sequence (~xi)i. As the closed set A owns all its contact points, it follows that
L ∈ A and the theorem is proved. �

Theorem 11.3. Let A be a bounded and closed set of real numbers and let f(·) : A→ R be a continuous
function on A. Then f(·) is a bounded function.
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Proof: Let us assume that f(·) is not bounded and show that this leads to a contradiction.
An unbounded function is not bounded from above, from below, or both. We might as well assume that f(·)
is not bounded from above because otherwise it is not bounded from below and we can work with−f(·) which
then is not bounded from above. We conclude that there is a sequence (zn) ∈ A such that

(11.4) f(zn) > n for all n ∈ N.

According to thm.11.1 (Convergent subsequences in closed and bounded sets) there exists a subsequence
(xj) = (znj ) and x0 ∈ A such that x0 = lim

n→∞
xn.

In particular, f(x0) exists as a finite value and f(xn)→ f(x0) because f(·) is continuous in x0. But the xn
were constructed as a subsequence of the zj which have the property that f(zj) > j for all j.

The subsequence (f(xn)) cannot converge to f(x0) because f(xj) = f(znj ) > nj , i.e., lim
j→∞

f(znj ) =∞.

We have reached a contradiction and it follows that f(·) is bounded. �

Corollary 11.1. Let a < b be two real numbers and let f(·) : [a, b]→ R be a continuous function on [a, b].
Then f(·) is a bounded function.

Proof: The interval interval [a, b] is closed and bounded (diam([a, b]) = b− a) . The proof follows from
thm.11.3. �

11.2 Four Definitions of Compactness

We now look at ways to extend those results to general metric spaces by looking at the concept of compactness.

Compact sets are a wonderful thing to deal with because they allow you in some sense to go from dealing with
“arbitrarily many” to dealing with “countably many” and even “finitely many”. This chapter will show that
A, B and C below are equivalent statements for any subspace (K, d

∣∣
K×K) of a metric space (X, d):

A. any sequence in K has a convergent subsequence
B. K is complete and contains only finitely many point of a grid of length ε
C. any open covering of K has a finite subcovering
D. K is bounded and closed - ONLY works in RN !

Such metric spaces K will be called “compact” (see def.11.3 (Sequence compactness) on p.236 and def.11.5
(Compact sets) on p.240).

We can now state theorems 11.1 and 11.2 of the introduction as follows: In RN statement D implies A.

When you take a course on real analysis you will probably be given the definition of compactness as that
in C: any open covering of K has a finite subcovering. In this document this definition is pushed into the
background as it is the most difficult to understand. But full proofs will be given of the equivalence of sequence
compactness (def.A) on the one hand and completeness plus “total boundedness” (def.B) on the other hand.

One of the important results of this chapter on compactness is that, if you look at RN with the Euclidean norm
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and its associated metric

d(~x, ~y) =

√√√√ n∑
j=1

(xj − yj)2 ( ~x = (x1, x2, . . . ), ~y = (y1, y2, . . . ) ∈ RN )

(see (9.3) on p.152) then all four statements A, B, C, D coincide.

11.3 ε-Nets and Total Boundedness

We now briefly discuss ε–nets and decreasing sequences of closed sets which contract to a single point.

Definition 11.1 (ε–nets). Let ε > 0. Let (X, d) be a metric space and A ⊆ X . let G ⊆ A be a subset
of A with the following property:

For each x ∈ A there exists g ∈ G such that x ∈ Nε(g).

In other words, the points of G form a “grid” or “net” fine enough so that no matter what point x
of A you choose, you can always find a “grid point” g with distance less than ε to x, because that is
precisely the meaning of x ∈ Nε(g).

We call G an ε–net or ε–grid for A and we call g ∈ G a grid point of the net. �

Proposition 11.1 (ε–nets and coverings). Let ε > 0. Let (X, d) be a metric space and A ⊆ X . Let G ⊆ A
be an ε–grid for A. Then {Nε(g)}g∈G is an open covering of A in the sense of def.11.4 on p.239: It is a
collection of open sets whose union “covers”, i.e., contains, A.

Proof: Let x ∈ A. We can choose a point g = g(x) ∈ G such that x ∈ Nε

(
g(x)

)
. It follows from

{x} ⊆ Nε

(
g(x)

)
and g(x) ∈ G for all x ∈ A that

A =
⋃
x∈A
{x} ⊆

⋃
x∈A

Nε

(
g(x)

)
⊆
⋃
g∈G

Nε(g). �

Proposition 11.2 (ε–nets in RN ). Let (X, d) be RN with the Euclidean metric.

A. Let
ZN = {~z = (z1, z2, . . . zN ) : z ∈ Z}

In other words, ZN is the set of all points in RN with integer coordinates. 106

Then ZN is a
√
N–net of RN .

B. Let ε > 0 and GRN

ε := {ε~z : ~z ∈ ZN}. Then GRN

ε is an ε
√
N–net of RN .

C. Let A be a bounded set in RN and ε > 0. Then there is n ∈ N and g1, . . . gn ∈ GRN

ε/
√
N

such that

A ⊆ Nε(g1) ∪ Nε(g2) ∪ . . . , ∪ Nε(gn),

i.e., A is covered by finitely many ε–neighborhoods of points in the (ε/
√
N)–grid GRN

ε/
√
N

.

106That is as intuitive a grid as you can think of, especially if you look at the 2–dimensional plane or 3–dimensional
space.
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(Skip this proof!) (all three parts A, B, C)

Proof of A.
Let ~x = (x1, x2, . . . xN ) ∈ RN . For each xj let x?j be the integer closest to xj .

Before we continue, let’s have an example, if N = 5 and ~x = (12.85,−12.35, 2/3, 9,−π) then its associated
grid point is ~x? = (13,−12, 1, 9,−3). Let’s compute the distance:

d(~x, ~x?) =

√
.152 + .352 + 1/32 + 0 + (π − 3)2 5

√
(1/2 + 1/2 + 1/2 + 0 + 1/2) 5

√
N

and we see that partAAA of the lemma is true for this specific example.

Now to the real proof. It is not really more complicated if you notice that |xj − x?j | < 1 for all 1 5 j 5 N .
We get

d(~x, ~x?) =

√√√√ N∑
j=1

(xj − x?j )
2 <

√
N · 1 =

√
N

So, for each point you can find a grid point with integer coordinates at a distance of less than
√
N . That

proves that ZN is a
√
N–net of RN .

Proof of B.
Let ~y ∈ RN . Let ~x := (

√
N/ε)~y and let ~x? be the vector where we discard the decimal parts of ~x. According

to partA.A.A. we know that ‖~x − ~x?‖2 = d( ~x?, ~x) <
√
N . Thus

d
(
~y,

ε√
N
~x?
)

= d
( ε√

N
~x,

ε√
N
~x?
)

= ‖ ε√
N
~x − ε√

N
~x?‖2 =

ε√
N
‖~x − ~x?‖2 <

ε√
N

√
N = ε

In other words, for any ~y ∈ RN there is a vector ~x? ∈ ZN such that d(~y, (ε
√
N)~x?) < ε .

Rephrase that: For any ~y ∈ RN there is a vector ~g ∈ GRN

(ε/
√
N)

= {(ε/
√
N)~z : ~z ∈ ZN}

such that d(~y,~g) < ε (choose ~g = ~x? ).

So, for each point you can find a grid point in GRN

ε at a distance of less than ε
√
N . It follows that GRN

ε is an
ε
√
N–net of RN .

Proof of C.
Intuitively clear but very messy. Here is an outline.

a.a.a. You can choose a radius R1 so big that A ⊆ NR1(~0) (see prop.10.6 on p.187).

b.b.b. We enlarge the radius by ε: Let R := R1 + ε. The enlarged “N -dimensional ball” of radius R NR(~0) is
contained in the “N -dimensional cube”

QR := {~x = (x1, x2, . . . xN ) : −R 5 xj 5 R for all 1 5 j 5 N}.

This is true because if ~x = (x1, x2, . . . xN ) ∈ NR(~0) then |xj | =
√
x2
j 5

√∑
i x

2
i = ‖~x‖2 = R.
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c.c.c. Let ~z = (z1, z2, . . . zN ) be a grid point of GRN

ε/
√
N

, i.e., for the j-th coordinate (1 5 j 5 N ) there exists
mj ∈ Z such that zj = mj

ε√
N

. We observe that there are only finitely many integers m, say K, for which
−R 5 m ε√

N
5 R. We further observe that K does not depend on j.

d.d.d. Hence there are only K possible values for the first coordinate z1 = m1
ε√
N

. For each one of those there are
only K possible values for z2, so there are at most K2 possible combinations (z1, z2) for which ~z ∈ A. We
keep going and find that there are at most KN possible grid points ~z ∈ QR.

e.e.e. Any point in RN with distance less than ε from some point in A must belong to BR(~0) (now you know
why we chose to augment R1 by ε). In particular, all grid points g ∈ GRN

ε/
√
N

whose neighborhoods Nε(g)

intersect A belong to BR(~0) and hence to QR. We conclude that A ∩ Nε(g) = ∅ for all grid points outside
QR, hence ⋃

[ A ∩Nε(g) : g ∈ GRN

ε/
√
N

] =
⋃

[ (A ∩Nε(g)) ∩QR : g ∈ GRN

ε/
√
N

]. (?)

We know from part B which was already proved that RN =
⋃

[ Nε(g) : g ∈ GRN

ε/
√
N

]. Hence,

A = A ∩ RN = A ∩
⋃

[ Nε(g) : g ∈ GRN

ε/
√
N

]

=
⋃

[ A ∩Nε(g) : g ∈ GRN

ε/
√
N

] =
⋃

[ (A ∩Nε(g)) ∩QR : g ∈ GRN

ε/
√
N

].

We obtain the third equality from prop.5.2 (Distributivity of unions and intersections) on p.100 and the last
one follows from (?) above.

It follows that A ⊆
⋃

[Nε(g) : g ∈ GRN

ε/
√
N
∩ QR ]. We have proved C as there are only finitely many grid

points in QR. �

Remark 11.1. The observant reader will have noted that, in part C. of the previous proposition, it
was not stated that the gridpoints belong to the subset A of RN . Here is a trivial counterexample.
Look at the “standard” ε–grid GRN

ε = {ε~z : ~z ∈ ZN} defined in prop.11.2, part B. Take any A ⊆ RN

you like and look at B := A \GRN

ε , i.e., we have removed all grid points. It is clear that B cannot be
covered by

√
Nε balls belonging to grid points in B. �

Definition 11.2 (Total boundedness). Let (X, d) be a metric space and let A be a subset of X . We
say that A is totally bounded if for each ε > 0 there is a finite collection Gε := {g1, . . . gn} of points
in A whose ε–balls Nε(gj) cover A: For any a ∈ A there is j = j(a) such that d(a, gj) < ε. �

We will use this definition in connection with sequence compactness which is defined in the next section.

11.4 Sequence Compactness

We saw in the introductory section that, for the space RN with the Euclidean metric, closed and bounded sets
have the property that any sequence contains a convergent subsequence. We named this property in section
11.2, p.232 on Four Definitions of Compactness “sequence compactness” and we will examine that property
in this chapter.
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Definition 11.3 (Sequence compactness). Let (X, d) be a metric space and let A be a subset of X .
We say that A is sequence compact or sequentially compact if it has the following property: Given
any sequence (xn) of elements of A, there exists L ∈ A and a subset

n1 < n2 < . . . < nj < . . . of indices such that L = lim
n→∞

xnj ,

i.e., there exists a subsequence 107 (xnj ) which converges to L. �

Proposition 11.3 (Sequence compactness implies total boundedness). Let (X, d) be a metric space and
let A be a sequentially compact subset of X . Then A is totally bounded.

Proof: This is proved by contradiction. We may assume that A 6= ∅ as nothing needs to be shown otherwise.
a.a.a. Assume that A is not totally bounded. Then there is ε > 0 such that the following holds for any n ∈ N:
If z1, z2, . . . zn ∈ A then the union

⋃
1≤j≤nNε(zj) does not cover A: There exists z ∈ A outside any one of

those ε–neighborhoods, i.e., z ∈ A \
⋃ [

Nε(zj) : 1 5 j 5 n
]
.

This allows us to create an infinite sequence (xj)j∈N such that d(xj , xn) = ε for all j, n ∈ N such that j 6= n,
say, j < n, as follows: We pick

x1 ∈ A; x2 ∈ A \Nε(x1); x3 ∈ A \
(
Nε(x1) ∪Nε(x2)

)
; . . . xn ∈ A \

⋃
j<n

Nε(xj); . . .

b.b.b. The proof is done if we can show that (xj)j∈N does not possess a convergent subsequence. Assume to the
contrary that there is L ∈ A and n1 < n2 < . . . such that limj→∞xnj = L.

We pick the number ε > 0 that was used in part a of the proof. There existsN = N(ε) such that d(xnm , L) <
ε/2 for all m = N . Because i 5 ni and j 5 nj , it follows for all i, j = N that

d(xni , xnj ) 5d(xni , L) + d(L, xnj ) < ε/2 + ε/2 = ε.

But the xn were constructed in such a fashion that d(xm, xk) = ε for all m 6= k, in particular for m := ni
and k := nj if i 6= j. We have arrived at a contradiction because ni 6= nj whenever i 6= j. �

Proposition 11.4 (Sequence compact implies completeness). Let (X, d) be a metric space and let A be a
sequence compact subset of X . Then A is complete, i.e., any Cauchy sequence (xnj ) in A converges to a limit
L ∈ A.

Proof: Let (xn) be a Cauchy sequence in A and let ε > 0. There exists N1 ∈ N such that

k, l = N1 ⇒ d(xk, xl) < ε/2.(11.5)

Because A is sequence compact, we can extract a subsequence zj := xnj and find L ∈ A such that zj → L as
j →∞. It follows that for ε chosen above there exists N2 ∈ N such that

j = N2 ⇒ d(xnj , L) < ε/2.(11.6)

Let N := max(N1, N2) and j = N . We observe that nj = j for all j, hence nj = N if j = N . Hence
j = N1 and nj = j = N = N2

107 See def.4.18 on p.93.
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It follows from (11.5) that d(xj , xnj ) < ε/2 and from (11.6) that d(xnj , L) < ε/2, hence d(xj , L) < ε for all
j = N . We have proved that the arbitrarily chosen Cauchy sequence (xn) converges. �

The last two propositions have proved that any sequence compact set in a metric space is both totally bounded
and complete. The reverse is also true:

Theorem 11.4 (Sequence compact iff totally bounded and complete). Let A be a subset of a metric
space (X, d). Then A is sequence compact if and only if A is totally bounded and complete.

Proof: We have already seen in prop.11.3 on p.236 and prop.11.4 on p.236 that if A is sequentially compact
then A is totally bounded and complete. We now show the other direction.

LetA be totally bounded and complete and let (xn)n∈N be a sequence inA. All we need to show is the existence
of a subsequence zj = xnj which is Cauchy: As A is complete, such a Cauchy sequence must converge to a
limit L ∈ A, i.e., xnj → L as n → ∞. We now are going to extract a convergent subsequence (xnj )j from
(xn)n.

a.a.a. Because A is totally bounded, there will be a finite net for ε = 1/2: there exists

G1 = {g1,1, g1,2, . . . , g1,k1} ⊆ A such that A ⊆ U1 :=
⋃[

N1/2(g1,j) : j 5 k1

]
.

It follows that xk ∈ U1 for each k. There are infinitely many indices k for our sequence but only finitely many
points in G1. Hence there exists some g1 ∈ G1 such that B1 := N1/2(g1) contains x1,j := xnj for an entire
(infinite) subsequence nj . 108

b.b.b. Because A is totally bounded, there will be a finite net for ε = 1/3: there exists

G2 = {g2,1, g2,2, . . . , g2,k2} ⊆ A such that A ⊆ U2 :=
⋃[

N1/3(g2,j) : j 5 k2

]
.

It follows that x1,k ∈ U2 for each k. There are infinitely many indices k for our sequence but only finitely
many points in G2. Hence there exists some g2 ∈ G2, such that N1/3(g2) contains x2,j := x1,nj for an entire
subsequence nj . As the entire sequence (x1,k) belongs to B1, it follows that our new subsequence (x2,j) of
(x1,k) belongs to B2 := B1 ∩N1/3(g2).

c.c.c. Having constructed a subsequence (xn−1,j) of the original sequence (xk) which lives in a set Nn−1 con-
tained in N1/n(gn−1) for a suitable gn−1 ∈ A, total boundedness of A, guarantees the existence of a finite net
for ε = 1/(n+ 1): there exists

Gn = {gn,1, gn,2, . . . , gn,kn} ⊆ A such that A ⊆ Un :=
⋃[

N1/(n+1)(gn,j) : j 5 kn
]
.

It follows that xn,k ∈ Un for each k. There are infinitely many indices k for our sequence but only finitely
many points in Gn. Hence there must be at least one of those which we name gn, such that N1/(n+1)(gn)
contains xn,j := xn−1,nj for an entire subsequence nj . As the entire sequence (xn−1,k) belongs to Nn−1, it
follows that our new subsequence (xn,j) of (xn−1,k) belongs to Bn := Nn−1 ∩N1/(n+1)(gn).

We note that the maximal distance d(xn,i, xn,j) between any two members of that new subsequence is bounded
by 2/(n+ 1), the diameter of N1/(n+1). It follows that

diam(Bn) 5 2/(n+ 1). (?)

108 Note that it is not claimed that there would be infinitely many different points xnj , only infinitely many indices nj .
Indeed, what would you do if the original Cauchy sequence was chosen to be x1 = x2 = · · · = a for some a ∈ A?
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d.d.d. Diagonalization procedure: The following trick is employed quite frequently in real analysis. We create the
“diagonal sequence” z1 := x1,1, z2 := x2,2, . . . which is a subsequence of the original sequence (xn). If we
can show that it is Cauchy then the proof is complete.

By construction, if j = n then

zj ∈ Bj ⊆ Bn ⊆ Nn−1 ⊆ · · · ⊆ B2 ⊆ B1 and diam(Bj) ≤
2

j + 1
≤

2

n+ 1
(see (?)) .

Let ε > 0. We can find N ∈ N such that 1
N+1 <

ε
2 . We remember from part c of this proof that

Bj = Nj−1 ∩N1/(j+1)(gj) ⊆ N1/(j+1)(gj) for some suitable gj ∈ A,

hence all its points have distance from gj bounded by (j + 1)−1. We obtain for any i, j = N that

d(zi, zj) ≤ d(zi, gN ) + d(gN , zj) 5
1

N + 1
+

1

N + 1
< ε.

It follows that (zn)n is indeed Cauchy and the proof is completed. �

Corollary 11.2 (Sequence compact sets are complete). Let (X, d) be a metric space and let K be a se-
quence compact subset of X . Then K is complete.

Proof: Immediate from the last theorem.

Theorem 11.5 (Sequence compact sets are closed and bounded). Let A be sequence compact subset of a
metric space (X, d). Then A is a bounded and closed set.

a. Proof of boundedness:

We may assume that A is not empty because otherwise there is nothing to prove. We assume that A is not
bounded, i.e., diam(A) = ∞. It will be proved by induction that there exists a sequence xn ∈ A such that
d(xi, xj) = 1 for any i 6= j.

Base case: Let x0 ∈ A. There exists x1 ∈ A such that r1 := d(x0, x1) = 1.

Induction step: We assume that n elements x1, . . . xn such that d(xi, xj) = 1 for any 1 5 i < j 5 n have
aready been chosen. Let β := max{d(x0, xj) : j 5 n} and r := β + 1. As A is not bounded, we can pick
xn+1 ∈ A \Nr(x0). We obtain

β + 1 ≤ d(xn+1, x0) ≤ d(xn+1, xj) + d(xj , x0) ≤ d(xn+1, xj) + β, i.e., 1 ≤ d(xn+1, xj).

We have constructed a sequence (xn) for which any two items have distance no less than 1. It follows that
there is no Cauchy subsequence, hence no convergent subsequence and we have a contradiction to the sequence
compactness of A.

b. Proof of closedness:

If A is not closed then A has a contact point x ∈ A{.

As N1/m(x) ∩A 6= ∅ we can pick a sequence xm ∈ A such that d(xm, x) < 1/m for all m ∈ N.
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Clearly xm converges to x ∈ A{. Sequence compactness of A allows us to extract a subsequence zj = xnj

which converges to z ∈ A.

Both z and x are limit of zj . According to thm.10.3 on p.180, x = z. It follows that both x ∈ A{ and x ∈ A,
a contradiction. This proves that sequence compact sets are closed. �

Corollary 11.3 (Sequence compact sets are bounded). Let (X, d) be a metric space and let K be a se-
quence compact subset of X . Then K is bounded, i.e., diam(K) = sup{d(x, y) : x, y ∈ K} <∞.

