Math 330 Section 3 - Fall 2017 - Homework 04

Published: Thursday, August 31, 2017
Last submission: Friday, September 15, 2017

Running total: 18 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
all of ch.1, ch. 2 except the material on $\operatorname{gcd}(m, n)$, all of ch. 3

MF lecture notes:
ch.1; ch. 2 except optional ch.2.2.1 (Rings \& Algebras of Sets),
ch. 4 (Functions and relations) of the MF document until before ch.4.2.2
ch.13.1 up to and including example 13.5
ch. 16 (Addenda to B / G): the chapters corresponding to what has been assigned from B / G.
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)

New reading assignments:

Reading assignment 1 - due Monday, September 4: (Labor Day)
a. Continue carefully reading ch. 4 of the MF doc up to and including ch.4.2.5 (Operations on Real Functions)
b. Read carefully B/G ch.4.1 and 4.2.

Reading assignment 2 - due: Wednesday, September 6:

a. Read carefully the remainder of B / G ch.4.

Reading assignment 3 - due Friday, September 8:

a. Read carefully B/G ch.5.

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.

Written assignment 1: Prove B/G Prop. 4.6(iii) using induction: Given the definition of "Power" between props 4.5 and 4.6 , prove that if $b \in \mathbb{Z}$ and $m, k \in \mathbb{Z}_{\geq 0}$ then

$$
\left(b^{m}\right)^{k}=b^{m k}
$$

You may use everything up to and including Prop.4.6(ii). Note that the proof of Prop.4.6(ii) provides an excellent template for your own proofs using induction.

Written assignment 2: Prove B/G Prop. 4.7(i) using induction: Let $k \in \mathbb{N}$. Then $5^{2 k}-1$ is divisible by 24 .
You may use everything up to but not including Prop.4.7.
Written assignment 3: Prove B / G Prop. 4.16(i) by induction on c : Let $\left(x_{j}\right)_{j \in \mathbb{N}}$ be a sequence in \mathbb{Z} and let $a, b, c \in \mathbb{Z}$ such that $a \leq b<c$. Then

$$
\sum_{j=a}^{c} x_{j}=\sum_{j=a}^{b} x_{j}+\sum_{j=b+1}^{c} x_{j}
$$

For this proof use the generalized definition of " Σ " given in MF ch.16.4.1 instead of the one given in B/G p.34, 35!

Hints: Think carefully about the base case: If $a=5$, how would you choose b and c ? If $a=28$, how would you choose b and c ? For general a, how would you choose b and c ?

