Math 330 Section 3 - Fall 2017 - Homework 03

Published: Thursday, August 31, 2017
Last submission: Wednesday, September 6, 2017

Running total: 15 points
NO RESUBMISSIONS
(that is two days before the last submission date for hwk 2!)
Correction on 9/1/2017: Bad last submission date 9/2/2017 has been amended to 9/6/2017.
This homework is published concurrently with homework 4

Clarification:

a. Correct: No matter what A stands for, it is never true that $A=\{A\}$. Not even if $A=\emptyset$ (the empty set): $\{\emptyset\}$ is a set: it is of the form $\{\ldots . .$.$\} . But \{\emptyset\}$ contains an element (exactly one): The empty set! So $\{\emptyset\} \neq \emptyset$. By the way: It is true that $\emptyset \subseteq\{\emptyset\}$!
b. Correct: No matter what A stands for, it is never true that $A \in A$. Again, not even if $A=\emptyset$ (the empty set): The empty set contains nothing at all; in particular, it does not contain any set; in particular, it does not contain the set that has no elements, i.e., the empty set.
c. CAREFUL HERE: If I told anyone of you that it is impossible to have both $a \in U$ and $\{a\} \in U$ then I made a mistake. Matter of fact, the first assignment of this homework has an example that this is possible.

Written assignments 1-4

Do the four exercises of MF ch. 2.3.2: Examples and exercises for sets. Each one is worth two points!
A. In the MF doc refer to example 4.4 for the preliminary definition of cardinality of a set S : If S is finite then $\operatorname{card}(S)$ is the number of elements of S, otherwise $\operatorname{card}(S)=\infty$.
B. Refer to MF doc def.4.1 (Cartesian Product of two sets) for the definition of Cartesian product.

You'll find both references in ch.4.1 (Cartesian products and relations). Reminder: this chapter was part of the assigned reading for Friday, September 1, 2017.

Written assignment 1 (exercise 2.1):

Let $S=\{3,5,\{3,5\},\{5\}\}$. True or false?
a. $\{5\} \subseteq S$
b. $\{5\} \in S$
c. $\{\{5\}\} \subseteq S$
d. $\{\{5\}\} \in S$
e. $\{3\} \subseteq S$
f. $\{3\} \in S$
g. $3 \subseteq S$
h. $3 \in S$

Written assignment 2 (exercise 2.2):

Find the cardinality of each of the following sets:
a. $A=\{x,\{x\}, y,\{x\},\{x, y\}\}$
b. $B=\{a,\{a\},\{b\}\}$
c. $C=\{j, k, j, k, j\}$
d. $D=\left\{4 q^{2}: q \in \mathbb{Z}\right\}$
e. $E=\left\{e^{x}: x \in \mathbb{R}\right\}$
f. $F=\left\{(-1)^{m}: m \in \mathbb{Z}\right\}$

Written assignment 3 (exercise 2.3):

Let $X=\{x, y,\{x\},\{x, y\}\}$ and $Y=\{x,\{y\}\}$. True or false?
a. $x \in X \cap Y$
b. $\{y\} \in X \cap Y$
c. $x \in X \cup Y$
d. $\{y\} \in X \cup Y$
e. $x \in X \backslash Y$
f. $\{y\} \in X \backslash Y$
g. $x \in X \Delta Y$
h. $\{y\} \in X \Delta Y$

Written assignment 4: Written assignment 4 (exercise 2.4):

Let $X=\{x, y\}$ and let $Y=\{1,2,3\}$.
a. What is $X \times Y$?
c. What is $\operatorname{card}(X \times Y)$?
e. Is $(x, 3) \in X \times Y$?
g. Is $3 \cdot x \in X \times Y$?
b. What is $Y \times X$?
d. What is $\operatorname{card}(Y \times X)$?
f. Is $(x, 3) \in Y \times X$?
h. Is $2 \cdot y \in Y \times X$?