Proof: Obvious from thm.11.5. �

Remark 11.2. It follows from the results of this chapter and the introductory chapter on Closed and
bounded sets in Euclidean space (11.1 on p.230) that the following three of the four definitions of
compactness given in section 11.2 on (p.232 are equivalent in RN :

A subset of RN is sequentially compact ⇔ it is totally bounded and
complete ⇔ it is bounded and closed.

We will see later that any metric space is sequentially compact if and only if it is compact, i.e.,
covering compact (thm.11.8 on p.242).

In other words, in RN all four of the definition given in section 11.2 on p.232 coincide. �

11.5 Open Coverings and the Heine–Borel Theorem

We now discuss families of open sets called “open coverings”. You should review the concept of an indexed
family and how it differs from that of a set (see (4.17) on p.92).

Definition 11.4 (Coverings and open coverings). Let X be an arbitrary non–empty set and A ⊆
X . Let (Ui)i∈I be an indexed family of subsets of X such that A ⊆

⋃
i∈I

Ui. Then we call (Ui)i∈I a

covering of A.

A finite subcovering of a covering (Ui)i∈I of the set A is a finite collection

(11.7) Ui1 , Ui2 , Ui3 , . . . , Uin (ij ∈ I for 1 5 j 5 n) such that A ⊆ Ui1 ∪ Ui2 ∪ . . . ∪ Uin .

Assume in addition thatX is a topological space — this includes any normed vector space or metric
space. If all members Ui of the family (Ui)i∈I are open then we call this family an open covering of
A. �

Remark:

a. Partitions 109 are coverings.

109see def.5.3 on p.99
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b. If (Ui)i∈I is a covering of A then (Ui ∩A)i∈I is a covering of A which satisfies⋃
j∈I

(Uj ∩A) = A. �

Definition 11.5 (Compact sets). Let (X,U) be a topological space and K ⊆ X . We say that K is
compact if it possesses the “extract finite open subcovering” property Given any open covering
(Ui)i∈I of K, one can extract a finite subcovering. In other words, there is n ∈ N and indices

i1, i2, . . . , in ∈ I such that A ⊆
n⋃
j=1

Uij . �

Remark 11.3.

a. An open covering for the entire spaceX is a collection of open sets (Ui)i∈I such thatX =
⋃

[Ui :
i ∈ I]

b. Any subcovering of an open covering necessarily consists exclusively of open sets, i.e., it is
again an open covering of A.

c. Let (X, d) be a metric space. Then

K ⊆ (X, d) is compact if and only if the metric subspace (K, d
∣∣
K×K) is compact,

i.e., for any collection of subsets (Ui)i∈I of K which are open in K there exist finitely many
indices i1, . . . , in ∈ I such that K = Ui1 ∪ · · · ∪ Uin . This is true because the open subsets of
(K, d) are the traces in K of sets which are open in (X, d) (see def.10.19 on p.185). �

Example 11.1. Here are some simple examples.

a. Any finite topological space is compact.
b. Any topological space that only contains finitely many open sets is compact. In particular

a set with the indiscrete topology (example 10.5 on p.182) is compact
c. A space with the discrete metric (def.10.3 on p.174) is compact if and only if it is finite.

And here is a counterexample.

The open interval ]0, 1[ with the Euclidean metric is not compact because it is not possi-
ble to extract an finite covering from the open covering

(
] 1
n , 1[

)
n∈N. �

Example 11.2. Here are the corresponding results for sequence compact metric spaces.

a. Any finite metric space is sequence compact.
b. Any metric space that only contains finitely many open sets is compact. 110

c. A space with the discrete metric is compact if and only if it is finite.

The counterexample also fits in:

110We had to remove the example of the indiscrete topology because this topology does not come from a metric.
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The open interval ]0, 1[ with the Euclidean metric is not sequence compact because it is
not possible to extract a convergent subsequence from the sequence xn := 1/n (the limit
zero does not belong to ]0, 1[ ). �

We will now see that the correspondence in the above two examples is not a coincidence. We will see that
(subspaces of) metric spaces are compact if and only if they are sequentially compact. We will prove each
direction separately.

Theorem 11.6 (Compact metric spaces are sequence compact). Let (X, d) be a compact metric space.
Then X is sequence compact.

Proof: We assume to the contrary that X is compact and that there is a sequence (xn)n in X from which one
cannot extract a convergent subsequence.

Let F := {x ∈ X : x = xj for some j ∈ N} 111 be the set of distinct(!) members of (xn)n. Let z ∈ X . We
first prove that there exists an open neighborhood Uz of z such that Uz ∩ F is finite.

This is true because otherwise for each for each m ∈ N there exists some index jm such that xjm 6= z and
xjm ∈ N1/m(z). We have constructed a sequence (xjm)m which converges to z, i.e., (xn)n possesses a
convergent subsequence, contrary to our assumption.

It follows from {z} ⊆ Uz that (Uz)z∈X is an open covering of X . X is compact and we can extract a finite
subcovering U1, U2, . . . , Uk. We proved that each Uj contains at most finitely many distinct members of the
sequence (xn)n. We conclude that this entire sequence consists of only finitely many distinct members.

It follows that at least one of those members, say xk? , will appear infinitely often in that sequence: there is
k1 < k2 < . . . such that xk1 = xk2 = · · · = xk? . This constant subsequence converges (to xk?). We have
reached a contradiction. �

Lemma 11.1. Let (X, d) be a metric space. Let x, y ∈ X and ε > 0 such that y ∈ Nε(x).

If δ > 0 Then Nδ(y) ⊆ Nδ+ε(x).

Proof: Let z ∈ Nδ(y). Then

d(z, x) 5 d(z, y) + d(y, x) < δ + ε.

In other words, each element z of Nδ(y) is δ + ε–close to x. Hence Nδ(y) ⊆ Nδ+ε(x). �

Proposition 11.5. Let (X, d) be a sequence compact metric space. Let (Ui)i∈I be an open covering of X .
Then there exists ρ > 0 as follows: For each x ∈ X there exists i ∈ I such that Nρ(x) ⊆ Ui. 112

Proof: Assume to the contrary that no such ρ > 0 exists. We then can find for any n ∈ N some xn ∈ X
such that N1/n(xn) is not contained in any of the Ui. X is sequence compact — there exists x ∈ X and a
subsequence (xnj )j which converges to x. (Ui)i∈I covers X , so there exists i0 ∈ I such that x ∈ Ui0 .

111 We could have written more concisely F := {xj : j ∈ N} but the above definition was chosen to remind you that F
does not contain any duplicates.

112 The number λ = 2ρ is called a Lebesgue number of (Ui)i∈I . In other words, the Lebesgue number is the diameter
of the ρ–neighborhoods. Note that if λ is a Lebesgue number of an open covering then any λ′ which satisfies 0 < λ′ < λ
also is a Lebesgue number. of that same cover.
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(?) Because Ui0 is an open neighborhood of x there exists ε > 0 such that Nε(x) ⊆ Ui0 .

(??) Because (xnj )j converges to x there are infinitely many j ∈ N such that d(xnj , x) < ε/2, hence there
is at least one j such that j > 2/ε. It follows from nj = j that nj > 2/ε, i.e. 1/nj < ε/2.

(? ? ?) It follows from d(xnj , x) < ε/2 and lemma 11.1 on p.241 that Nε/2(xnj ) ⊆ Nε/2+ε/2(x) = Nε(x).

We apply first ??, then ? ? ?, then ? and obtain

N1/nj
(xnj ) ⊆ Nε/2(xnj ) ⊆ Nε(x) ⊆ Ui0 .

But this contradicts our assumption that each xnj was chosen in such a fashion thatN1/n(xn) is not contained
in any of the Ui. �

We now can prove the converse of thm.11.6.

Theorem 11.7. Sequence compact metric spaces are compact.

Proof: Let (X, d) be a sequence compact metric space and let (Ui)i∈I be an open covering of X . According to
prop.11.5 there exists ρ > 0 as follows: For each x ∈ X there exists i(x) ∈ I such that Nρ(x) ⊆ Ui(x).

Since X is totally bounded (see thm.11.4 on p.237) there exist finitely many x1, . . . , xk ∈ X such that
{Nρ(xj) : j = 1, ..k} forms an open covering of X . It then follows from Nρ(xj) ⊆ Ui(xj) that
Ui(x1), Ui(x2), . . . , Ui(xk) also forms an open covering of X . We have extracted a finite subcovering from
(Ui)i∈I . �

Theorem 11.8 (Sequence compact is same as compact in metric spaces). Let (X, d) be a metric space
and let A be a subset of X . Then A is sequence compact if and only if A is compact, i.e., every open covering
of A has a finite subcovering.

Proof: Theorems 11.6 and 11.7. �

An easy consequence is the Heine–Borel theorem.

Theorem 11.9 (Heine–Borel). Let (X, d) be RN with the Euclidean norm and its associated metric. A
subset K ⊆ RN is compact if and only if it is closed and bounded.

For a general metric space it is still true that any compact subset is closed and bounded.

Proof: We have seen in thm.11.2 on p.231 that closed and bounded subsets of RN are sequence compact. We
have further seen that sequence compact sets are closed and bounded (thm.11.5 on p.238). Our assertion now
follows from the equivalence of compactness and sequence compactness in metric spaces (thm.11.8 on p.242).
�

11.6 Continuous Functions and Compact Spaces

Theorem 11.10 (Closed subsets of compact spaces are compact). Let A be a closed subset of a compact
metric space (X, d). Then (A, d

∣∣
A×A) is a compact subspace.
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Proof: Let (Uj)j∈J be a family of sets open in A whose union is A. According to prop.10.5 on p.185 there are
open sets Vj in X such that Uj = Vj ∩ A. It follows that

⋃
j∈J

Vj ⊇ A, hence the family (Vj)j∈J , augmented

by the (open!) set X \A is an open cover of (X, d).

As X is compact, we can extract finitely many members from that extended family such that they still cover
X . If one of them happens to be X \ A then we remove it and we still obtain that the remaining ones, say,
Vi1 , Vi2 , . . . , Vin , cover A. But then the traces in A (def.10.19 on p.185)

Ui1 = Vi1 ∩A, Ui2 = Vi2 ∩A, . . . , Uin = Vin ∩A

of those open sets form an open covering of the subspace A (see prop.10.5 on p.185). We have proved that the
given open covering of A has a finite subcover of A. �

Theorem 11.11 (Continuous images of compact spaces are compact). Let (X, d1) and (Y, d2) be two
metric spaces. and let f : X → Y be continuous on X . If X is compact then the direct image f(X) is
compact, i.e., the metric subspace (f(X), d2) of Y is compact.

Proof: Let (Vj)j∈J be a family of sets open in Y whose union contains B := f(X). Let the sets Wj :=
Vj ∩ f(X) be the traces of Vj in f(X). Then the Wj are open in the subspace (f(X), d2) of Y and they form
an open cover of f(X). We note that any open cover of f(X) is obtained in this manner from open sets in Y .

Let Uj := f−1(Vj). Then⋃
j∈J

Uj =
⋃
j∈J

f−1(Vj) = f−1
( ⋃
j∈J

Vj

)
⊇ f−1(B) = f−1

(
f((X)

)
= X.(11.8)

In the above the second equation follows from prop. 6.2 (f−1 is compatible with all basic set ops) on p.108
and the last one follows from the fact that f−1

(
f((Γ)

)
⊇ Γ for any subset Γ of the domain of f (see cor. 6.1

on p. 112).

According to prop.10.12 (“f−1(open) = open” continuity) on p.199, each Uj is open as the inverse image
of the open set Vj under the continuous function f . It follows from (11.8) that (Uj)j∈J is an open covering of
the compact space X . We can extract a finite subcover Ui1 , Ui2 , . . . , Uin .

It follows from the interchangeability of unions with direct images (see (6.19) on p.110) that

f(X) = f(Uj1 ∪ · · · ∪ Ujn) = f(Uj1) ∪ · · · ∪ f(Ujn)

= f
(
f−1(Vj1)

)
∪ · · · ∪ f

(
f−1(Vjn)

)
⊆ Vj1 ∪ · · · ∪ Vjn .

The inclusion relation above follows from the fact that f(f−1(B)) = B ∩ f(X) for any subset B of the
codomain of f (see prop.6.6 on p. 112).

We have proved that the arbitrary open cover (Vj)j∈J of f(X) contains a finite subcover Vj1 , . . . , Vjn and it
follows that f(X) is indeed a compact metric subspace of Y . �

Read the following remark for an easier way to prove the above theorem.

Remark 11.4. We could have proved the last two theorems more easily using sequence compactness
instead of covering compactness but the proofs that were given generalize to abstract topological
spaces.
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Alternate proof of theorem 11.10 which uses sequence compactness.

Given is a sequence xn ∈ A. X is compact, hence sequence compact and it follows that there is
x ∈ X and a subsequence xnj such that xnj converges to x. It follows from theorem 10.6 on p.188
that x ∈ Ā = A and this proves that A is (sequence) compact. �

Alternate proof of theorem 11.11 which uses sequence compactness (outline).

Given a sequence yn ∈ f(X) we construct a convergent subsequence ynj as follows: For each n
there is some xn ∈ X such that yn = f(xn) X is compact, hence sequence compact and it follows
that there is x ∈ X and a subsequence xnj such that xnj converges to x. We now use (sequence)
continuity of f at x to conclude that ynj = f(xnj ) converges to f(x) ∈ f(X). �

The following theorem relates compactness and uniform continuity. 113

Theorem 11.12 (Uniform continuity on sequence compact spaces). Let (X, d1), (Y, d2) be metric spaces
and let A be a compact subset of X . Then any continuous real function on A is uniformly continuous on A.

Proof: Let us assume that f(·) is continuous but not uniformly continuous and find a contradiction. Because
f(·) is not uniformly continuous, there exists ε > 0 such that no δ > 0 , however small, will satisfy (10.49)
o p.204 for all pairs x, y such that d1(x, y) < δ. Looking specifically at δ := 1/j for all j ∈ N, we can find
xj , x

′
j ∈ A such that

(11.9) d1(xj , x
′
j) <

1

j
but d2(f(x), f(x′)) = ε.

Because A is compact, it is sequence compact. There is a subsequence (xjk) of the xj which converges to an
element x ∈ A We have

(11.10) d1(x′jk , x) 5 d1(x′jk , xjk) + d1(xjk , x) 5
1

jk
+ d1(xjk , x).

Both right hand terms converge to zero as k →∞. This is obvious for 1/jk because jk = k for all k and it is
true for d1(xjk , x) because xjk converges to x.

It follows from (11.10) that (x′jk) also converges to x. It follows from the ordinary continuity of f(·) that

f(x) = lim
k→∞

f(x′jk) = lim
k→∞

f(xjk).

It follows from the “ordinary” (non-uniform) convergence of sequences that there exist N,N ′ ∈ N such that

d2(f(x), f(xjk)) <
ε

2
for k > N ; d2(f(x), f(x′jk)) <

ε

2
for k > N ′.

Both inequalities are true whenever k > max(N,N ′). It follows for all such k that

d2(f(xjk), f(x′jk)) < d2(f(xjk), f(x)) + d2(f(x), f(x′jk)) <
ε

2
+
ε

2
= ε(11.11)

and we have a contradiction to (11.9). �
113 See def.10.29 on p.204.
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Corollary 11.4 (Uniform continuity on closed intervals). Let a, b be two real numbers such that a 5 b.
Any continuous real function on the closed interval [a, b] is uniformly continuous on [a, b]:

For any ε > 0, there exists δ > 0 such that

(11.12) d(f(x)− f(y)) < ε for all x, y ∈ [a, b] such that d(f(x)− f(y)) < δ

Proof: This follows from the previous theorem (11.12) because closed intervals [a, b] are closed and bounded
sets and, in R, any closed and bounded set is sequence compact . �

11.7 Exercises for Ch.11

Exercise 11.1. Let N ∈ N. Let X := {x1, x2, . . . , xN} be a finite set with a metric d(·, ·) (so (X, d) is a
metric space). Prove that X is compact three different ways:

a. Show sequence compactness to prove that X is compact.
b. Show that X has the “extract finite open subcovering” property to prove that it is com-

pact.
c. Show that X is complete and totally bounded to prove that it is compact. �

Hints:
a. ANY sequence in X possesses a constant subsequence (WHY?)
b. If (Ui)i covers X then for each x there exists (at least one) i such that x ∈ Ui (WHY?) How many

of those Ui do you need to cover X if X has only N elements?
c. Prop.10.11 on p.196 should prove useful.

11.8 Addenda to Ch.11

The next two theorems (thm.11.13 and thm.11.14) belong after the two alter-
nate proofs which follow rem.11.4 on p.243.

We alluded above to the fact that the last two theorems are valid in the context of abstract topological spaces.
Here they are.

Theorem 11.13 (Closed subsets of compact spaces are compact). Let A be a closed subset of a compact
topological space (X,U). Then A is a compact subspace, i.e., the open sets

UA = {V ∩A : V ∈ U}

possess the “extract finite open subcovering” property of def.11.5 on p.240.

Proof: Word for word the same as for thm.11.10, the counterpart of this theorem for metric spaces. The reason:
The proof was entirely phrased in the language of open/closed sets. Properties of the metrics were nowhere
used. �
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Let (X,U1) and (Y,U2) be topological spaces and A ⊆ X . We recall that continuity for functions f : A →
(Y,U2) was defined in def.10.43 on p.229.

Theorem 11.14 (Continuous images of compact spaces are compact). Let (X,U1) and (Y,U2) be two
topological spaces. and let f : X → Y be continuous on X . If X is compact then the direct image f(X) is
compact, i.e., the metric subspace (f(X), d2) of Y is compact.

Proof: Word for word the same as for thm.11.11, the counterpart of this theorem for metric spaces. The reason:
The proof was entirely phrased in the language of open/closed sets. Properties of the metrics were nowhere
used. �
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12 Applications of Zorn’s Lemma

12.1 More on Partially Ordered Sets (Study this!)

Some of this was copied almost literally from [6] Dudley.

Definition 12.1 (Linear orderings). Given is a non-empty set X and a partial ordering � on X (see
def.4.4 on p.73). � is a linear ordering , also called a total ordering of X if and only if, for all x and
y ∈ X such that x 6= y, either x � y or y � x. We call (X,�) is called a linearly ordered set or a
totally ordered set set. �

Example 12.1. The real numbers line (R,≤) with its usual “5” ordering is a linearly ordered set. So
is (R,≥)(!) �

Definition 12.2. A chain is a linearly ordered subset of a partially ordered set (with the same order-
ing). In a partially ordered set (X,�), an element m of X is called maximal iff there is no x 6= m
with m � x. A maximum of X is an m ∈ X such that x � m for all x ∈ X . �

Note 12.1 (Notes on maximal elements and maxima).

a. If X is not linearly ordered, it may have many maximal elements. For example, for
the trivial partial ordering x � y if and only if x = y, every element is maximal. A
maximum is a maximal element, but the converse is often not true.

b. If an ordering is not specified, then we always mean set inclusion.
c. If m ∈ X is a maximum of X then this implies that m must be related to all other

elements of X . �

Example 12.2 (Maximal elements and maxima). Let X be the collection of all intervals [a, b] ∈ R of
length b− a ≤ 2 such that a ≤ b. These intervals are partially ordered by inclusion. Any interval of
length equal to 2 is a maximal element. There is no maximum. �

Axiom 12.1 (Zorn’s Lemma). A hundred years ago the following was seen as extremely controver-
sial by mathematicians who specialize in the foundations of mathematics.

Zorn’s Lemma: Let (X,�) be a partially ordered set with the ZL property:

Every chain C ⊆ X , possesses an upper bound u ∈ X , i.e., x � u for all x ∈ C. (ZL)

Then X has a maximal element. �

Remark 12.1. Zorn’s lemma is an axiom rather than a theorem or a proposition in the following
sense: It is impossible to verify its truth or falsehood from the axioms of “a” (meaning there are
more than one) “reasonable” axiomatic set theory. In that sense mathematicians are free to accept
or reject this statement when building their mathematical theories. Two notes on that remark:

a. Today the mathematicians who refuse to accept proofs which make use, directly or indirectly, of
Zorn’s lemma, are a very small minority.
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b. It can be proved that if one accepts (rejects) Zorn’s lemma as a mathematical tool then this
is equivalent to accepting (rejecting) the Axiom of Choice 114 which is so abstract in its precise
formulation that it was relegated to a footnote.

c. Moreover the Axiom of Choice, hence Zorn’s lemma, is equivalent to prop.4.3b on p.88: If A,B
are not empty and ϕ : A→ B is surjective then ϕ has a right inverse, i.e., a function ψ : B → A such
that ϕ ◦ ψ = idB For a proof see http://planetmath.org/surjectionandaxiomofchoice. �

Remark 12.2. We will see in a later chapter how Zorn’s lemma allows a surprisingly simple proof
to the effect that any vector space has a basis. �

12.2 Existence of Bases in Vector Spaces (Study this!)

The following is thematically a continuation of the material in chapter 9 (Vectors and vector spaces).

