Math 330 Section 3 - Fall 2017 - Homework 03

Published: Thursday, August 31, 2017 Last submission: Wednesday, September 6, 2017 (that is two days before the last submission date for hwk 2!) *Running total:* 15 *points* **NO RESUBMISSIONS**

Correction on 9/1/2017: Bad last submission date 9/2/2017 has been amended to 9/6/2017.

This homework is published concurrently with homework 4

Clarification:

- **a.** Correct: No matter what *A* stands for, it is never true that $A = \{A\}$. Not even if $A = \emptyset$ (the empty set): $\{\emptyset\}$ is a set: it is of the form $\{\dots, \}$. But $\{\emptyset\}$ contains an element (exactly one): The empty set! So $\{\emptyset\} \neq \emptyset$. By the way: It is true that $\emptyset \subseteq \{\emptyset\}$!
- **b.** Correct: No matter what *A* stands for, it is never true that $A \in A$. Again, not even if $A = \emptyset$ (the empty set): The empty set contains nothing at all; in particular, it does not contain any set; in particular, it does not contain the set that has no elements, i.e., the empty set.
- **c. CAREFUL HERE**: If I told anyone of you that it is impossible to have both $a \in U$ and $\{a\} \in U$ then I made a mistake. Matter of fact, the first assignment of this homework has an example that this is possible.

Written assignments 1-4

Do the four exercises of MF ch. 2.3.2: Examples and exercises for sets. Each one is worth two points!

A. In the MF doc refer to example 4.4 for the preliminary definition of cardinality of a set *S*: If *S* is finite then card(S) is the number of elements of *S*, otherwise $card(S) = \infty$.

B. Refer to MF doc def.4.1 (Cartesian Product of two sets) for the definition of Cartesian product.

You'll find both references in ch.4.1 (Cartesian products and relations). Reminder: this chapter was part of the assigned reading for Friday, September 1, 2017.

Written assignment 1 (exercise 2.1):

Let $S = \{3, 5, \{3, 5\}, \{5\}\}$. True or false?

a. $\{5\} \subseteq S$ **c.** $\{\{5\}\} \subseteq S$ **e.** $\{3\} \subseteq S$ **g.** $3 \subseteq S$ **b.** $\{5\} \in S$ **d.** $\{\{5\}\} \in S$ **f.** $\{3\} \in S$ **h.** $3 \in S$

Written assignment 2 (exercise 2.2):

Find the cardinality of each of the following sets:

a. $A = \{x, \{x\}, y, \{x\}, \{x, y\}\}$ **c.** $C = \{j, k, j, k, j\}$ **e.** $E = \{e^x : x \in \mathbb{R}\}$ **b.** $B = \{a, \{a\}, \{b\}\}$ **d.** $D = \{4q^2 : q \in \mathbb{Z}\}$ **f.** $F = \{(-1)^m : m \in \mathbb{Z}\}$

Written assignment 3 (exercise 2.3):

Let $X = \{x, y, \{x\}, \{x, y\}\}$ and $Y = \{x, \{y\}\}$. True or false?

a. $x \in X \cap Y$ **c.** $x \in X \cup Y$ **e.** $x \in X \setminus Y$ **g.** $x \in X\Delta Y$ **b.** $\{y\} \in X \cap Y$ **d.** $\{y\} \in X \cup Y$ **f.** $\{y\} \in X \setminus Y$ **h.** $\{y\} \in X\Delta Y$

Written assignment 4: Written assignment 4 (exercise 2.4):

Let $X = \{x, y\}$ and let $Y = \{1, 2, 3\}$.

a. What is $X \times Y$? **c.** What is $card(X \times Y)$? **e.** Is $(x, 3) \in X \times Y$? **g.** Is $3 \cdot x \in X \times Y$? **b.** What is $Y \times X$? **d.** What is $card(Y \times X)$? **f.** Is $(x, 3) \in Y \times X$? **h.** Is $2 \cdot y \in Y \times X$?