We now focus on proving that every vector space, even if it does not possess a finite subset which spans
the entire space, possesses a basis.

For the remainder of this chapter we assume that V is a vector space and that B denotes the set

B := {A ⊆ V : A is linearly independent }.(12.1)

B is a partially ordered set with respect to set inclusion. The next lemma allows us to apply Zorn’s lemma.

Lemma 12.1. Every chain 115 C in (B,⊆) possesses an upper bound.

Proof:
Let U :=

⋃[
C : C ∈ C

]
. We will show that U ∈ B. As U ⊇ C for all C ∈ C it then follows that U is an

upper bound of C and the proof is finished.

Let x1, x2, . . . xk ∈ U and α1, α2, . . . αk ∈ R (k ∈ N) such that

k∑
j=1

αjxj = 0.(12.2)

We must show that each αj is zero. For each 0 5 j 5 k there is some Cj ∈ C such that xj ∈ Cj . C is totally
ordered, hence Ci ⊆ Cj or Cj ⊆ Ci for any two indices 0 5 i, j 5 k. But then there exists an index j0 such
that Cj0 ⊇ Cj for all j, hence x1, x2, . . . xk ∈ Cj0 . But Cj0 is linearly independent because Cj0 ∈ C ⊆ A. It
follows that α1 = · · · = αk = 0. �

Theorem 12.1. Every vector space V has a basis.

Proof: It follows from lemma 12.1 and Zorns Lemma (axiom 12.1 on p. 247) that the set B of all independent
subsets of the vector space V contains a maximal element (subset of V ) which we denote byB. As membership
in B guarantees its linear independence we only need to prove that span(B) = V .

114 Remember that if Ω is any set then 2Ω is the set of all subsets of Ω . Axiom of Choice: Let Ω be any non-empty set.
Then there is a function f : 2Ω \ {∅} → Ω such that f(A) ∈ A for each A ∈ 2Ω \ {∅}, i.e., for each non-empty A ⊆ Ω.

115 see def.12.2 on p.247.
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Let us assume to the contrary that there exists y ∈ span(B){. It follows from lemma 9.2 on p.162 that the set
B′ := B ∪ {y} is linearly independent, hence B′ ∈ B. Clearly, B ( B′. This contradicts the maximality of
B in the partially ordered set (B,⊆). �

We now turn our attention to extending a linear real function f from a subspace F ⊆ V to the entire vector
space V .

Lemma 12.2. Let V be a vector space and let F be a (linear) subspace of V . Let f : F → R be linear.

Let G := {(W, fW ) : W is a subspace of V,W ⊇ F, fW : W → R is a linear extension of f to W}.

Then the following defines a partial ordering on G : (U, fU ) � (W, fW ) ⇔ V ⊆W and fW
∣∣
U

= fU .

Moreover this ordering satisfies the requirements of Zorn’s Lemma: Every chain in (G ,�) possesses an upper
bound (in G ).

Proof: Reflexivity and transitivity of “�” are trivial. The latter is true because the extension of an extension
is again an extension.

Antisymmetry: If both (U, fU ) � (W, fW ) and (W, fW ) � (U, fU ) then both U ⊆ W and W ⊆ U , hence
U = W . But then fW is an extension of fU to itself, i.e., fU = fW . It follows that � is indeed a partial order
on G .

Now let C be a chain in G . We must find an upper bound for C . Let W :=
⋃[

U : (U, fU ) ∈ C
]
.

We show that W is a subspace of E: If x, y ∈ W and λ ∈ R then there are (C1, f1), (C2, f2) ∈ C such that
x ∈ C1 and y ∈ C2. Because C is a chain we have C1 ⊆ C2 or C2 ⊆ C1, say, C1 ⊆ C2. It follows that
x, y ∈ C2. But C2 is a subspace of V and we conclude that x+ λy ∈ C2, hence x+ λy ∈ W . It follows that
W is a subspace of V .

Let fW : W → R be defined as follows: If x ∈W then there is some (C, fC) ∈ C such that x ∈ C. We define
fW (x) := fC(x). This definition is unambiguous even if x belongs to (possibly infinitely) many elements of
C . To see this let (C, fC), (D, fD) ∈ C such that x ∈ C and x ∈ D. Then C ⊆ D or D ⊆ C. We may
assume that C ⊆ D. But as fD

∣∣
C

= fC we conclude that fC(x) = fD(x), i.e., the definition of fW (·) is
unambiguous. The above specifically holds for x ∈ F and we note that fW is an extension of f .

Next we show linearity of fW . Let x, y ∈ W and α ∈ R. Then there are (C, fC), (D, fD) ∈ C such that
x ∈ C and y ∈ D. Again we may assume that C ⊆ D. It now follows from the linearity of fD that

fW ((x+ αy) = fD((x+ αy) = fD((x) + αfD(y) = fW ((x) + αfW (y).

and we have proved that fW is linear (on all of W ).

To summarize, W is a subspace of V and fW is a linear extension of f to W . But then (W, fW ) ∈ G and
(W, fW ) � (C, fC) for all (C, fC) ∈ C . It follows that (W, fW ) is an upper bound of C . �

Lemma 12.3. Let V be a vector space and let F be a (linear) subspace of V such that F $ V . Let f : F → R
be linear. Let a ∈ F { and γ ∈ R.

Let F̃ := span(F ] {a}). Then a and γ define a linear extension f̃ of f to F̃ as follows:

f̃(x+ αa) := f(x) + αγ
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Proof: Left as an exercise. �

Exercise 12.1. Prove lemma 12.3 on p.249: Let V be a vector space and let F be a (linear) subspace
of V such that F $ V . Let f : F → R be linear. Let a ∈ F { and γ ∈ R.

Let F̃ := span(F ] {a}). Then a and γ define a linear extension f̃ of f to F̃ as follows:

f̃(x+ αa) := f(x) + αγ �

Theorem 12.2 (Extension theorem for linear real functions). Let V be a vector space and let F be a
(linear) subspace of V . Let f : F → R be a linear mapping.

Then there is an extension of f to a linear mapping f̃ : V → R.

Proof:

Let G := {(W, fW ) : W is a subspace of V,W ⊇ F, fW : W → R is a linear extension of f to W}

and let (U, fU ) � (W, fW ) ⇔ U ⊆W and fW
∣∣
U

= fU .

We have seen in lemma 12.2 that � is a partial ordering on G such that any chain in (G ,�) possesses an
upper bound. We apply Zorn’s Lemma (axiom 12.1 on p.247) to conclude that G possesses a maximal element
(F ′, f ′) .

We now show that F ′ = V .

If this was not true then we could find a ∈ V \F ′ and, according to lemma 12.3 extend f ′ to a linear function
f̃ on F ′ ] {a}. It follows that (F ′ ] {a}, f̃) ∈ G and (F ′, f ′) � (F ′ ] {a}, f̃).

This contradicts the maximality of (F ′, f ′). and we have reached a contradiction. �

12.3 The Hahn-Banach Extension Theorem 116 (?)

Let V be a vector space and let F be a (linear) subspace of V . Let f : F → R be linear mapping. This chapter
examines the ability to extend f from its domain F to the entire space V subject to some condition which
guarantees that if V is a normed space (hence a metric space) and if f is continuous on F then this linear
extension will be continuous on all of V .

In preparation for this we must study sublinearity, a generalization of linearity and norms.

12.3.1 Sublinear Functionals

Definition 12.3 (Sublinear functionals). Let V be a vector space and p : V → R such that

a. if λ ∈ R=0 and x ∈ V then p(λx) = λp(x) (positive homogeneity) ;
b. if x, y ∈ V then p(x+ y) 5 p(x) + p(y) (subadditivity) .

Then we call p a sublinear functional on V . �
116 This chapter is optional. The proof given here is a more detailed version of the one found in [5] Choquet.
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Proposition 12.1. Let V be a vector space and p : V → R sublinear. Let x ∈ V . Then
a. p(0) = 0,
b. −p(x) 5 p(−x),

Proof of a: p(0) = p(0 · 0) = 0 · p(0) = 0.

Proof of b: This follows from 0 = p(0) = p(x+ (−x)) 5 p(x) + p(−x). �

Example 12.3 (Norms are sublinear). Let (V, ‖, ·‖) be a normed vector space. Then the function
p(x) := ‖x‖ is sublinear.

Indeed, norms are homogenous: We have ‖λx‖ = |λ| · ‖x‖ not only for λ = 0 but for all λ ∈ R.

Further subadditivity is just the validity of the triangle inequality. �

Example 12.4 (Linear functions are sublinear). Let V be a vector space and let f := V → R be a
linear function. Then f is sublinear.

Indeed, linear functions f satisfy f(λx) = λ · f(x) not only for λ = 0 but for all λ ∈ R.

Further linear functions satisfy additivity: f(x+ y) = f(x) + f(y),
hence also subadditivity f(x+ y) 5 f(x) + f(y). �

More about sublinearity can be found in chapter 12.4 on p.254

12.3.2 The Hahn-Banach extension theorem and its Proof

The subject of the Hahn-Banach extension theorem is extension of a linear function from a subspace to the
entire vector space. The following remark is about first extending it to “one more dimension”.

Remark 12.3. Let V be a vector space, let F be a linear subspace of V and let f := F → R be a linear
function. Let a ∈ V \ F . Then any linear extension f̃ of f to span(F ] {a}) is uniquely determined
by its value k := f̃(a).

Indeed, any x ∈ span(F ] {a}) can be written as u + λa for some u ∈ F and λ ∈ R. It follows from
the linearity of f̃ that

f̃(x+ λa) = f̃(x) + λf̃(a) = f(x) + λk.(12.3)

�

Theorem 12.3 (Hahn–Banach extension theorem). Let V be a vector space and p : V → R a sublinear
function. Suppose F is a (linear) subspace of V and f : F → R is a linear mapping with f 5 p on F . Then
there is an extension of f to a linear map f̃ : V → R such that f̃ 5 p on V .

Before proving this theorem, first we prove two lemmata.

Lemma 12.4. Suppose F is a subspace of V , f : F → R is a linear mapping and a ∈ V \ F . Let k ∈ R and

f̃(x+ λa) := f(x) + λk, i.e., k = f̃(a)(12.4)
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(see (12.3)). Then

k 5 inf
u∈F
{p(u+ a)− f(u)} ⇔ f̃(x+ λa) 5 p(x+ λa) for all λ > 0 and x ∈ F,(12.5)

k = sup
v∈F
{f(v)− p(v − a)} ⇔ f̃(x+ λa) 5 p(x+ λa) for all λ < 0 and x ∈ F.(12.6)

Proof of (12.5),⇒): Let us assume that λ > 0. Then, on account of the left side of (12.5),

f̃(x+ λa) = f(x) + λk = λ
(
f(x/λ) + k

)
5 λ

(
f(x/λ) +

(
p(x/λ+ a)− f(x/λ)

))
= λp(x/λ+ a)

We use the positive homogeneity of p: λp(x/λ+ a) = p(x+ λa) to obtain f̃(x+ λa) 5 p(x+ λa).

Proof of (12.6), ⇒): Let us assume that λ < 0. Because of the left side of (12.6) and λ < 0 and positive
homogeneity of p,

k = f(v)− p(v − a) ⇒ λk 5 f(λv)− λp(v − a)

⇒ − f(λv) + λk 5 (−λ)p(v − a) = p
(
(−λ)(v − a)

)
= p((−λ)v + λa).

We substitute v := x/λ ∈ F :

−f(x) + λk 5 p(−x+ λa), hence f̃(−x+ λa) = f(−x) + λk 5 p(−x+ λa)

We can switch from −x to x as the above holds for all x in the subspace F and because −x ∈ F if and only if
x ∈ F . It follows that p indeed dominates f̃ for all x ∈ F and λ < 0.

Proof of (12.5), ⇐): we assume f̃(x + λa) 5 p(x + λa) for all λ > 0 and x ∈ F . We now show that
k = f̃(a) 5 p(u+ a)− f(u) for all u ∈ F .

p(u+ a)− f(u) = f̃(u+ a)− f(u) = f̃(u) + f̃(a)− f(u) = f(u) + f̃(a)− f(u) = f̃(a) = k.

Proof of (12.6), ⇐): we assume f̃(x + λa) 5 p(x + λa) for all λ < 0 and x ∈ F . We now show that
k = f̃(a) = f(v)− p(v − a) for all v ∈ F .

−p(v − a) + f(v) 5 − f̃(v − a) + f(v) = f̃(a− v) + f(v) = f̃(a)− f̃(v) + f(v) = f̃(a) = k.

�

Lemma 12.5. Let F ⊂ V be a genuine subspace of V and a ∈ V \ F . Let G := span(F ] {a}) be the
subspace of all linear combinations that can be created by a and or vectors in F . Then

a. there exists a linear extension f̃ of f to G.

b. This extension is unique if and only if supv∈E{f(v)− p(v − a)} = infu∈E{p(u+ a)− f(u)} .

Proof of a. For u, v ∈ F we have

f(u) + f(v) = f(u+ v) 5 p(u+ v) = p
(
(u+ a) + (v − a)

)
5 p(u+ a) + p(v − a)

and hence f(v)− p(v − a) 5 p(u+ a)− f(u). Therefore

sup
v∈F
{f(v)− p(v − a)} 5 inf

u∈F
{p(u+ a)− f(u)}.
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Now for a fixed k ∈ R, we define f̃(x+ λa) = f(x) + λk. We claim that f̃ 5 p if and only if we have

sup
v∈F
{f(v)− p(v − a)} 5 k 5 inf

u∈F
{p(u+ a)− f(u)}(12.7)

which will conclude the proof of a since such a k exists by the above work. Our claim holds because f(x) +
λk = f̃(x+ λa) 5 p(x+ λa) for all λ if and only if

k 5 p(u+ a)− f(u) for all u ∈ F
and k = f(v)− p(v − a) for all v ∈ F

(the cases λ > 0 and λ < 0 respectively). This is proved above in lemma 12.4.

Proof of b. From (12.7) we deduce that k is unique if and only if supv∈E{f(v)−p(v−a)} = infu∈E{p(u+
a)− f(u)} . This exactly the case where f̃ which was defined by f̃(x+ λa) = f(x) + λk is unique. �

Proof of thm.12.3 (Hahn-Banach):

Let G = {(V, g) : V is a subspace of E, g : V → R is linear and g 5 p on V }.

We define a partial order “�” on G as follows:

(V1, g1) � (V2, g2) ⇔ V1 ⊆ V2 and g2 is an extension of g1.(12.8)

a. We first prove that any chain C ⊆ (G ,�) has an upper bound: Let W :=
⋃[

V : V ∈ C
]
. Then W is

a subspace of E because if x, y ∈ W and λ ∈ R then there are (V1, g1), (V2, g2) ∈ C such that x ∈ V1 and
y ∈ V2. Because C is a chain we have V1 ⊆ V2 or V2 ⊆ V1, say, V1 ⊆ V2. It follows that x, y ∈ V2. But V2 is
a subspace of E and we conclude that x+ λy ∈ V2, hence x+ λy ∈W . It follows that W is a subspace of E.

We now find a linear h : W → R such that h 5 p on W and h
∣∣
V

= g for all (V, g) ∈ C , i.e., h is a linear
extension of g for all (V, g) ∈ C . If we find such h then it follows that (W,h) ∈ G and (W,h) is an upper
bound of C . Let x ∈ W . Then x ∈ V1 for some (V1, g1) ∈ C . We define h(x) := g1(x). This assignment
is unambiguous because if x ∈ V2 for some other (V2, g2) ∈ C then one of them, say V1, is contained in
the other and g2 is an extension of g1, i.e., h(x) = g1(x) = g2(x). As (V1, g1) ∈ G we conclude that
h(x) = g1(x) 5 p(x), i.e., h 5 p on W .

Next we show that h is linear. Let x, y ∈ W and λ ∈ R. We repeat the argument from the proof that W is a
subspace of V to conclude that both x, y belong to some (V, g) ∈ C . We obtain

h(x+ λy) = g(x+ λy) = g(x) + λg(y) = h(x) + λh(y)

This completes the proof that (W,h) ∈ G . Let (V, g) ∈ C . Clearly, V ⊆ W =
⋃[

U : U ∈ C
]
. Further h is

linear, dominated by p and is constructed in such a manner that h(x) = g(x) for all x ∈ V . It follows that
(W,h) � (V, g) for all (V, g) ∈ C and we have proved that C has an upper bound in (G ,�).

b. We are now in a position to apply Zorn’s Lemma (axiom 12.1 on p.247) to conclude that G possesses a
maximal element (F ′, f ′) .

We now show that F ′ = E. If this was not true then we could find a ∈ E \ F ′ and, according to lemma
12.5 on p.252, extend f ′ to a linear function f̃ on F ′ ] {a} in such a fashion that f̃ 5 p. It follows that
(F ′ ] {a}, f̃) ∈ G and (F ′, f ′) � (F ′ ] {a}, f̃). This contradicts the maximality of (F ′, f ′) and we have
reached a contradiction. �
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Corollary 12.1 (Continuous extensions of continuous linear functions). Let (V, ‖·‖) be a normed vector
space. Let F be a (linear) subspace of V and let f : F → R be a continuous linear mapping on F . Then there
is an extension of f to a continuous linear map f̃ : V → R.

Proof: Let p(x) := ‖f‖ · ‖x‖ (see def.10.30 on p.205). Because p is a positive multiple of a norm it also is
a norm on V (see prop.9.11) on p.167), hence sublinear by example 12.3 on p.251. According to the Hahn-
Banach extension theorem there exists a linear extension f̃ of f to all of V such that

f̃(x) 5 p(x) for all x ∈ V.(12.9)

We replace x with −x and obtain from the linearity of f̃ that −f̃(x) = f̃(−x) 5 p(−x).
We note that p(x) = p(−x) because p is a norm. Hence

−f̃(x) 5 p(−x) = p(x), i.e., f̃(x) = −p(x).

Together with (12.9) this shows that

−p(x) 5 f̃(x) 5 p(x) for all x ∈ V

and thus

|f̃(x)| 5 p(x) = ‖f‖ · ‖x‖ for all x ∈ V(12.10)

It follows from (12.10) that f has been extended in such a way that ‖f̃‖ 5 ‖f‖. We aply the continuity
criterion for linear functions (thm.10.14 on p.206 ) twice in a row to finish the proof as follows: It follows
from the continuity of f that ‖f‖ <∞. But then ‖f̃‖ <∞ and this proves the continuity of f̃ . �

12.4 Convexity (?)

Definition 12.4 (Concave-up and convex functions). Let f : R→ R.

a. The epigraph of f is the set epi(f) := {(x1, x2) ∈ R2 : x2 = f(x1)} of all points in the plane that
lie above the graph of f .

b. f is convex if for any two vectors ~a,~b ∈ epi(f) the entire line segment S := {λ~a+ (1− λ)~b} : 0 5
λ 5 1 is contained in epi(f).

c. Let f be differentiable at all points x ∈ R. Then f is concave-up, if the function f ′ : x 7→ f ′(x) is
non-decreasing. �

Proposition 12.2 (Convexity criterion). f is convex if and only if the following is true: For any a 5 x0 5 b
let S(x0) be the unique number such that the point (x0, S(x0)) is on the line segment that connects the points
(a, f(a)) and (b, f(b)). Then

f(x0) 5 S(x0).(12.11)

Note that any x0 between a and b can be written as x0 = λa + (1 − λ)b for some 0 5 λ 5 1 and that
the corresponding y-coordinate S(x0) = S(λa + (1 − λ)b) on the line segment that connects (a, f(a)) and
(b, f(b)) then is S(λa+ (1− λ)b) = λf(a) + (1− λ)f(b). Hence we can rephrase the above as follows:

f is convex if and only if for any a < b and 0 5 λ 5 1 it is true that

f(λa+ (1− λ)b) 5 λf(a) + (1− λ)f(b).(12.12)
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Proof of “⇒”: Any line segment S that connects the points (a, f(a)) and (b, f(b)) in such a way that is
entirely contained in the epigraph of f will satisfy f(x0) 5 S(x0) for all a 5 x0 5 b and it follows that
convexity of f implies (12.11).

Proof of “⇐”: Now assume that (12.11) is valid. Let ~a = (a1, a2),~b = (b1, b2) ∈ epi(f), i.e.,

a2 = f(a1) and b2 = f(b1).(12.13)

We must show that the entire line segment S := {λ~a+ (1− λ)~b} : 0 5 λ 5 1 is contained in epi(f).

Let ~a′ := (a1, f(a1)). Let S′ := {λ~a′ + (1 − λ)~b} : 0 5 λ 5 1 be the line segment obtained by leaving the
right endpoint~b unchanged and pushing the left one downward until a2 matches f(a1). Clearly, S′ nowhere
exceeds S.

Let ~b′′ := (b1, f(b1)). Let S′′ := {λ~a′ + (1 − λ)~b′′} : 0 5 λ 5 1 be the line segment obtained by leaving
the left endpoint ~a′ unchanged and pushing the right one downward until the b2 matches f(b1). Clearly, S′′

nowhere exceeds S′.

We view any line segment T between two points with abscissas a1 and b1 as a function T (·) : [a1, b1] → R
which assigns to x ∈ [a1, b1] that unique value T (x) for which the point (x, T (x) lies on T .

The segment S′′ connects the points (a, f(a)) and (b, f(b)) and it follows from assumption b’ that for any
a 5 x0 5 b we have f(x0) 5 S′′(x0). We conclude from S(·) = S′(·) = S′′(·) that S(x0) = f(x0),
i.e. (x0, S(x0)) ∈ epi(f). As this is true for any a 5 x0 5 b it follows that the line segment S is entirely
contained in the epigraph of f . �

Example 12.5 (Sublinear functions are convex). Let f : R→ R be sublinear. Then f is convex.

Let a, b ∈ R and 0 5 λ 5 1. It follows from subadditivity and positive homogeneity of f that

f(λa+ (1− λ)b) 5 f(λa) + f((1− λ)b)) = λf(a) + (1− λ)f(b).

According to prop.12.2 this implies convexity of f . �

Proposition 12.3 (Convex vs concave-up). Let f : R→ R be concave-up. Then f is convex.

Proof: Assume to the contrary that f is (differentiable and) concave-up and that f(x0) > S(x0)
for some a 5 x0 5 b.

It follows that a < x0 < b because f(a) = S(a) and f(b) = S(b).

Let S : x 7→ S(x) be the line through the points (a, f(a)) and (b, f(b)). and let m be the slope of S, i.e.,

m =
S(b)− S(a)

b− a
.

It then follows that

m =
S(b)− S(x0)

b− x0
>

S(b)− f(x0)

b− x0
=

f(b)− f(x0)

b− x0
= f ′(ξ)(12.14)
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for some x0 < ξ < b (according to the mean value theorem for derivatives). Further

m =
S(x0)− S(a)

x0 − a
<

f(x0)− S(a)

x0 − a
=

f(x0)− f(a)

x0 − a
= f ′(η)(12.15)

for some a < η < x0 (according to the mean value theorem for derivatives).

Because f is concave up we have

f ′(a) 5 f ′(η) 5 f ′(x0) 5 f ′(ξ) 5 f ′(b).

From (12.14) and (12.15) we obtain

m < f ′(η) 5 f ′(x0) 5 f ′(ξ) < m

and we have reached a contradiction. �

Proposition 12.4 (Sublinear functions are convex). Let f : R→ R be sublinear. Then f is concave-up.

Proof: Let 0 5 λ 5 1 and x, y ∈ R. Then

p(λx+ (1− λ)y) 5 p(λx) + p((1− λ)y) = λp(x) + (1− λ)p(y)(12.16)

and it follows that f is concave-up. �

12.5 Exercises for Ch.12 - EMPTY!

Exercise 12.2. It was stated in example 12.1 on p.247 that (R,≥) is a linearly ordered set. Prove it.
(Prove also that it is a POset) �
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13 Algebraic Structures (?)

This chapter is at its very beginnings. It has been created because it is mentioned in one of the first lectures
that the axiomatically defined set Z of the first chapter of [1] B/G forms a group.

Note that this chapter is starred and hence optional.

13.1 Semigroups and Groups (?)

Definition 13.1 (Semigroups and monoids). Given is a nonempty set S with a binary operation �,

i.e. an “assignment rule” (s, t) 7→ s � t which assigns to any two elements s, t ∈ S a third element
u := s � t ∈ S. 117 (G, �) is called a semigroup if the operation � satisfies

associativity: (s � t) � u = s � (t � u) for all s, t, u ∈ S.(13.1)

A semigroup for which there exists in addition a neutral element with respect to the
operation(s, t) 7→ s � t, i.e., some e ∈ S such that

s � e = e � s for all s ∈ S(13.2)

is called a monoid. �

Example 13.1. (Z,+) (the integers with addition) and (Z, ·) (the integers with multiplication) are
monoids: Both + and · are associative and addition has zero, multiplication has 1 as neutral element.

This is also true for the other number systems: (N,+) and (N, ·) (natural numbers), (Q,+) and (Q, ·)
(rational numbers), (R,+) and (R, ·) (real numbers), (C,+) and (C, ·) (complex numbers) all are
monoids. �

Example 13.2. You need to know from linear algebra or ch.ssec-general-vector-spaces on p.154
about general vector spaces to understand this example:

If V is a vector space with addition “+” and scalar multiplication “·” then (V,+) is a monoid but
(V, ·) is not. (Why not?) �

Example 13.3. You need to know function composition to understand this example.

Let A be a nonempty set and let

S := {f : f is a function A→ A}. 118

Then the operation (f, g) 7→ g ◦ f which assigns to any two functions f and g the function 119

x 7→ g ◦ f(x) := g
(
f(x)

)
is associative, i.e., S is a semigroup. Moreover S is a monoid because the

identity function idA : x 7→ x for all x ∈ A which does nothing with its arguments satisfies (13.2).
�

117 In other words, we have a function � : S × S → S, (s, t) 7→ �(s, t) := s � t in the sense of def.4.6 (Mappings
(functions)) on p.77.

118 If this is too abstract for you, choose A := R, the set of real numbers. Then the elements of S will be functions such
as f(x) = 3x2 and g(x) = 7x+ 5ex. for those two specific functions you get g ◦ f(x) = g

(
f(x)

)
= g(3x2) = 21x2 + 5e3x2

.
119 See def.4.7 (Function composition) on p.79.
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Proof of associativity: For any three functions f, g, h ∈ S and any x ∈ A it is true that(
(h ◦ g) ◦ f

)
(x) = (h ◦ g)

(
f(x)

)
= h(g(f(x)) = h

(
(g ◦ f)(x)

)
= h ◦ (g ◦ f)(x)

. In other words, both the left side x 7→
(
(h ◦ g) ◦ f

)
(x) and the right side h ◦ (g ◦ f)(x) are, for each

argument x ∈ A, equal to h(g(f(x)). This then means that those two functions coincide and we have proved
associativity.

Proof that idA is a neutral element: We have(
idA ◦ f

)
(x) = idA

(
f(x)

)
= f(x) = f

(
idA(x)

)
=
(
f ◦ idA

)
(x)

for all x ∈ A. It follows that the three assignments x 7→
(
idA ◦ f

)
(x), x

(
f ◦ idA

)
(x) and x 7→ f(x) coincide

for all x, i.e., they all represent the same function x 7→ f(x). This proves (13.2) and we have proved the
existence of a neutral element. �

Definition 13.2 (Groups and Abelian groups). Let (G, �) be a monoid with neutral element e which
satisfies the following: For each g ∈ G there exists some g′ ∈ G such that

g � g′ = g′ � g = e for all g ∈ G.(13.3)

Then (G, �) is called a group.

Assume moreover that the operation � satisfies

commutativity: g � h = h � g for all g, h ∈ G.(13.4)

Then G is called a commutative group or abelian group. 120 �

Theorem 13.1 (Uniqueness of the inverse in groups). Let (G, �) be a group and let g ∈ G. Assume that
there exists besides g′ another g′′ ∈ G which satisfies (13.3). Then g′′ = g′.

Proof: We have

g′′
(13.2)
= e � g′′ (13.3)

= (g′ � g) � g′′ assoc
= g′ � (g � g′′) (13.3)

= g′ � e (13.2)
= g′(13.5)

and this proves uniqueness. �

Definition 13.3 (inverse element g−1). From now on we are allowed to write g−1 for the unique
element of G that is associated with the given g ∈ G by means of the formula (13.3). We call g−1 the
inverse element of g. �

Example 13.4. a. (Z,+) (the integers with addition) is an abelian group: We have already seen that
(Z,+) is a monoid.

Inverse element to k ∈ Z is −k because k + (−k) = (−k) + k = 0 for all k.

and this group is abelian because m+ k = k +m for all k,m ∈ Z.

120 named so after the Norwegian mathematician Niels Henrik Abel who lived in the first half of the 19th century and
died at age 26.
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and (Z, ·) (the integers with multiplication) are monoids: Both + and · are associative and addition
has zero, multiplication has 1 as neutral element.

b. (Z, ·) (the integers with multiplication) is not a group: Let k = 5. Then k ∈ Z but 1/5, the only
number m such that 5 ·m = m · 5 = 1 (1 is the neutral element with respect to “·”) is a fraction and
does not belong to Z. �

Example 13.5. Being a group is a lot more specific than just being a semigroup or monoid. Not all
types of numbers form groups for addition and/or multiplication:

Natural numbers: Neither (N,+) nor (N, ·) are groups: (N,+) does not even have a neutral
element, (N, ·) has 1 as a neutral element but there is no multiplicative
inverse for, say, 5 because 1/5 /∈ N.

Integers: We have seen in example 13.4 that (Z,+) is an abelian group but (Z,+)
is not a group.

Rational numbers: (Q,+) is an abelian group but (Q, ·) is not a group because the number 0
does not have a multiplicative inverse: There is no number x such that
0 · x = 1. But note that the set Q? of all non-zero rational numbers is an
abelian group.

Real numbers: (R,+) is an abelian group but (R, ·) is not a group for the same reason
as (Q, ·). Again, the set R? of all non-zero real numbers is an abelian
group.

Complex numbers: (C,+) is an abelian group but (C, ·) is not a group for the same reason as
(Q, ·). Again, the set C? of all non-zero complex numbers is an abelian
group. �

Example 13.6. As in example 13.3 (function composition) let A be a nonempty set and let S := {f :
f is a function A→ A}with the operation (f, g) 7→ g ◦f defined as g ◦f(x) = g(f(x)). We have seen
that S is a monoid but S is not a group because not every f ∈ S has an inverse function f−1 which
satisfies f ◦ f−1(x) = f−1(f(x)) = x for all x ∈ A.

Counterexample: Let A := R. Some functions will have an inverse. For example f(x) = x − 7 has
inverse f−1(x) = x+ 7.

But f(x) = x2 does not have an inverse: g(x) :=
√
x will not work because g(f(−2)) = g(4) = 2, not

−2 as required, and h(x) := −
√
x will not work because h(f(2)) = h(4) = −2, not 2 as required. �

Example 13.7. Let (G, �) and (H, •) be defined as follows:

G := {g ∈ R : g = ex for some x ∈ R}, ex � ey := ex · ey = ex + y,(13.6)
H := {h ∈ R : h = ln(x) for some u ∈]0,∞}, lnu • ln v := lnu+ ln v = ln(xy).(13.7)

a. Both (G, �) and (H, •) are abelian groups G has neutral element 1 and H has neutral element 0.
(Exercise: Prove it. What are the inverses?)

b. Let the functions ϕ and ψ be defined as follows:

ϕ : (G, �)→ (H, •), ϕ(g) := ln g,(13.8)

ψ : (H, •)→ (G, �), ψ(h) := eh.(13.9)
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Then ϕ and ψ satisfy the following:

ϕ(g1 � g2) = ϕ(g1) • ϕ(g2), ϕ(1) = 0, ϕ(g−1) = ϕ(g)−1,(13.10)

ψ(h1 • h2) = ψ(h1) � ψ(h2), ψ(0) = 1, ψ(h−1) = ψ(h)−1.(13.11)

Further, the functions ϕ and ψ are inverse to each other, i.e.,

ψ
(
ϕ(g)

)
= g and ϕ

(
ψ(h)

)
= h(13.12)

for all g ∈ G and h ∈ H . �

If you talk about ϕ and ψ as “the functions” and � and • as “the operations” you might state the results
(13.10) and (13.10) as follows:

The functions are structure compatible with the operations on their domains and codomains:

It does not matter whether you first apply the operation to two items in the domain and
then apply the function to the result or whether you first map those two items into the
codomain and then apply the operation to the two function values. Further, the inverse of
the function value is the function value of the inverse and the function maps the neutral
element to the neutral element.

Such functions between two groups have a special name:

Definition 13.4 (Homomorphisms and isomorphisms). Let (G, �) and (H, •) be two groups with
neutral elements eG and eH and let us write g−1 and h−1 for the inverses (in the sense of def. 13.3.

Let ϕ : (G, �)→ (H, •) be a function which satisfies the following:

ϕ(g1 � g2) = ϕ(g1) • ϕ(g2), ϕ(eG) = eH , ϕ(g−1) = ϕ(g)−1.(13.13)

Then we call ϕ a homomorphism, more specifically, a group homomorphism, from the group
(G, �) to the group (H, •).

Let ψ : (H, •) → (G, �) be a group homomorphism from (H, •) to (G, �) such that ϕ and ψ are
inverse to each other. 121

We call such a bijective homomorphism an isomorphism. �

121 They then of course also are bijective functions (see def. 4.9).
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14 Construction of the Number Systems

14.1 The Peano Axioms (Skim this!)

Definition 14.1 (Set of non-negative integers). We define the set N0 (the non-negative integers)
axiomatically as follows:

Ax.1 There is an element “0” contained in N0.
Ax.2 There is a function σ : N0 → N0 such that

Ax.2.1 σ is injective,
Ax.2.2 0 /∈ σ(N0) (range of f ),
Ax.2.3 Induction axiom: Let U ⊆ σ(N0) such that a. 0 ∈ U , b. If n ∈ U then

σ(n) ∈ U . Then U = N0.

We define N := N0 \ {0}. �

Definition 14.2 (Iterative function composition). Let X 6= ∅ and f : X → X . We now use the
induction axiom above to define fn for an arbitrary function f : X → X .

a. f0 := idX : x 7→ x, b. f1 := f , c. f2 := f ◦ f (function composition), c. fσ(n) := f ◦ fn. �

Proposition 14.1. fn is defined for all n ∈ N0.

Proof: Let U := {k ∈ N0 : fk is defined }. Then 0 ∈ U as f0 = idA and if k ∈ U , i.e., fk is defined then
fσ(k) = f ◦ fk also is defined, i.e., σ(k) ∈ U . It follows from Ax.2.3 that U = N0. �

Remark 14.1 (σ(·) as successor function). Of course the meaning of σ(n) will be that of n+ 1:

0
σ7→ 1

σ7→ 2
σ7→ 3

σ7→ . . . �

Definition 14.3 (Addition and multiplication on N0). Let m,n ∈ N0. Let

m+ n := σn(m),(14.1)
m · n := (σm)n(0).(14.2)

Note that we know the meaning of (σm)n: f := σm is a function A→ A and we have established in
prop.14.1 the meaning of fn, i.e., (σm)n. �

Proposition 14.2. Addition and multiplication satisfy all rules of arithmetic we learned in high school such
as

m+ n = n+m commutativity of addition(14.3)
k + (m+ n) = (k +m) + n associativity of addition(14.4)

m · n = n ·m commutativity of multiplication(14.5)
k · (m · n) = (k ·m) · n associativity of multiplication(14.6)
k · (m+ n) = k ·m+ k · n distributivity of addition(14.7)

n · 1 = 1 · n = n neutral element for multiplication(14.8)
(14.9)
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Here 1 is defined as 1 = σ(0).

Proof: Drudge work. �

Definition 14.4 (Order relation m < n on N0). Let m,n ∈ N0.

a. We say m is less than n and we write m < n if there exists x ∈ N such that n = m+ x.

b. We say m is less or equal than n and we write m 5 n if m < n or m = n.

c. We say m is greater than n and we write m > n if n < m. We say m is greater or equal than n and
we write m = n if n 5 m. �

Proposition 14.3. “<” and “5” satisfy all the usual rules we learned in high school such as

Trichotomy of the order relation: Let m,n ∈ N0. Then exactly one of the following is true:

m <n, m = n, m > n.

Proof: Drudge work. �

14.2 Constructing the Integers from N0

For the following look at B/G project 6.9 in ch.6.1 and B/G prop.6.25 in ch.6.3.

Definition 14.5 (Integers as equivalence classes). We define the following equivalence relation
(m1, n1) ∼ (m2, n2) on the cartesian product N0 × N0:

(m1, n1) ∼ (m2, n2) ⇔ m1 + n2 = n1 +m2(14.10)

We write Z := {[(m,n)] : m,n ∈ N0}. In other words, Z is the set of all equivalence classes with
respect to the equivalence relation (14.10).

We “embed” N0 into Z with the following injective function e : N0 → Z: e(m) := [(m,0)].

From this point forward we do not distinguish between N0 and its image e(N0) ⊆ Z and we do not
distinguish between N and its image e(N) ⊆ Z. In particular we do not distinguish between the two
zeroes 0 and [(0, 0)] and between the two ones 1 and [(1, 0)].

Finally we write −n for the integer [(0, n)]. �

With those abbreviation we then obtain

Proposition 14.4 (Trichotomy of the integers). Let z ∈ Z. Then exactly one of the following is true:

Either a. z ∈ N, i.e., z = [(m, 0)] for some m ∈ N or b. −z ∈ N, i.e., z = [(0, n)] for some n ∈ N
or c. z = 0.

Proof: Drudge work. �
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Remark 14.2. a. The intuition that guided the above definition is that the pairs
(4, 0), (7, 3), (130, 126) all define the same integer 4 and the pairs (0, 4), (3, 7), (126, 130) all define
the same integer −4.

b. If it had been possible to define subtractionm−n for allm,n ∈ N0 then (14.10) could be rewritten
as

(m1, n1) ∼ (m2, n2) ⇔ m1 − n1 = m2 − n2.

Looking at the equivalent pairs (4, 0), (7, 3), (130, 126) we get 4− 0 = 7− 3 = 130− 126 = 4 and
for (0, 4), (3, 7), (126, 130) we get 0− 4 = 3− 7 = 126− 130 = −4. �

Definition 14.6 (Addition, multiplication and subtraction on Z). Let [(m1, n1)] and [(m2, n2)] ∈ Z.
We define

−[(m1, n1)] := [n1,m1],(14.11)
[(m1, n1)] + [(m2, n2)] := [(m1 +m2, n1 + n2)](14.12)
[(m1, n1)] · [(m2, n2)] := [(m1m2 + n1n2,m1n2 + n1m2)](14.13)

We write [(m1, n1)]− [(m2, n2)] (“[(m1, n1)] minus [(m2, n2)]”)
as an abbreviation for [(m1, n1)] +

(
− [(m2, n2)]

)
.

We write [(m1, n1)] < [(m2, n2)] if [(m2, n2)] − [(m1, n1)] ∈ N, i.e., if there is k ∈ N such that
[(m2, n2)]− [(m1, n1)] = [(k, 0)]. We then say that [(m1, n1)] is less than [(m2, n2)].

We write [(m1, n1)] 5 [(m2, n2)] if [(m1, n1)] < [(m2, n2)] or if [(m1, n1)] = [(m2, n2)] and we then say
that [(m1, n1)] is less than or equal to [(m2, n2)].

We write [(m1, n1)] > [(m2, n2)] if [(m2, n2)] < [(m1, n1)] and we then say that [(m1, n1)] is greater
than [(m2, n2)].

We write [(m1, n1)] = [(m2, n2)] if [(m2, n2)] 5 [(m1, n1)] and we then say that [(m1, n1)] is greater
than or equal to [(m2, n2)].

We write Z=0 for the set of all integers z such that z = 0 and Z6=0 for the set of all integers z such
that z 6= 0. You should convince yourself that Z=0 = N0. �

It turns out that all three operations are “well defined” in the sense that the resulting equivalence classes on
the right of each of the three equations above do not depend on the choice of representatives in the classes on
the left. Further we have

Proposition 14.5. Let m,n ∈ N0. Then

[(m,n)] + [(0, 0)] = [(0, 0)] + [(m,n)] = [(m,n)],(14.14) (
− [(m,n)]

)
+ [(m,n)] = [(m,n)] +

(
− [(m,n)]

)
= [0, 0](14.15)

[(m,n)] · [(1, 0)] = [(1, 0)] · [(m,n)] = [(m,n)],(14.16)

i.e., [(0, 0)] becomes the neutral element with respect to addition, [(1, 0)] becomes the neutral element with
respect to multiplication and −[(m,n)] becomes the additive inverse of [(m,n)].
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Proof: Drudge work. �

Remark 14.3. Again, if it had been possible to define subtraction m − n for all m,n ∈ N0 then it
would be easier to see why addition and multiplication have been defined as you see it in def.14.6:

Addition is defined such that (m1 − n1) + (m2 − n2) = (m1 +m2)− (n1 + n2)
and multiplication: (m1 − n1) · (m2 − n2) =

(
m1m2 + (−n1)(−n2)

)
−
(
m1n2 + n1m2

)
. �

14.3 Constructing the Rational Numbers from Z

For the following look again at B/G project 6.9 in ch.6.1 and B/G prop.6.25 in ch.6.3.

Definition 14.7 (Fractions as equivalence classes). We define the following equivalence relation
(p, q) ∼ (r, s) on the cartesian product Z× Z6=0:

(p, q) ∼ (r, s) ⇔ p · s = q · r(14.17)

We write Q := {[(p, q)] : p, q ∈ Z and q 6= 0}. In other words, Q is the set of all equivalence classes
with respect to the equivalence relation (14.17).

We “embed” Z into Q with the injective function e : Z→ Q defined as e(z) := [(z, 1)]. �

Remark 14.4. a. The intuition that guided the above definition is that the pairs
(12, 4), (−21,−7), (105, 35) all define the same fraction 3/1 and the pairs (4,−12), (−7, 21), (−35, 105
all define the same fraction −1/3.

b. If it had been possible to define division p/q for all p, q ∈ Z for which q 6= 0 then (14.17) could be
rewritten as

(p, q) ∼ (r, s) ⇔ p/q = r/s

Looking at the equivalent pairs (12, 4), (−21,−7), (105, 35) we get 12/4 = (−21)/(−7) = 105/35 =
3 and for (4,−12), (−7, 21), (−35, 105) we get 4/(−12) = (−7)/21 = (−35)/105 = −1/3.

c. It is easy to see that (p, q) ∼ (r, s) if and only if there is (rational) α 6= 0 such that r = αp and
s = αq. A formal proof is just drudgework. �

Definition 14.8 (Addition, multiplication, subtraction and division in Q). Let [(p1, q1)] and
[(p2, q2)] ∈ Q. We define

−[(p1, q1)] := [(−p1, q1)],(14.18)
[(p1, q1)] + [(p2, q2)] := [(p1q2 + q1p2, n1n2)](14.19)
[(p1, q1)]− [(p2, q2)] := [(p1, q1)] +

(
− [(p2, q2)]

)
(14.20)

[(p1, q1)] · [(p2, q2)] := [(p1p2, q1q2)](14.21)

[(p1, q1)]−1 := [(1, 1)]
/

[(p1, q1)] := [(q1, p1)] (if p1 6= 0),(14.22)

[(p1, q1)]
/

[(p2, q2)] := [(p1q2, q1p2)] = [(p1, q1)] · [(p2, q2)]−1 (if p2 6= 0) �(14.23)
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It turns out that operations above are “well defined” in the sense that the resulting equivalence classes on the
right of each of the three equations above do not depend on the choice of representatives in the classes on the
left. 122

Further we have

Proposition 14.6 (Trichotomy of the rationals). Let x ∈ Q. Then exactly one of the following is true:

Either a. x > 0, i.e., x = [(p, q)] for some p, q ∈ N or b. −x > 0, i.e., x = [(−p, q)] for some p, q ∈ N
or c. x = 0.

Proof: Drudge work. �

14.4 Constructing the Real Numbers via Dedekind Cuts

The material presented here, including the notation, follows [10] Rudin, Walter: Principles of Mathematical
Analysis.

Note that in this section small greek letters denote sets of rational numbers!

The idea behind real numbers as intervals of rational numbers with no lower bounds, called Dedekind cuts, is
as follows:

Given a real number x you can associate with it the set {q ∈ Q : q < x} which we call the cut or Dedekind
cut associated with x The mapping

Φ : x 7→ Φ(x) := {q ∈ Q : q < x}(14.24)

is injective because if x, y ∈ R such that x 6= y, say, x < y, then we have {q ∈ Q : q < x} ( {q ∈ Q : q < y}
because there are (infinitely many) rational numbers in the open interval ]x, y[ and we get surjectivity of Φ
for free if we take as codomain the set of all cuts. Because Φ is bijective we can “identify” any real number
with its cut. We now go in reverse: we start with a definition of cuts which does not reference the real number
x, i.e., we define them just in terms of rational numbers and define addition, multiplication and the other
usual operations on those cuts and show that those cuts have all properties of the real numbers as they were
axiomatically defined in B/G ch.8, including the completeness axiom which states that each subset A of R
with upper bounds has a least upper bound sup(A), i.e., a minimum in the set of all its upper bounds.

Definition 14.9 (Dedekind cuts). (Rudin def.1.4)

We call a subset α ⊆ Q a cut or Dedekind cut if it satisfies the following:

a. α 6= ∅ and α{ 6= ∅
b. Let p, q ∈ Q such that p ∈ α and q < p. Then q ∈ α.
c. α does not have a max: ∀p ∈ α ∃q ∈ α such that p < q.

Given a cut α, let p ∈ α and q ∈ α{. We call p a lower number of the cut α and we call q an upper
number of α. �

122 This was shown for multiplication [(p1, q1)] · [(p2, q2)] = [(p1p2, q1q2)] in exercise 4.6 on p.97.
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Theorem 14.1. (Rudin thm.1.5)

Let α ⊆ Q be a cut. Let p ∈ α, q ∈ α{. Then p < q.

Assume to the contrary that q 5 p. Then we either have p = q which means that either both p, q belong to α
or both belong to its complement, a contradiction to our assumption. Or we have q < p. It then follows from
p ∈ α and def.14.9.b that q ∈ α, contrary to our assumption. �

Theorem 14.2. (Rudin thm.1.6)

Let r ∈ Q. Let r? := {p ∈ Q : p < r}. Then r? is a cut and r = min
(
(r?){

)
.

Proof: In the following let p, q, r ∈ Q.

Proof of def.14.9.a: r − 1 < r ⇒ r − 1 ∈ r? ⇒ r? 6= ∅. Further, r ∈ (r?){ ⇒ (r?){ 6= ∅.

Proof of def.14.9.b: Let q < p and p ∈ r?. Then also q ∈ r? = {p′ ∈ Q : p′ < r}.

Proof of def.14.9.c: Let p ∈ r?. Then p < (p+ r)/2 < r, hence (p+ r)/2 ∈ r? and r cannot be the max of r?.
�

Definition 14.10 (Rational cuts). Let r ∈ Q. The cut r? = {p ∈ Q : p < r} from the previous theorem
is called the rational cut associated with r. �

Remark 14.5. If we define intervals in Q in the usual way for p, q ∈ Q:

]p, q[ := {r ∈ Q : p < r < q}, [p, q] := {r ∈ Q : p 5 r 5 q}, etc.

then rational cuts r?(r ∈ Q) are those for which r? =] −∞, r[ and (r?){ = [r,∞[ whereas for non-
rational cuts α we cannot specify the “thingy” that should take the role of r. It would be the sup(α)
if we already had defined the set of all real numbers and we could understand α as a subset of those
real numbers. �

Definition 14.11 (Ordering Dedekind cuts). (Rudin def.1.9) Let α, β be two cuts.

We say α < β if α ( β (strict subset) and we say α 5 β if α < β or α = β, i.e., α ⊆ β. �

Proposition 14.7 (Trichotomy of the cuts). (Rudin thm.1.10)

Let α, β be two cuts. Then either α < β or α > β or α = β.

Proof: We only need to show that if α * β then β ( α.
So let α * β. Then α \ β is not empty and there exists q ∈ α \ β.
But then q > b for all b ∈ β. Also, if a ∈ Q and a 5 q then a ∈ α (we applied def.14.9.b twice.)
As b < q for all b ∈ β it follows that β ⊆ α. We saw earlier that α \ β 6= ∅ and this proves that β 6= α, i.e.,
β ( α. �

Theorem 14.3 (Addition of two cuts). (Rudin thm.1.12) Let α, β be two cuts and let

α+ β :={a+ b : a ∈ α, b ∈ β}.
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Then the set of all cuts is an abelian group with this operation. In other words, + is commutative and
associative with a neutral element (which turns out to be 0?, the rational cut corresponding to 0 ∈ Q) and a
suitably defined cut −α for a given cut α which satisfies α+ (−α) = (−α) + α = 0?

Having defined negatives −α for all cuts we then also can define their absolute values

|α| :=

{
α ifα = 0?,

−α ifα < 0?.

Proof: Not given here. �

Theorem 14.4 (Multiplication of two cuts). Let α = 0?, β = 0? be two non-negative cuts. Let

α · β :=


{q ∈ Q : q < 0} ∪ {ab : a ∈ α, b ∈ β} ifα = 0?, β = 0?,

−|α| · |β| ifα < 0?, β = 0? or α = 0?, β < 0?,

|α| · |β| ifα < 0?, β < 0?.

Then the set α · β is a cut, called the product of α and β.

It can be proved that for each cut α 6= 0? there is a cut α−1 uniquely defined by the equation α · α−1 = 1?.

Theorem 14.5 (The set of all cuts forms a field). Let Let R be the set of all cuts. Then R satisfies axioms
8.1 - 8.5 of B/G:

Addition and multiplication are both commutative and associative and the law of distributivity
α · (β + γ) = α · β + α · γ holds.

The cut 0? is the neutral element for addtition and the cut 1? is the neutral element for multiplication.

−α is the additive inverse of any cut α and α−1 is the multiplicative inverse of α 6= 0?.

Further the set R>0 := {α ∈ R : α > 0?} satisfies B/G axiom 8.26.

Proof: It follows from prop.14.7 on p.266 that R>0 satisfies B/G axiom 8.26. Proofs of the other properties of
R are not given here. �

In the remainder of this section we will see that the completeness axiom B/G ax.8.52 (every subset of R with
upper bounds has a supremum) is a consequence from the properties of cuts and there is no need to state it as
an axiom.

Theorem 14.6. (Rudin thm.1.29) Let α, β ∈ R and let α < β. Then there exists q ∈ Q such that α < q? < β

Proof: Any q ∈ β \ α will do. �

Theorem 14.7. (Rudin thm.1.30) Let α ∈ R, p ∈ Q. Then p ∈ α ⇔ p? < α, i.e., p? ( α

Proof of ⇐): Let p ∈ α. it follows for any q ∈ p? that q < p ∈ α, hence q ∈ α, hence p? ⊆ α. As
p /∈ p? = {p′ ∈ Q : p′ < p} but p ∈ α we have strict inclusion p? ( α.

Proof of⇒): As p? ( α there exists q ∈ α \ p?. As q = p and q ∈ α we obtain p ∈ α from def.14.9.b. �
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Theorem 14.8 (Dedekind’s Theorem). (Rudin thm.1.32) Let R = A
⊎
B a partitioning of R such that

a. A 6= ∅ and B 6= ∅
b. α ∈ A, β ∈ B ⇒ α < β (i.e., α ( β).

Then there exists a unique cut γ ∈ R such that if α ∈ A then α 5 γ and if β ∈ B then γ 5 β.

Proof: We first prove uniqueness and afterwards the existence of γ.

Proof of uniqueness: Assume there is γ′′ ∈ R which satisfies α 5 γ′′ for all α ∈ A and γ′′ 5 β for all β ∈ B.

We may assume that γ < γ′′. It follows from thm.14.6 on p.267 that there is γ′ ∈ R (matter of fact, a rational
cut) such that γ < γ′ < γ′′. But γ < γ′ implies that γ′ ∈ B and γ′ < γ′′ implies that γ′ ∈ A = B{. We
have reached a contradiction and conclude that γ must be unique.

Proof of existence of γ: Let γ :=
⋃[

α : α ∈ A
]
.

Step 1: We now show that γ is a cut.

We first show that def.14.9.a is satisfied. As B 6= ∅ there is some β ∈ B. As β{ 6= ∅ there is some q ∈ β{. It
follows from α ⊆ β for all α ⊆ γ =

⋃[
α : α ∈ A

]
that γ ⊆ β, hence γ{ ⊇ β{. It follows from q ∈ β{ that

q ∈ γ{, hence γ{ 6= ∅. Further, it follows from A 6= ∅ that γ 6= ∅. We conclude that def.14.9.a is satisfied.

Next we show the validity of def.14.9.b. Let p ∈ γ, i.e., p ∈ α0 for some α0 ∈ A. Let q < p. Then
q ∈ α0 ⊆

⋃[
α : α ∈ A

]
, i.e., q ∈ γ. We conclude that def.14.9.b is satisfied.

Now we show the validity of def.14.9.c. Let p ∈ γ, i.e., p ∈ α0 for some α0 ∈ A. As the cut α0 does not have
a maximum there exists some q ∈ α0 such that q > p. As α0 ⊆ γ, hence q ∈ γ We have seen that any p ∈ γ
is strictly dominated by some q ∈ γ. It follows that γ does not have a max and this shows that def.14.9.c is
satisfied. We conclude that γ is a cut and step 1 of the proof for existence is completed.

Step 2: It remains to show that α 5 γ 5 β for all α ∈ A and β ∈ B. It is trivial that α 5 γ for all α ∈ A
because γ :=

⋃[
α : α ∈ A

]
.

To show that γ 5 β for all β ∈ B we prove that the opposite statement that

γ >β, i.e., γ \ β 6= ∅ for some cut β ∈ B(14.25)

will lead to a contradiction. As q ∈ γ there is some α0 ∈ A such that q ∈ α0. Actually, q ∈ α0 \ β because
q /∈ β. But then α0 ≮ β even though α0 ∈ A and β ∈ B, contrary to the assumptions about the partitioning
A
⊎
B of R. �

Corollary 14.1. Let R = A ]B be a partitioning of R such that

a. A 6= ∅ and B 6= ∅
b. α ∈ A, β ∈ B ⇒ α < β (i.e., α ( β).

Then either max(A)(= l.u.b.(A)) exists or min(B)(= g.l.b.(B)) exists.
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Proof: According to thm.14.8 there exists γ ∈ R such that if α ∈ A then α 5 γ and if β ∈ B then γ 5 β.
Clearly γ is an upper bound of α and a lower bound of β. It follows that if γ ∈ A then max(A) = γ and if
γ /∈ A, i.e., γ ∈ B, then min(B) = γ.

�

Theorem 14.9 (Completeness theorem for R). (Rudin thm.1.36)

Let ∅ 6= E ⊂ R and assume that E is bounded above. Then E has a least upper bound which we denote by
sup(E) or l.u.b.(E).

Proof: Let B be the set of all upper bounds for E, i.e., b ∈ B if and only if b = x for all x ∈ E. Then B is not
empty by assumption. Let A := B{ = {α ∈ R : α < x i.e., α ( x for some x ∈ E}. In other words, α ∈ A
if and only if α is not an upper bound of E.

A is not empty either: As E 6= ∅ there is some x ∈ E. Let α := x−1. Cleary x 5 α is not true for all x ⊆ E.
It follows that α is not an upper bound of E, hence α ∈ A, hence A is not empty.

Moreover we have α < β for all α ∈ A and β ∈ B. Because for any α ∈ A there is some x ∈ E such that
α < x and we have x 5 β for all upper bounds β, i.e., for all β ∈ B.

It follows that the sets A and B form a partition which satisfies the requirements of Dedekind’s Theorem
(thm.14.8). Hence there exists γ ∈ R such that α 5 γ 5 β for all α ∈ A and β ∈ B.

We now show that that the assumption γ ∈ A leads to a contradiction. As γ is not an upper bound of A there
exists x ∈ E such that γ < x. According to thm.14.6 on p. 267 there exists γ′ ∈ R such that γ < γ′ < x. It
follows that γ′ /∈ B, i.e., γ′ ∈ A, in contradiction to the fact that γ = a for all a ∈ A.

It follows that γ /∈ A, i.e., γ ∈ B and we conclude from cor.14.1 that γ = min(B), i.e., γ = sup(E). �

14.5 Constructing the Real Numbers via Cauchy Sequences

This chapter was created after discussions with Nguyen-Phan Tam about teaching the Math 330 course: she
plans to construct the real numbers from the rationals by means of equivalence classes of Cauchy sequences
in Q.

In the following we always assume that i, j, k,m, n ∈ N, ε, p, q, r, s, pn, pi,j , · · · ∈ Q, x, y, z, xn, xi,j , · · · ∈
R.

a. def. convergence in Q: lim
n→∞

qn = q ⇔ ∀ pos. ε ∈ Q ∃ N ∈ Q such that if n = N then |qn − q| < ε.

b. def. Cauchy seqs. in Q: (qn)n is Cauchy ⇔ ∀ pos. ε ∈ Q ∃ N ∈ Q such that if i, j =
N then |qi − qj | < ε.

c. Let C := { all Cauchy sequences in Q}. For (qn)n, (rn)n we define (qn)n ∼ (rn)n iff
lim
n→∞

(rn − qn) = 0.
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d. Let q ∈ Q and qn := q ∀ n. Write q for [(qn)n].
e. Let R := C/∼. Show that for [(pn)], [(qn)] ∈ C the operations ([(pn)n], [(qn)n]) 7→ [(pn + qn)n]

and ([(pn)n], [(qn)n]) 7→ [(pn · qn)n] are well defined (do not depend on the particular members
chosen from the equivalence classes).

f. Let [(pn)n] 6= 0 (i.e., limn pn 6= 0), i.e., we may assume pn 6= 0 for all n. Show −[(qn)n] :=
[(−qn)n] and [(pn)n]−1 := [(1/pn)n] are additive and multiplicative inverses

g1. Define [(pn)n] < [(qn)n] iff ∃ ε > 0 and N ∈ N such that qn − pn = ε ∀ n = N .
g2. Define [(pn)n] 5 [(qn)n] iff ∀ ε > 0 exists N ∈ N such that qn − pn = −ε ∀ n = N .
g3. show that [(pn)n] < [(qn)n] iff [(pn)n] 5 [(qn)n] and [(pn)n] 6= [(qn)n].
h. Show that (R,+, ·, <) satisfies the axioms of B/G ch.8 with the exception of the completeness

axiom.
Easy to see this specific item: If [(pn)n] > 0 then there is [(qn)n] > 0 such that [(qn)n] < [(pn)n]:
choose ε > 0 as in g1 (remember: ε ∈ Q) and set qn := ε/2.

i. Embed Q into R: q 7→ q̄ := [(q, q, q, . . . )].
j. Define limits and Cauchy sequences in R just as in a and b.
k. Let (qn)n be Cauchy in Q. Prove that q̄n → [(qj)j ]
l. Let xn ∈ R such that (xn)n is Cauchy in R. With a density argument we find qn ∈ Q such that

xn 5 q̄n 5 xn + 1/n. Now show that 1. (qn)n is Cauchy and then 2. limn xn = [(qn)n].
m. Prove completeness according to B/G: If nonempty A ⊆ R is bounded above then its set of upper

bounds U has a min: Let Qn := {i/j : i, j ∈ Z and j 5 n}. Let Un := U ∩ Qn. Let
un := min(Un) (exists because n · Un ⊂ Z is bounded below and has a min. Easy to see that un
is Cauchy (in Q and, because distance(un, A) 5 1/n, [(un)n] is the least upper bound of A.

Proofs for k and l in particular and an entire section on constructing R from Q by means of equivalence classes
of Cauchy sequences can be found in [7] Haaser/Sullivan: Real Analysis.
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15 Measure Theory (?)

Introduction:

The following are the best known examples of measures (aj , bj ∈ R):

Length : λ1([a1, b1]) := b1 − a1,

Area : λ2([a1, b1]× [a2, b2]) := (b1 − a1)(b2 − a2),

Volume : λ3([a1, b1]× [a2, b2]× [a3, b3]) := (b1 − a1)(b2 − a2)(b3 − a3).

Then there also are probability measures: P{ a die shows a 1 or a 6} = 1/3.

We will explore in this chapter some of the basic properties of measures.

15.1 Basic Definitions

Definition 15.1 (Extended real functions).

R+ := R+ ∪ {+∞} = {x ∈ R : x = 0} ∪ {+∞}

is the set of all non–negative real numbers augmented by the element∞.

A mapping F whose codomain is a subset of

R := R ∪ {∞} ∪ {−∞}

is called an extended real function.

There are many issues with functions that allow some arguments to have infinite value (hint: if
F (x) =∞ and F (y) =∞, what is F (x)− F (y)?)

We only list the following rule which might come unexpected to you:

0 · ±∞ = ±∞ · 0 = 0. �(15.1)

Definition 15.2 (Abstract measures). Let Ω be a non–empty set and let F be a set that contains
some, but not necessarily all, subsets of Ω. F is called a σ–algebra or σ–field for Ω if it satisfies the
following:

∅ ∈ F and Ω ∈ F(15.2a)
A ∈ F =⇒ {A ∈ F(15.2b)

(An)n∈N ∈ F =⇒
⋃
n∈N

An ∈ F and
⋂
n∈N

An ∈ F(15.2c)

The pair (Ω,F) is called a measurable space. Note that F is a set whose elements themselves are
sets! The elements of F are called measurable sets.

A measure on F is an extended real function

µ(·) : F→ R+ A 7→ µ(A)
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with the following properties:

µ(∅) = 0(15.3a)
A,B ∈ F and A ⊆ B =⇒ µ(A) 5 µ(B) (monotony)(15.3b)

(An)n∈N ∈ F mutually disjoint =⇒ µ
(⊎
n∈N

An

)
=
∑
n∈N

µ(An) (σ–additivity)(15.3c)

where mutual disjointness means that Ai ∩Aj = 0 for any i, j ∈ N such that i 6= j (see def.2.4 on
p.13). The triplet (Ω,F, µ) is called a measure space

We call µ a finite measure on F if µ(Ω) <∞.

A measure space can support many different measures.

If µ(Ω) = 1 then µ(·) is called a probability measure. Traditionally, mathematicians write P (A)
rather than µ(A) for probability measures and the elements of F (the measurable subsets) are
thought of as events for which P (A) is interpreted as the probability with which the event A
might happen. �

Example 15.1 (Lebesgue measure). The most important measures we encounter in real life are those
that measure the length of sets in one dimension, the area of sets in two dimensions and the volume
of sets in three dimensions. Given intervals [a, b] ∈ R, rectangles [a1, b1] × [a2, b2] ∈ R2, boxes or
quads [a1, b1] × [a2, b2] × [a3, b3] ∈ R3 and n-dimensional parallelepipeds [a1, b1] × [a2, b2] × · · · ×
[an, bn] ∈ Rn, we define

λ1([a, b]) := b− a,
λ2([a1, b1]× [a2, b2]) := (b1 − a1)(b2 − a2),

λ3([a1, b1]× [a2, b2]× [a3, b3]) := (b1 − a1)(b2 − a2)(b3 − a3),

λn([a1, b1]× · · · × [an, bn]) := (b1 − a1)(b2 − a2) . . . (bn − an)

(15.4)

It can be shown that any measure that is defined on all parallelepipeds in Rn can be uniquely ex-
tended to a measure on the σ-algebra Bn generated by those parallelepipeds 123 λn is called n-
dimensional Lebesgue measure

Note that Lebesgue measure is not finite. �

Example 15.2. You can easily verify that the following set function defines a measure on an arbitrary
non-empty set Ω with an arbitrary σ-field F.

µ(∅) := 0; µ(A) := ∞ if A 6= ∅

Keep this example in mind if you contemplate infinity of measures. �

Remark 15.1 (Finite disjoint unions). The σ–additivity of measures is what makes working with
them such a pleasure in many ways. You can now express it as follows: Given any mutually disjoint
sequence of measurable sets, the measure of the disjoint union is the sum of the measures. The last

123 This is not entirely correct: we must demand that the measure is σ-finite, i.e., there are measurable sets with finite
measure whose union is the entire space. Such is the case for Lebesgue measure: Let Ak := [−k, k]n. The union of those
sets is Rk and λn(AK) = (2k)n <∞.
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property (15.2c) for σ–algebras is required for exactly that reason: you cannot take advantage of the
σ–additivity of a measure µ if its domain does not contain countable unions and intersections of all
its constituents.

Note that if we have only finitely many sets then “σ–additivity” which stands for “addi-
tivity of countably many” becomes simple additivity. We obtain the following by setting
AN+1 = AN+2 = . . . = 0:

A1, A2, . . . , AN ∈ F mutually disjoint
⇒ µ(A1 ]A2 ] . . . ]AN ) = µ(A1) + µ(A2) + . . .+ µ(AN ) (additivity).

(15.5)

In the case of only two disjoint measurable sets A and B the above simply becomes

µ(A ]B) = µ(A) + µ(B). �

In many circumstances you have a set function on a σ–algebra which behaves like a measure but you can only
prove that it is additive instead of σ–additive. You should not be surprised that there is a special name for
those “generalized measures”:

Definition 15.3 (Contents as additive measures). Let Ω be a non–empty set and let F be a σ–algebra
for Ω.

A content on F is a real function m(·) : F→ R, A 7→ m(A) which satisfies

m(∅) = 0 (positivity)(15.6a)
A,B ∈ F and A ⊆ B ⇒ m(A) 5 m(B) (monotony)(15.6b)

A1, A2, . . . , AN ∈ F mutually disjoint ⇒ m
( N⊎
n=1

An

)
=

N∑
n=1

m(An) (additivity). �(15.6c)

Note that µ(Ω) <∞ for a content µ. After this digression on contents let us go back to measures.

Proposition 15.1 (Simple properties of measures). AAA : Let A,B,∈ F and let µ be a measure on F. Then

µ(A) = 0 for all A ∈ F(15.7a)
A ⊆ B ⇒ µ(B) = µ(A) + µ(B \A)(15.7b)
µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B)(15.7c)

If µ is finite then we can write

A ⊆ B ⇒ µ(B \A) = µ(B)− µ(A)(15.8a)
µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B)(15.8b)

Proof ofAAA : The first property follows from the fact that µ(∅) = 0, ∅ ⊆ A for all A ∈ F and (15.3b).
To prove the second property, observe that B = A ] (B \A).
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Proving the third property is more complicated because neither A nor B may be a subset of the other. We first
note that because A \B ⊆ A, B \A ⊆ A and A ∩B ⊆ A, µ(A ∪B) =∞ can only be true if µ(A) =∞ or
µ(B) =∞. In this case (15.7c) is obviously true. Hence we may assume that µ(A ∪B) <∞. We have

A ∪B = (A ∩B) ] (B \A) ] (A \B)(15.9a)
A ∪B = A ] (B \A) = B ] (A \B)(15.9b)

It follows from (15.9a) that

(15.10) µ(A ∪B) = µ(A ∩B) + µ(B \A) + µ(A \B)

It follows from (15.9b) that

(15.11) 2 · µ(A ∪B) = µ(A) + µ(B \A) + µ(B) + µ(A \B)

We subtract the left and right sides of (15.10) from those of (15.11) and obtain

µ(A ∪B) = µ(A) + µ(B \A) + µ(B) + µ(A \B)− µ(A ∩B)− µ(B \A)− µ(A \B)

= µ(A) + µ(B)− µ(A ∩B)

and the third property is proved. �

Proposition 15.2 (Minimal sigma–algebras). Let Ω be a non–empty set.

AAA: The intersection of arbitrarily many σ–algebras is a σ–algebra.

BBB: Let K be a set which contains subsets of Ω. It is not assumed that K is a σ–algebra. Then there exists a
σ–algebra which contains K and is minimal in the sense that it is contained in any other σ–algebra that also
contains K. We name this σ–algebra σ(K) because it clearly depends on K. It is constructed as follows:

(15.12) σ(K) =
⋂
{A : A ⊇ K and A is a σ–algebra for Ω}.

Proof ofAAA:
We must prove (15.2a), (15.2b) and (15.2c). Let (Aα)α be an arbitrary family of σ–algebras for Ω. Let

A :=
⋂
α

Aα.

∅ and Ω belong to each σ–algebra according to (15.2a). It follows that they both belong to the intersection⋂
αAα , i.e., A satisfies (15.2a). Let A ∈ A. Then A ∈ Aα for each α. {A belongs to each σ–algebra ac-

cording to (15.2b). It follows that {A ∈
⋂
αAα , i.e., A satisfies (15.2b). Finally, let An ∈ A for all n ∈ N.

Then An ∈ Aα for all n ∈ N and for each α, ∪n∈NAn and
⋂
n∈NAn both belong to each σ–algebra ac-

cording to (15.2c). It follows that they both belong to the intersection
⋂
αAα , i.e., A satisfies (15.2c). It

follows that A is a σ–algebra.

Proof ofBBB:
First of all, we know that σ(K) is an intersection of σ–algebras and, according to partAAA of this proposition,
really is a σ–algebra. We now prove that σ(K) contains K and is the minimal σ–algebra with that property.
First let us prove that σ(K) ⊇ K. But that is obvious because it is the intersection of sets all of which
contain K. On the other hand, σ(K) is the intersection of all σ–algebras that contain K, so it is impossible
for any other σ–algebra to both be a strict subset of σ(K) and also contain K. �

274



15.2 Sequences of Sets – limsup and liminf

Assumption 15.1 (Existence of a universal set). We assume the existence of a set X which contains
all sets An, Bn, Cn that are used here in sequences. �

Definition 15.4 (Monotone set sequences). A sequence Ak of arbitrary subsets of X is called

non–decreasing if A1 ⊆ A2 ⊆ . . .(15.13a)
non–increasing if A1 ⊇ A2 ⊇ . . .(15.13b)

strictly increasing if A1 ( A2 ( . . .(15.13c)
strictly decreasing if A1 ) A2 ) . . .(15.13d)

Each one of those sequences is called a monotone set sequence. �

Might as well define limits of monotone sequences of sets. It’s certainly intuitive enough:

Definition 15.5 (Limits of monotone set sequences). Given are sets An, Bn ⊆ X (n ∈ N). Assume
that

A1 ⊆ A2 ⊆ A3 ⊆ . . . and let A :=
⋃
k∈N

Ak

B1 ⊇ B2 ⊇ B3 ⊇ . . . and let B :=
⋂
k∈N

Bk

We say that A is the limit of the sequence (Aj)j∈N and B is the limit of the sequence (Bj)j∈N and
we write

A = lim
n→∞

An or An ↗ A for n→∞,(15.14a)

B = lim
n→∞

Bn or Bn ↘ B for n→∞. �(15.14b)

The above are not terribly useful definitions. What does it matter whether we write A = lim
n→∞

An or
A = ∪k∈NAk? Things would be very different if we went further and defined limits of sequences of sets.
Doing so is at the very beginning of a branch of Mathematics called Measure Theory and its (slightly) more
applied version, Abstract Probability Theory.

Definition 15.6 (lim inf and lim sup of set sequences). Given are sets An, Bn ⊆ X (n ∈ N). Let

lim inf
n→∞

An :=
⋃
n∈N

⋂
k=n

Ak (limit inferior)(15.15)

lim sup
n→∞

An :=
⋂
n∈N

⋃
k=n

Ak (limit superior)(15.16)

In general those two will not coincide. But if they do then we define

(15.17) lim
n→∞

An := lim inf
n→∞

An = lim sup
n→∞

An
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We call lim
n→∞

An the limit of the sequence (An) and we write

An → A for n→∞. �

The following comments should make matters easier to understand if you abbreviate

Lemma 15.1 (lim inf and lim sup as monotone limits). Given are sets An, Bn ⊆ X (n ∈ N). Let

A?n :=
⋂
k=n

Ak Then A?n ↗ lim inf
n→∞

An(15.18)

A?n :=
⋃
k=n

Ak Then A?n ↘ lim sup
n→∞

An(15.19)

Proof: Let m,n ∈ N such that m < n. Then

A?m =
n−1⋂
k=m

Ak ∩
⋂
k=n

Ak =
n−1⋂
k=m

Ak ∩ A?n ⊆ A?n

A?m =
n−1⋃
k=m

Ak ∪
⋃
k=n

Ak =
n−1⋃
k=m

Ak ∪ A?n ⊇ A?n

This proves that A?n is non–decreasing and A ∗ ?n is non–increasing. By the very definition of the limit of a
monotone sequence of sets it is true that

lim
n→∞

A?n =
⋃
n∈N

A?n = lim inf
n→∞

An

lim
n→∞

A?n =
⋂
n∈N

A?n = lim sup
n→∞

An

�

15.3 Conditional Expectations as Generalized Averages
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16 Appendix: Addenda to Beck/Geoghegan’s “The Art of Proof”

This chapter contains extensions of material found in

(“AoP”) which is meant to be read in conjunction with these lecture notes. Some of this is referenced in earlier
chapters.

16.1 AoP Ch.1: Integers

16.1.1 Limited Division in Z

Proposition 16.1. Let m,n ∈ Z such that m|n and n 6= 0 Let j ∈ Z be such that n = j · m. Then j is
uniquely determined.

Proof: We note that m|n implies m 6= 0.

Assume that there is j′ ∈ Z such that also n = j′ ·m. Then

n = j′ ·m = j ·m, hence (j′ − j)m = 0.

B/G Proposition 1.26 states that if a, b ∈ Z and if a · b = 0, then a = 0 or b = 0.

It follows from m 6= 0 that j′ = j. �

The above result implies that the integer j is unique determined by m and n and hence allows us to make the
following definition.

Definition 16.1 (Quotients). Let m,n ∈ Z such that m|n and m,n 6= 0. Let j ∈ Z be the unique
integer for which n = j ·m. We write either of

n

m
, n/m, n÷m(16.1)

instead of j and we call n the dividend or numerator, m the divisor or denominator, and j the
quotient of the expression n/m. �

Note 16.1. Note that the assignment (m,n) 7→ n/m is not a “binary operation” on Z as is the case
for (m,n) 7→ m+n and (m,n) 7→ m ·n. The reason: m+n andm ·n are defined for any twom,n ∈ Z
whereas n/m is only defined for those m,n ∈ Z which satisfy the condition m|n. �

16.2 AoP Ch.2: Natural Numbers and Induction

16.2.1 AoP Ch.2.2 (Ordering the Integers)

The material given here complements ch.2.2 (Ordering the Integers) of [1] Beck/Geoghegan.
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Remark 16.1. B/G Axioms 1.1 – 1.5 together with axiom 2.1 do not suffice to characterize the inte-
gers; a symbol different from Z might have been more appropriate. These axioms are also satisfied
by the set Q of all rational numbers (fractions), provided one interprets the set N described by axiom
2.1 as the set of all (strictly) positive fractions. They are also satisfied by the set R of all real numbers
(decimals), provided one interprets N as the set of all (strictly) positive decimals. Only addition of
the induction axiom (B/G axiom 2.15) excludes Q and R. �

Accordingly, all propositions and theorems of the B/G text before the induction
axiom apply not only to integers but to rational and real numbers as well.

The next two propositions belongs after B/G prop.2.3 (1 ∈ N).

Proposition 16.2. If k ∈ Z then k + 1 > k.

Proof: Left as an exercise. �

Corollary 16.1. 1 > 0.

Proof: This follows from 1 = 1 + 0 and prop.16.2.1, applied to k := 0. �

The next proposition belongs after B/G prop.2.4 (“5” is transitive).

Proposition 16.3. Let m,n, p ∈ Z such that

m 5 n, n 5 p.(16.2)

Then m 5 p.

Proof: There are four cases.
1. m < n, n < p: It follows from B/G prop.2.4 (transitivity of “<”) that m < p, in particular,

m 5 p.
2. m < n, n = p: It follows that m < p. This implies m 5 p.
3. m = n, n < p: It follows again that m < p. This implies m 5 p.
4. m = n, n = p: It follows that m = p. This implies m 5 p. �

16.2.2 AoP Ch.2.3 (Induction)

The material given here complements ch.2.3 (Induction) of [1] Beck/Geoghegan.

Proposition 16.4 (B/G Prop.2.20). If k ∈ N then

k = 1.(16.3)

Proof: The proof is done by induction on k.
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Base case: For k = 1 (16.3) reads 1 = 1. This is true because “=” implies “=”.

Induction step: Let k ∈ N and assume that k = 1. We are done if we can prove under this assumption that

k + 1 = 1.(16.4)

According to prop.16.2, k + 1 > k, hence k + 1 = k. Further k = 1 (our induction assumption.) It follows
from the transitivity of “5” (prop.16.3) that k + 1 = 1, i.e., (16.4) is valid. �

Proposition 16.5 (B/G Prop.2.21). There exists no x ∈ Z such that 0 < x < 1.

Proof: Assume to the contrary that there is some x ∈ Z such that 0 < x, i.e., x > 0, and x < 1.

It follows from x > 0 that x ∈ {k ∈ Z : k > 0}. But according to B/G prop.2.13 this set equals N. So n ∈ N.
It now follows from B/G prop.2.20 that x = 1, contrary to the assumption that x < 1. �

Corollary 16.2 (B/G Cor.2.22). Let n ∈ Z. There exists no x ∈ Z such that n < x < n+ 1.

Proof: Assume to the contrary that such x exists. According to B/G prop.2.7(i) an inequality between integers
is preserved if one adds the same item to both of its sides. It follows that

n− n < x− n < (n+ 1)− n, i.e., 0 < x− n < 1.

The integer x′ := x− n satisfies 0 < x′ < 1, a contradiction to prop.16.5. �

Proposition 16.6 (sharpening of B/G Prop.2.13). N = {k ∈ Z : k = 1}.

Proof: This follows from 1 > 0 (cor.16.1 on p.278) and prop.16.5 above. �

16.2.3 Bounded Sets in Z

The material given here complements ch.2.4 (The Well-Ordering Principle) of [1] Beck/Geoghegan.

Definition 16.2 (Upper and lower bounds, maxima and minima in Z). Let A ⊆ Z. 124 Let l, u ∈ Z.
We call l a lower bound of A if l 5 a for all a ∈ A.

We call u an upper bound of A if u = a for all a ∈ A.

We call A bounded above if this set has an upper bound and we call A bounded below if A has a
lower bound. We call A bounded if A is both bounded above and bounded below.

A minimum (min) of A is a lower bound l of A such that l ∈ A. A maximum (max) of A is an upper
bound u of A such that u ∈ A.

The next proposition states that min and max are unique if they exist. This makes it possible to
write min(A) or minA for the minimum of A and max(A) or maxA for the maximum of A. �

Proposition 16.7. Let A ⊆ Z. If A has a maximum then it is unique. If A has a minimum then it is unique.

124 The definitions given here also apply to subsets of Q and R. See def.8.1 on p.125.
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Proof: Left as an exercise.

�

Definition 16.3 (Translation and dilation of sets of integers). Let A ⊆ Z. and α, b ∈ Z. We define

λA+ b := {λa+ b : a ∈ A}.(16.5)

In particular, for λ = ±1, we obtain

A+ b = {a+ b : a ∈ A},(16.6)
−A = {−a : a ∈ A}. �(16.7)

Remark 16.2. Note that the above makes sense for any algebraic structure 125 with binary operations
“+” and/or “·”, e.g., groups or vector spaces (in the latter case “(λ, a) 7→ λa” would be the scalar
product between a real number (scalar) λ and a vector a. �

Theorem 16.1 (Generalization of the Well-Ordering Principle).

a. Let A be a nonempty subset of Z which is bounded below. Then A possesses a minimum in Z.
b. Let B be a nonempty subset of Z which is bounded above. Then B possesses a maximum in Z.
c. Let C be a nonempty bounded subset of Z . Then C possesses both minimum and maximum in Z.

Proof (outline):

a. If A has 1 as a lower bound then A ⊆ N and the theorem simply is the Well-Ordering Principle (B/G
theorem 2.32). Next we just assume that A is bounded below. Let a? be a lower bound of A. Let A′ :=
A − a? + 1. Then a′ ≥ 1 for all a′ ∈ A′, i.e., A′ ⊆ N. and it follows from the Well-Ordering Principle that
the minimum min(A′) of A′ exists.

It is easy to see from min(A′) ∈ A′ that then m := min(A′) + a? − 1 ∈ A and that m is a lower bound of A
because a? is a lower bound of A. It follows that m = min(A).

b. We assume that B is bounded above. Let b? be an upper bound of B. Let B′ := −B. Then B′ has
−b? as a lower bound and it follows from the already proven part a that the minimum min(B′) of B′ exists.
Let m := −min(B′). It follows from min(B′) ∈ B′ that m ∈ −B′ = −(−B) = B and it follows from
min(B′) 5 b′ for all b′ ∈ B′ that m = b for all b ∈ B. But then m must be the maximum of A.

c. is a trivial consequence of a and b �

Example 16.1 (The Well-Ordering Principle is not true in Q and R).

a. R: The set A := {x ∈ R : x2 < 2} is bounded in R (by ±2) but has neither min (would
have to be −

√
2 /∈ A) nor max (would have to be +

√
2 /∈ A).

but: −
√

2 is a special lower bound: it is the greatest lower bound inf(A) of A and
√

2
is a special upper bound: it is the least (smallest) upper bound sup(A) of A.

125 See the optional chapter 13 (Algebraic structures) on p.257
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b. Q: The set B := {x ∈ Q : x2 < 2} = A ∩ Q is bounded in Q (by ±2) and also has
neither min nor max for the same reasons as A.
Further: −

√
2 is not a lower bound ofB and

√
2 is not an upper bound ofB because

those numbers are not in our “universe” Q. The setB has neither min, max, inf, sup!
�

16.2.4 Exercises for Ch.16.2

Exercise 16.1. Use everything up to AND including B/G prop.2.3, to prove prop.16.2 on p.278 of
this document: If k ∈ Z then k + 1 > k. �

16.3 AoP Ch.3: Some Points of Logic

Here are some references for items discussed in ch.3 of the B/G text to where they appear in ch.3 (Logic) on
p.23 of this document.

a. Universal quantifier ∀, existental quantifier ∃, unique existental quantifier ∃!: ch.3.6.1 on p.52.
b. “(∀ x)(∀ y) has the same meaning as (∀ x and y)”: part a of def.3.19 (Doubly quantified expres-

sions) in ch.3.6.2 on p.54.
We recommend that you look at prop.3.1 and the note which precedes it. The latter is reproduced
here:

1. The order in which the qualifiers are applied is important.
∀x∃y generally does not mean the same as ∃y∀x.

2. Interchanging variable names in the qualifiers is not OK.
∀x∃y generally does not mean the same as ∀y∃x.

c. Skip part c if you have no knowledge of logic beyond what is in ch.3 of B/G.
If you have had some training in logic you may have learned to express “if P (is true) then Q (is
true)” as “P → Q” rather than “P ⇒ Q”. There is a difference: Proving a statement of the form
“if P then Q” means to show that the statements P and Q are related in a fashion that makes it
“logically impossible”, 126 for P to be true and Q to be false. “P ⇒ Q” has the combination

(
P

is true, Q is false
)

marked as irrelevant (logically impossible); the remaining three combinations
give the same outcome as for P → Q, i.e., they all evaluate to true.
Example: If P : “x = 100′′ and Q : “x > 10′′ is correct because it is not possible that P is true
and Q is false.

d. The equivalent forms of “if P then Q” such as “Q whenever P” are listed in ch.3.3.5 (Arrow
and Implication Operators) on p.38. There you also find the definition of the converse and the
contrapositive of an implication.

B/G ch.3.3: Negations:

126See ch.3.3.2, def.3.9 on p.32.
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a. The negation of “A and B” is “not A or not B” and the negation of “A or B” is “not A and
not B”. This is known as “De Morgan’s law” for statements (see thm.3.3 on p.44). Do you see
the connection to De Morgan’s law for sets? (see thm.5.1 on p.99).

b. Skip part b if you have no knowledge of logic beyond what is in ch.3 of B/G.
B/G states that the negation of “P ⇒ Q” is “P and not Q”. This should be stated more appro-
priately as follows: The negation of “P ⇒ Q” is “Pand notQ”. The reason for this equivalence
is that “P ⇒ Q” is defined as “not P or Q”: we can apply De Morgan’s laws to obtain the
negation.

e. In the above observe the “binding power” or preference of the logical operators: The negation
“not P” of a statement P has higher preference than “P and Q” and “P or Q”:
The meaning of “not P or Q” is “(not P ) or Q”, not “not (P or Q).”

e. xxx

xx 127

16.4 AoP Ch.4: Recursion

Some of the recursive definitions in chapter 4 of AoP, such as
∑
xj and

∏
xj were defined to start at j = 1.

One cannot deduce from those definitions what it means to start at some index other than 1. We fix this
shortcoming in this chapter.

16.4.1 Generalization of Some Recursive Definitions

Definition 16.4 (Extension of the definition
∑
j = 1n). We modify the definition of “Σ” (B/G p.34,

35) as follows: Let k ∈ Z and let (xj)
∞
j=k be a sequence of integers.

For each n ∈ Z such that k ≤ n, we define an integer called
n∑
j=k

xj as follows. 128

(i)
k∑
j=k

xj = xk, (ii)
n+1∑
j=k

xj =
n∑
j=k

xj + xn+1.(16.8)

We call
n∑
j=k

xj the sum of the integers xk, xk+1, . . . , xn−1, xn. �

Definition 16.5 (Extension of the definition
∏
j = 1n). We modify the definition of “

∏
” (B/G p.34,

35) as follows: Let k ∈ Z and let (xj)
∞
j=k be a sequence of integers.

127 See def.10.27 (ε-δ continuity) on p.197.

128
n∑

j=k

xj can also be written xk + xk+1 + · · ·+ xn.
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For each n ∈ Z such that k ≤ n, we define an integer called
n∏
j=k

xj as follows. 129

(i)
k∏
j=k

xj = xk, (ii)
n+1∏
j=k

xj =
n∏
j=k

xj · xn+1.(16.9)

We call
n∏
j=k

xj the prod of the integers xk, xk+1, . . . , xn−1, xn. �

16.5 AoP Ch.5: Underlying Notions in Set Theory

There are no addenda at this point in time.

16.6 AoP Ch.6: Equivalence Relations and Modular Arithmetic

16.6.1 Equivalence Relations

Remark 16.3. Note that B/G defines in this chapter the absolute value for integers as usual: (see
def.2.13 on p.22)

|m| =

{
m ifm = 0,

−m ifm < 0.
�

16.6.2 The Division Algorithm

The following simple proposition about the absolute value of the difference of two non–negative numbers is
very useful in chapters 6 and 7 of the B/G text.

Proposition 16.8. Let m,n ∈ Z=0. Then

|n−m| 5max(m,n), i.e.,(16.10)
−max(m,n) 5 n−m 5 max(m,n).(16.11)

Proof: Left as an exercise.

�

Corollary 16.3. Let x, y, n ∈ Z such that 0 5 x, y < n. Then

−n < y − x < n.(16.12)

Proof: Obvious. �

129
n∏

j=k

xj can also be written xk · xk+1 · · ·xn or xkxk+1 · · ·xn.
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16.6.3 The Integers Modulo n

In this chapter we assume that n ∈ N is fixed and that for two integers SaS and b,

a ∼ b means a ≡ b mod n, if n|(a− b).

We also define [a]0 := [1]. The following cannot be found in the B/G text.

Proposition 16.9 (Arithmetic mod n). Let m1,m2, . . .mk ∈ Z. Then

[m1 +m2 + · · ·+mk] = [m1]⊕ [m2]⊕ · · · ⊕ [mk],(16.13)
[m1 ·m2 · · ·mk] = [m1]� [m2]� · · · � [mk],(16.14)

[
k∑
j=1

ajx
j ] =

k∑
j=1

[aj ]� [x]j .(16.15)

Proof: We only give the proof of (16.14). It is done by induction on the number of factors k. The proof of
(16.13) is similar and (16.15) is a simple consequence of the two first equations.

Basis: The proof is obvious for k = 1. We note that (16.14) is true for two factors (B/G prop.6.25 and the
definition of “a� b” that follows).

Induction assumption: We assume that (16.14) holds for some k ∈ N. We then obtain for k + 1 that

[m1 ·m2 · · ·mk+1] = [(m1 ·m2 · · ·mk) ·mk+1]

=
(
[m1 ·m2 · · ·mk]

)
� [mk+1] (B/G def. of “a� b”)

=
(
[m1]� [m2]� · · · � [mk]

)
� [mk+1]. (Induction assumption (16.14)) �

16.6.4 Prime Numbers

Definition 16.6 (Prime numbers). Let p ∈ N, p = 2. p is a prime number or p is prime if q ∈ Z and
q|p implies that q = ±1 or q = ±p.

We note that 1 is not prime. �

Lemma 16.1. Let p be prime and let m ∈ N. If p - n (p does not divide n) then gcd(p, n) = 1.

Proof: Let g := gcd(p, n). Then g ∈ N, g|n and g|p (B/G prop.6.29(i)). Only 1 and p divide p, so either
g = p or g = 1.

It follows from p - n and g|n that g 6= p, hence g = 1. �

B/G thm 6.32: Every integer = 2 can be factored uniquely (i.e. up to permutation) into primes.

The proof of this theorem requires the generalization of Euclid’s lemma to more than two factors:

Proposition 16.10 (Euclid’s Lemma for more than two factors). Let p be prime and m1,m2, . . . ,mk ∈
N. If p|(m1m2 · · ·mk) then p|mj for some 1 5 j 5 k.
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Proof: Done by strong induction on the number of factors k.

Basis: There is nothing prove for k = 1 and B/G prop. 6.31 (Euclid’s lemma for two factors) shows the
validity for k = 2.

Induction assumption: We assume that if p divides a product n = n1n2 · · ·nj) of less than k factors then
p|ni for some 1 5 i 5 j.

To prove that p|mi for some 1 5 i 5 k we write m1m2 · · ·mk = (m1m2 · · ·mk−1)mk. It follows from
B/G prop. 6.31 that p|mk or p|(m1m2 · · ·mk−1). If p divides mk then we are done. Otherwise we apply
the induction assumption to the product m1m2 · · ·mk−1 of less than k factors and obtain that there is some
1 5 i < k such that p divides mi. �

Theorem 16.2 (Uniqueness of prime factorizations). Every integer = 2 can be factored uniquely (i.e. up
to permutation) into primes.

Proof: by induction on n.

Base case: n = 2: 2 is its own and obviously unique prime factorization.

Induction assumption: assume that if 2 5 j < n then j has a unique PF (up to reordering).

We now show that n has a unique PF (up to reordering).

Case 1: n is prime: then n is the only and hence unique PF of itself.

Case 2: Else let n = p1p2 · · · pk = q1q2 · · · ql be two PFs for n. p1|q1q2 · · · ql, hence p1|qj0 for some jj0 by the
generalized form of Euclid’s lemma.

But then p1 = qj0 because p1 6= 1 and qj0 is the only integer bigger than 1 that divides the prime qj0 .

Let us reorder the qj in such a way that j0 = 1. Then n2 := n/p1 = p2p3 · · · pk = q2q3 · · · ql is an integer
less than n and it follows from the induction assumption that q2 · · · ql are just a reordering of p2 · · · pk. �

Proposition 16.11 (Corollary to Fermat’s Little Theorem). Let p be prime and letm ∈ N such that p - m.
Then

mp−1 ≡ 1 mod p.

Proof: It follows from Fermat’s Little Theorem (B/G thm.6.35) that p|(mp − m), i.e., p|m(mp−1 − 1). It
follows from Euclid’s lemma and p - m that p|(mp−1 − 1), i.e., mp−1 ≡ 1 mod p. �

16.7 AoP Ch.7: Arithmetic in Base Ten

16.7.1 Base–Ten Representation of Integers

Proposition 16.12 (B/G Prop.7.5). Let n, q, r ∈ N such that n = 10q + r and 0 5 r < 10 (the unique
division algorithm decomposition of n for division by 10.) Then ν(n) = ν(q) + 1.

Proof: We abbreviate k := ν(q). The proof will be done as follows.
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a. We prove by contradiction that n < 10k+1.
b. We prove by contradiction that 10k 5 n.
c. The proof is done because we obtain from a and b that 10k 5 n < 10k+1 and it follows from B/G prop.7.3
that ν(n) = k + 1 = ν(q) + 1.

Proof of a.
If we had instead that n = 10k+1 then

10q = n− r = 10k+1 − r > 10k+1 − 10 = 10(10k − 1).

It follows that q > 10k − 1, hence q = 10k. This contradicts k = ν(q).

Proof of b.
Assume to the contrary that n < 10k. Then

10q = n− r < 10k − r 5 10k; hence q < 10k−1,

which contradicts our assumption that k = ν(q). �

Proposition 16.13 (B/G prop.7.9: Uniqueness of base-ten representation for positive integers). Let
n ∈ N and assume that

n =

p∑
j=0

xj10j =

q∑
j=0

yj10j(16.16)

where p, q ∈ Z=0, each xi and each yi is a digit, xp 6= 0 and yq 6= 0, then p = q and xi = yi for all i.

Proof: By allowing leading digits to be zero, we may assume p = q. Let j? be the largest index j such that
xj 6= yj . We obtain

0 =

p∑
j=0

xj10j −
q∑
j=0

yj10j =

j?∑
j=0

(xj − yj)10j .(16.17)

It follows from cor.16.3 on p.283 and B/G prop.7.8 that

∣∣∣ j?−1∑
j=0

(xj − yj)10j
∣∣∣ 5 j?−1∑

j=0

9 · 10j = 10j
? − 1.(16.18)

One of xj? , yj? is larger than the other. We may assume xj? > yj? and hence xj? − yj? = 1. We obtain

0 =

j?∑
j=0

(xj − yj)10j = (xj? − yj?)10j
?

+

j?−1∑
j=0

(xj − yj)10j

= (xj? − yj?)10j
? − (10j

? − 1) = 1 · 10j
? − 10j

?
+ 1 = 1.

We have reached a contradiction. �

Proposition 16.14 (B/G Prop.7.11). Let n :=
∑ν(n)−1

j=0 xj10j , where each xj is a digit; then

n = x0 + x1 + · · ·+ xν(n)−1 mod 3.(16.19)
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Proof: We define a ∼ b if 3|b − a. It follows from 3|9 that [10] = [9] ⊕ [1] = [0] ⊕ [1] = [1], hence
[10]j = [1]j = [1j ] = [1]. But then

[n] =
[ ν(n)−1∑

j=0

xj10j
]

=

ν(n)−1∑
j=0

[xj ]� [10]j

=

ν(n)−1∑
j=0

[xj ]� [1]

=

ν(n)−1∑
j=0

[xj ]

= [x0 + x1 + · · ·+ xν(n)−1].

It follows that n = x0 + x1 + · · ·+ xν(n)−1 mod 3 �

16.7.2 The Addition Algorithm for Two Nonnegative Numbers (Base 10)

We give a simpler version of the addition algorithm than the one found in ch.7.2 of B/G.

Remark 16.4 (Addition subroutine). Given are

x :=
K∑
n=0

xn · 10n, y :=
K∑
n=0

yn · 10n

in base–10 representation, i.e., xn, yn are digits 0, 1, 2 . . . , 9. We may choose the same ending index
K for both x and y by “filling up” the number with less digits with leading zeros.

Here is the pseudocode for a subroutine, Add( n, xn, yn, zn ), whose task it is to compute the digits

zn for the sum z :=

K+1∑
n=0

zn · 10n := x+ y.

Subroutine Add( n, xn, yn, zn ) :
//*
//* Inputs: n, xn, yn
//* Output: zn
//*

If n = 0 then {
i−1 := 0;

}

in :=

{
0 ifxn + yn + in−1 < 10

1 ifxn + yn + in−1 = 10

zn := (xn + yn + in−1) − in · 10
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end-of-Subroutine

Note that the “sum digit” zn and the “carry” in are associated with the “Euclidian division algorithm
decomposition”

xn + yn + in−1 = 10 · q + r

for the integer xn + yn + in−1 as follows:

in = q and zn = r. �

16.8 AoP Ch.8: Real Numbers

16.8.1 Axioms

The following proposition belongs between B/G prop.8.7:

Let x, y, z ∈ R and x 6= 0. If xy = xz then y = z;

and B/G prop.8.8:

Let x, y, z ∈ R. Then (x+ y)z = xy + xz.

Proposition 16.15 (Uniqueness of multiplicative inverse). Let a ∈ R and a 6= 0. Then the equation
ax = 1 has a−1 as a unique solution.

Proof: Let x := a−1. Then ax = aa−1 = 1, i.e., a−1 is a solution.

Uniqueness: Let x′ ∈ R such that ax′ = 1. It follows from ax = 1 = ax′. and B/G prop.8.7 that x = x′. �

The following proposition belongs at the end of B/G ch.8.1.

Proposition 16.16 (Uniqueness of ax = b). Let a, b ∈ R and a 6= 0. Then the equation ax = b has a
solution x ∈ R and this solution is unique.

Proof: Existence of a solution: Let x := a−1b. Then ax = a(a−1b) = (aa−1)b = b, i.e., x is a solution.

Uniqueness: Let x′ ∈ R such that ax′ = b. It follows from 0 = b − b = (ax) − (ax′) = a(x − x′).
Hence, from B/G prop.8.7, we obtain x + (−x′) = 0. It follows from the uniqueness of the additive inverse
that x = x′. �

16.9 AoP Ch.13: Cardinality

Proposition 16.17 (B/G prop.13.2). Let X,Y 6= ∅ and let f : X
∼−→ Y be a bijection. Let a ∈ X and let

f̃ : X \ {a} → Y \ {f(a)}; x 7→ f(x)(16.20)

be the restriction f
∣∣
X\{a} of f to X \{a} (with f(a) having been removed from the original codomain). Then

f̃ is bijective.
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Proof: This is cor.6.4 on p.116. �

Proposition 16.18 (B/G prop.13.6.). Every subset of a finite set is finite.

Proof: This is cor.6.3 on p.116. �
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17 Other Appendices

17.1 Greek Letters

The following section lists all greek letters that are commonly used in mathematical texts. You do not see
the entire alphabet here because there are some letters (especially upper case) which look just like our latin
alphabet letters. For example: A = Alpha B = Beta. On the other hand there are some lower case letters,
namely epsilon, theta, sigma and phi which come in two separate forms. This is not a mistake in the following
tables!

α alpha θ theta ξ xi φ phi
β beta ϑ theta π pi ϕ phi
γ gamma ι iota ρ rho χ chi
δ delta κ kappa % rho ψ psi
ε epsilon κ kappa σ sigma ω omega
ε epsilon λ lambda ς sigma
ζ zeta µ mu τ tau
η eta ν nu υ upsilon

Γ Gamma Λ Lambda Σ Sigma Ψ Psi
∆ Delta Ξ Xi Υ Upsilon Ω Omega
Θ Theta Π Pi Φ Phi

17.2 Notation

This appendix on notation has been provided because future additions to this document may use notation
which has not been covered in class. It only covers a small portion but provides brief explanations for what is
covered.

For a complete list check the list of symbols and the index at the end of this document.

Notations 17.1. a) If two subsets A and B of a space Ω are disjoint, i.e., A ∩ B = ∅, then we often
writeA

⊎
B rather thanA∪B orA+B. BothA{ and, occasionally, {A denote the complement Ω\A

of A.

b) R>0 or R+ denotes the interval ]0,+∞[, R=0 or R+ denotes the interval [0,+∞[,

c) The set N = {1, 2, 3, · · · } of all natural numbers excludes the number zero. We write N0 or Z+ or
Z=0 for N

⊎
{0}. Z=0 is the B/G notation. It is very unusual but also very intuitive. �

Definition 17.1. Let (xn)n∈N be a sequence of real numbers. We call that sequence non-decreasing
or increasing if xn 5 xn+1 for all n ∈ N.
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We call it strictly increasing if xn < xn+1 for all n ∈ N.

We call it non-increasing or decreasing if xn = xn+1 for all n.

We call it strictly decreasing if xn > xn+1 for all n ∈ N. �

291



References

[1] Matthias Beck and Ross Geoghegan. The Art of Proof. Springer, 1st edition, 2010.

[2] Regina Brewster and Ross Geoghegan. Business Calculus, a text for Math 220, Spring 2014. Bing-
hamton University, 11th edition, 2014.

[3] Matthew Brin and Gerald Marchesi. Linear Algebra, a text for Math 304, Spring 2016. Binghamton
University, 13th edition, 2016.

[4] John Bryant and Penelope Kirby. Course Notes for MAD 2104 Discrete Mathematics I. Florida
State University.

[5] Gustave Choquet. Lectures on Analysis, Vol. 2: Representation Theory. Benjamin, New York, 1st
edition, 1969.

[6] Richard M. Dudley. Real Analysis and Probability. Cambridge University Press, Cambridge, New
York, 2nd edition, 2002.

[7] Norman B. Haaser and Joseph A. Sullivan. Real Analysis. publisher = Van Nostrand, year = 1971,
1st edition.

[8] A.N. Kolmogorov and S.V. Fomin. Introductory Real Analysis. Dover, Mineola, 1st edition, 1975.

[9] James R. Munkres. Topology. Prentice-Hal, 1st edition, 2000.

[10] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, New York, San Francisco,
Toronto, London, 2nd edition, 1964.

[11] James Stewart. Single Variable Calculus. Thomson Brooks Cole, 7th edition, 2012.

[12] Boto Von Querenburg. Mengentheoretische Topologie. Springer, Berlin, Heidelberg, New York, 1st
edition, 1973.

[13] Richard E. Williamson, Richard H. Crowell, and Hale F. Trotter. Calculus of Vector Functions.
Prentice Hall, Englewood Cliffs, 3rd edition, 1972.

292



List of Symbols

(V, ‖ · ‖) (normed vector space), 166
−A , 145, 280
1A (indicator function of A), 112
2Ω,P(Ω) (power set, 15
A+ b , 145, 280
A
⊎
B (disjoint union), 290

A{ (complement), 290
Alowb (lower bounds of A), 125
Auppb ( upper bounds of A), 125
F0 (contradiction statement), 34
NA
ε (a) (Trace of NA

ε (a) in A), 185
T0 (tautology statement), 34
[a, b[, ]a, b] (half-open intervals), 17
[a, b] (closed interval), 17
[x]f (fiber of f over f(x)), 111
⇔ (logical equivalence), 36
fn(·)→ f(·) (pointwise convergence), 207
fn(·) uc→ f(·) (uniform convergence), 208
⇒ (implication), 38
‖f‖ (norm of linear f ), 206
‖f‖Lp (Lp-norm on CCC ([a, b],R)), 170
‖x‖p (p-norm on Rn), 166
P(Ω), 2Ω (power set, 15
U (universe of discourse), 26
Ā (closure of A), 189, 190⋂[

Ai : i ∈ I
]

, 98⋂
i∈I Ai , 98⋃[
Ai : i ∈ I

]
, 98⋃

i∈I Ai , 98
χA (indicator function of A), 113
{A (complement), 290
ΓB30DfΓB30DL2 (L2–norm), 170
ΓB30DxΓB30D• (Norm for x • y), 167
∃ (exists), 53
∃! (exists unique), 53
∀ (for all), 53
n
m divisor, 277
inf (xi), inf (xi)i∈I , inf

i∈I
xi (families), 128

inf (xn), inf (xn)n∈N, inf
n∈N

xn (sequences), 128

inf(A) (infimun of A), 126
inf
x∈A

f(x) (infimum of f(·)), 128

infA f (infimum of f(·)), 128
λ1, λ2, . . . , λn, (Lebesgue measure), 272

↔ (double arrow logic op.), 35
lim
n→∞

xn , 129, 180
lim infn→∞An , 142
lim infn→∞ fn , 140
lim infn→∞ xj (limit inferior), 134
lim supn→∞An , 142
lim supn→∞ fn , 140
lim supn→∞ xj (limit superior), 133
1A (indicator function of A), 113
N,N0, 290
R+,R>0 , 290
R+,R=0, 290
R>0,R+ , 290
R=0,R+, 290
Z+,Z=0, 290
epi(f) (epigraph), 254
max(A),maxA (maximum of A), 125, 279
min(A),minA (minimum of A), 125, 279
¬ (negation), 30
sup (xi), sup (xi)i∈I , sup

i∈I
xi (families), 128

sup (xn), sup (xn)n∈N, sup
n∈N

xn (sequences), 128

sup(A) (supremun of A), 126
sup
x∈A

f(x) (supremum of f(·)), 128

supA f (supremum of f(·)), 128
→ (arrow operator), 38
∨ (disjunction), 36
∧ (conjunction), 31
]a, b[ (open interval), 17
f(A) (direct image), 108
f−1(B) (indirect image, preimage), 108
g ◦ f (function composition), 80
g ◦ f(x) (function composition), 80
m+ n mod 2 (addition mod 2), 114
n/m divisor, 277
n÷m divisor, 277
r? (rational cut), 266
x • y (inner product), 163
x • y (inner product), 163
x ∈ X (element of a set, 11, 22
x /∈ X (not an element of a set, 11
xn → −∞, 180
xn →∞, 180
xn → a, 129, 180
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n∏
j=k

xj prod, 283

n∑
j=k

xj sum, 282

(X, d(·, ·)) (metric space), 172
(A, dA×A) (metric subspace), 184
(Ω,F) (measurable space), 271
(Ω,F, µ) (measure space), 272
(x1, x2, . . . , xN ) (N–tuple), 102
(x1, x2, x3, . . . , xN ) (N–dimensional vector), 149
−f(·),−f (negative function), 90
−x (negative of x), 155
0(·) (zero function), 90
A×B (cartesian product of 2 sets), 72
A{ (complement of A), 14
Nε(x0) (ε–neighborhood), 177
XI =

∏
i∈I

X (cartesian product), 103

X1 × . . .×XN (cartesian product), 102
[x]∼, [x] (equivalence class), 73
Γf ,Γ(f) (graph of f ), 78
‖f‖∞ (sup–norm), 165
‖x‖ (norm on a vector space), 166
CCC (A,R) (cont. real functions on A ⊆ R ), 156
CCCBBB(X,R) , 202
FFF (X,R) (all real functions on X), 156
B (base of a topology), 182
F (σ–algebra), 271
N(x) (neighborhood system), 183
U‖·‖ (norm topology), 182
Ud(·,·) (metric topology), 181
~x+ ~y (vector sum), 150
α~x (scalar product), 150
αf (scalar product of functions), 90
αx, α · x (scalar product), 155
{A (complement of A), 14
∅ (empty set), 12
λA+ b (translation/dilation in R) , 145
λA+ b , 280
7→ (maps to), 78
N (natural numbers), 16
N0 (non–negative integers), 17
Q (rational numbers), 16
R (real numbers), 17
RN (all N–dimensional vectors), 149
R? (non-zero real numbers), 17

R+ (positive real numbers), 17
R>0 (positive real numbers), 17
R≥0 (non–negative real numbers), 17
R 6=0 (non-zero real numbers), 17
R+ (non–negative real numbers), 17
Z (integers), 16
Z≥0 (non–negative integers), 17
Z+ (non–negative integers), 17
span(A) (linear span), 159
µ(·) (finite measure), 272
µ(·) (measure), 271
R := R (extended real numbers), 140
R+ (non–negative extended), 271
πj(·) (jth coordinate function), 161
πi1,i2,...,iM (·) (M–dim projection), 161
BBB(X,R) (bounded real functions), 165
CCC (X,R) (continuous real functions on X), 202∏
i∈I

Xi (cartesian product), 103

card(X), |X| (cardinality of a set), 103
∴ (therefore), 63
εx0 (Radon integral), 161
dA×A (induced/inherited metric), 184
d‖·‖ (metric induced by norm), 173
f
∣∣
A

(restriction of f ), 89
f + g (sum of functions), 90
f − g (difference of functions), 90
f/g, fg (quotient of functions), 90
f−1(·) (inverse function), 85
fg, f · g (product of functions), 90
overlineR := R (extended real numbers), 271
xRy (equivalent items), 72
x � y (precedes), 73
x ∼ y (equivalent items), 73
x � y (succeeds, 73
x+ y (vector sum), 155
‖~v‖2 (Euclidean norm), 152
false, 26
true, 26
xor (exclusive or), 37
{} (empty set), 12

(xı)ı∈J (family), 92
(A,UA) - topol. subspace, 186
[n] = {1, 2, . . . , n} , 103
UA) - subspace topology, 186
A ∩B (A intersection B), 13

294



A \B (A minus B), 13
A ⊂ B (A is strict subset of B), 13
A ⊆ B (A is subset of B), 12
A ( B (A is strict subset of B), 13
A4B (symmetric difference of A and B), 14
A ]B (A disjoint union B), 13
B ⊃ A (B is strict superset of A), 13
B ) A (B is strict superset of A), 13
g−1 group: inverse element, 258
(X,U) (topological space), 181
(xj) (sequence), 94
(xj) (sequence), 211
(xnj ) (subsequence), 94
lim inf
n→∞

An (limit inferior for sets), 275
lim sup
n→∞

An (limit superior for sets), 275
∞∑
k=1

ak (series), 211

‖~v‖2 (length or Euclidean norm of ~v), 150
U (topology), 181
A ∪B (A union B), 13
A ⊇ B (A is superset of B), 12
Ao (interior of A), 227
An ↗

⋃
nAn , 142

An ↘
⋂
nAn , 142

int(A) (interior of A), 227
xn ↗ ξ (n→∞) , 181
xn ↘ ξ (n→∞) , 181

card(X) < card(Y ), 118
card(X) = card(Y ), 118
card(X) 5 card(Y ), 118

F (false), 26

g.l.b.(A) (greatest lower bound of A), 126

l.u.b.(A) (least upper bound of A), 126
L/I (logically impossible), 32

T (true), 26
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Index

L2–norm, 170
N–tuple, 102
σ–algebra, 271
σ–field, 271
ε-δ continuous function, 197
ε–grid, 233
ε–net, 233

abelian group, 258
absolute convergence, 215
absolute value, 22
abstract integral, 161
addition mod 2, 114
algebra of sets, 19
algebraic number, 123
alternating harmonic series, 216
alternating series, 216
antecedent, 39
antiderivative, 83
antisymmetric relation, 72
area, 168

net area, 168
argument, 78
arrow operator, 38
assertion, 59

valid, 59
assignment operator, 24, 78
associativity, 155, 257
axiom, 59
Axiom of Choice, 88, 248

base (of a topology), 182
basis, 162
Bernstein polynomial, 203
bilinear, 163
binary operator, 31
bound variable, 26
boundary, 225, 226
boundary point, 225
boundary point (topological space), 226
bounded, 125, 279
bounded above, 125, 279
bounded below, 125, 279

cardinality, 103

comparison of, 118
equality, 118

cardinality (equivalence class), 124
cartesian product, 25, 72, 101
cartesian product of N sets, 102
cartesian product of a family, 103
Cauchy criterion, 191
Cauchy sequence, 191
chain, 247
characteristic function, 113
closed interval, 17
closed set (in a metric space), 189
closed set (in a topological space), 190
closed with repect to an operation, 156
closure (in a metric space), 189
closure (in a topological space), 190
closure operator, 227
cluster point, 188
codomain, 24, 78
commutative group, 258
commutativity, 155, 258
compact, 240

covering compact, 240
sequentially, 236

complement, 14
complete set, 192
completeness axiom, 125, 265
composition, 80
compound statement, 30
compound statement function, 30
concave-up, 254
conclusion, 39
conditionally convergent series, 216
conjecture, 59
conjunction operator, 31
connective, 29

negation, 30
consequent, 39
contact point (in a metric space), 188
contact point (in a topological space), 190
content, 273
continuity at x0, 199
contradiction, 34
contradictory, 32
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contrapositive, 39
convergence, 179
convergence in R, 129
convergence, uniform, 207
converse, 39
convex, 254
coordinate function, 161
corollary, 60
countable set, 104
countably infinite set, 104
covering, 239

extract finite open subcovering property, 240
cut, 265

De Morgan’s Law, 100
decreasing sequence, 291
Dedekind cut, 265

lower number, 265
upper number, 265

denominator, 277
dense set, 17
dimension, 149
direct image, 108
discrete metric, 174
discrete topology, 182
disjunction operator, 36
distributive laws, 155
dividend, 277
divisor, 277
domain, 24, 78
dot product, 163
double arrow operator, 35
dummy variable

functions, 78
dummy variable (setbuilder), 11

element of a set, 11
embed, 158
empty set, 12
epigraph, 254
equality

arbitrary cartesian products, 103
cartesian products, 72
finite cartesian products, 102

equivalence class, 73
equivalence operator, 35
equivalence relation, 73

equivalent, 73
Euclidean norm, 152
event, 272
exclusive or operator, 37
existential quantification, 53
existential quantifier, 53
extended real function, 140, 271
extended real numbers line, 140
extension of a function, 89
extract finite open subcovering property, 240

family, 92
mutually disjoint, 99
supremum, 128

fiber over f(x), 111
finite measure, 272
finite subcovering, 239
first axiom of countability, 184
first countable, 184
function, 24, 77

ε-δ continuous, 197
argument, 78
assignment operator, 24, 78
bijective, 85
bilinear, 163
bounded from above, 127
bounded from below, 127
bounded function, 127
codomain, 24, 78
composition, 80
constant function, 90
constant real function, 90
continuous in topological spaces, 229
convergence, 207
difference, 90
direct image, 108
domain, 24, 78
domain, natural, 75
extension, 89
fiber over f(x), 111
function value, 78
identity, 80
image, 78
independent variable, 78
infimum, 128
injective, 85
inverse, 85
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left inverse, 88
maps to operator, 24, 78
natural domain, 75
negative function, 90
onto, 85
pointwise convergence, 207
preimage, 78, 108
product, 90
quotient, 90
range, 78
real function, 78, 89
real valued function, 89
restriction, 89
right inverse, 88
scalar product, 90
sequence continuous, 197
sum, 90
supremum, 128
surjective, 85
target, 78
uniform continuity, 204
uniform convergence, 207
zero function, 90

function value, 78

graph, 24, 78
greatest lower bound, 126
greek letters, 290
grid point, 233
group, 258

homomorphism, 260
isomorphism, 260
structure compatible functions, 260

half-open interval, 17
harmonic series, 216
homomorphism, 260
hypothesis, 39

identity, 80
iff, 13
image, 78
implication, 38
implication operator, 38
impossible, logically, 32
inadmissible, 27
increasing sequence, 290
independent variable, 78

index, 91
index set, 92
indexed family, 92
indexed item, 91
indicator function, 113
indirect image, 108
indiscrete topology, 182
induced metric, 184
infimum, 126
infimum of a family, 128
infimum of a sequence, 128
inherited metric, 184
injective function, 85
inner product, 163

norm, 167
integer, 17
integral

definite, 83
indefinite, 84

interior, 227
interior point, 177
interior point (topological space), 182
intersection

family of sets, 98
interval

closed, 17
half-open, 17
open, 17

inverse, 258
inverse function, 85
inverse relation, 74
irrational number, 17
isolated point, 188
isomorphism, 260

L/I (logically impossible), 32
least upper bound, 126
Lebesgue measure, n-dimensional, 272
Lebesgue number, 241
left inverse, 88
lemma, 60
lim inf, 134
lim sup, 133
limit, 129, 180
limit (set sequence), 276
limit inferior, 134
limit inferior (set sequence), 275
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limit point, 188
limit superior, 133
limit superior (set sequence), 275
linear combination, 159
linear function

norm, 206
linear mapping, 160
linear ordering relation, 247
linear space, 155
linear span, 159
linearly dependent, 162
linearly independent, 162
linearly ordered set, 94, 247
logic

antecedent, 39
assertion, 59
axiom, 59
bound variable, 26
compound statement, 30
compound statement functions, 30
conclusion, 39
conjecture, 59
consequent, 39
contrapositive, 39
converse, 39
corollary, 60
existential quantification, 53
existential quantifier, 53
hypothesis, 39
implication, 38
inadmissible, 27
L/I, 32
lemma, 60
predicate, 27
premise, 39
proof, 60
proposition, 26
proposition function, 27
rule of inference, 59
statement, 26
statement function, 27
theorem, 60
truth value, 26
unique existential quantification, 53
unique existential quantifier, 53
universal quantification, 52

universal quantifier, 53
universe of discourse, 26
UoD (universe of discourse, 26
valid assertion, 59

logic operators
arrow, 38
conjunction, 31
disjunction, 36
double arrow, 35
equivalence, 35
exclusive or, 37
implication, 38

logical equivalence, 31
logical operator, 29
logically equivalent, 35
logically impossible, 32
lower bound, 125, 279

mapping
inverse, 85

mapping (see function), 77
maps to operator, 24, 78
maximal element, 247
maximum, 125, 126, 247, 279
measurable space, 271
measure, 271
measure space, 272
member of a set, 11
member of the family, 92
metric, 171

induced, 184
inherited, 184

metric associated with a norm, 173
metric derived from a norm, 173
metric induced by a norm, 173
metric of uniform convergence, 210
metric space, 172

continuity at x0, 199
metric subspace, 184
metric topology, 181
minimum, 125, 279
monoid, 257
monomial, 202
monotone set sequence, 275

natural domain, 75
natural number, 17
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negation operator, 30
negative, 155
neighborhood, 177, 182
neighborhood (metric space), 178
neighborhood base, 183
neighborhood system, 183
net area, 168
neutral element, 257
non–decreasing set sequence, 275
non–increasing set sequence, 275
non-decreasing sequence, 290
non-increasing sequence, 291
norm

Lp–norm on CCC ([a, b],R), 170
p-norm on Rn, 166
Euclidean norm, 152
sup–norm, 165
supremum norm, 165

norm associated with an inner product, 167
norm of uniform convergence, 210
norm on a vector space, 166
norm topology, 182
normalized form (polynomials), 203
normed vector space, 166
not countable set, 104
null vector, 155
nullspace, 155
numbers

algebraic number, 123
integers, 16
irrational number, 16
natural numbers, 16
rational numbers, 16
real numbers, 17
transcendental number, 123

numerator, 277

open covering, 239
Lebesgue number, 241

open interval, 17
open neighborhood (metric space), 178
open set, 177

trace, 185
open sets in a subspace, 186
ordered pair, 72
ordering

partial, 73

parallelepiped, 102
parallelepiped, n-dimensional, 272
partial order relation, 73
partial ordering, 73
partially ordered set, 73
partition, 99
period, 16
period length, 16
permutation, 213

infinite, 214
point of accumulation, 188
pointwise convergence, 207
polynomial, 202
POset, 73

maximal element, 247
maximum, 247

power set, 15
predicate, 27
preimage, 108
premise, 39
prime, 284
prime number, 284
prod, 283
projection, 161
projection on coordinates i1, i2, . . . , iM , 161
proof, 60
proposition, 26
proposition function, 27

quotient, 277

range, 78
rational cut, 266
rational number, 17
real function, 78
real number, 17
rearrangement, 214
reflexive, 72
related items x and y, 72
relation, 72

antisymmetric, 72
empty, 73
equivalence relation, 73
equivalent items, 73
inverse, 74
linear ordering, 247
partial order, 73
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reflexive, 72
symmetric, 72
total ordering, 247
transitive, 72

reordering, 214
repeating decimal, 16
replacement principle for statements, 44
restriction of a function, 89
right inverse, 88
ring of sets, 19
rule of inference, 59

scalar, 159
scalar product, 155
second axiom of countability, 183
second countable, 183
semigroup, 257
sequence, 93, 211

decreasing, 291
increasing, 290
infimum, 128
non-decreasing, 290
non-increasing, 291
numeric, 211
partial sums, 211
start index, 93
strictly decreasing, 291
strictly increasing, 291
subsequence, 94
supremum, 128
tail set, 133

sequence compact, 236
sequence continuous function, 197
sequentially compact, 236
series, 94, 211

absolute convergence, 215
alternating, 216
alternating harmonic, 216
conditionally convergent, 216
harmonic, 216
rearrangement, 214
reordering, 214

set, 11
bounded, 187
cardinality, 103
compact, 240
complete, 192

countable, 104
countably infinite, 104
covering, 239
dense, 17
diameter, 187
difference, 13
difference set, 13
disjoint, 13
finite subcovering, 239
intersection, 13
limit, 276
limit inferior, 275
limit superior, 275
linearly ordered, 94, 247
monotone sequence, 275
non–decreasing sequence, 275
non–increasing sequence, 275
not countable, 104
open covering, 239
partially ordered, 73
POset, 73
setbuilder notation, 11
strict subset, 13
strict superset, 13
strictly decreasing sequence, 275
strictly increasing sequence, 275
subset, 12
superset, 12
symmetric difference, 14
totally ordered, 94, 247
uncountable, 104
union, 13

sets
limit, 142
limit inferior, 142
llimit superior, 142
ring, 19

simple statement, 30
source, 78
span, 159
start index, 93
statement, 26

logical equivalence, 31, 35
replacement principle, 44

statement function, 27
strictly decreasing sequence, 291
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strictly decreasing set sequence, 275
strictly increasing sequence, 291
strictly increasing set sequence, 275
structure compatible functions, 260
sublinear functional, 250
subsequence, 94
subspace

metric, 184
open sets, 186
topological, 186

subspace (of a vector space), 155
subspace, generated, 160
subsript, 91
sum, 155, 282
sum mod 2, 114
sup–norm, 165
supremum, 126
supremum norm, 165
supremum of a family, 128
supremum of a sequence, 128
surjective function, 85
symmetric, 72

tail set, 133
target, 78
tautology, 34
theorem, 60
topological space, 181

continuous function, 229
first axiom of countability, 184
first countable, 184
second axiom of countability, 183
second countable, 183

topological subspace, 186
topology, 181

discrete topology , 182
generated by metric, 181
generated by norm, 182
indiscrete topology , 182
induced by metric, 181
induced by norm, 182
metric topology, 181
norm topology , 182

total ordering relation, 247
totally bounded, 235
totally ordered set, 94, 247
trace, 185

transcendental number, 123
transitive, 72
triangle inequality, 18
truth table, 31
truth value, 26

unary operator, 31
uncountable set, 104
uniform continuity, 204
uniform convergence, 207

metric, 210
norm, 210

uniformly continuous, 200
union

family of sets, 98
unique existential quantification, 53
unique existential quantifier, 53
universal quantification, 52
universal quantifier, 53
universal set, 14
universe of discourse, 26
UoD (universe of discourse), 26
upper bound, 125, 279

valid assertion, 59
vector, 149

Euclidean norm, 150
length , 150
norm, Euclidean, 152
scalar product, 150
sum, 150, 154

vector (element of a vector space), 155
vector space, 149, 155

basis, 162
normed, 166

xor, 37

zero element, 155
zero vector, 155
ZL property (Zorn’s Lemma), 247
Zorn’s Lemma, 247
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