Math 330 Section 3 - Fall 2017 - Homework 05

Published: Thursday, September 7, 2017
Running total: 22 points
Last submission: Monday, September 25, 2017
Correction: Last submission date has changed from Friday, September 22 (Rosh Hashanah)

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
all of ch.1, ch. 2 except the material on $\operatorname{gcd}(m, n)$, all of ch. $3-5$

MF lecture notes:
ch.1; ch. 2 except optional ch.2.2.1 (Rings \& Algebras of Sets),
ch. 4 (Functions and relations) of the MF document up to and including ch.4.2.5 (Operations on Real Functions)
ch. 13.1 up to and including example 13.5
ch. 16 (Addenda to B / G): the chapters corresponding to what has been assigned from B / G.
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)

New reading assignments:

Reading assignment 1 - due Monday, September 11:

a. Read carefully the remainder of MF doc ch.4.
b. Read carefully MF doc ch.5.

Reading assignment 2 - due: Wednesday, September 13:

a. Read carefully MF doc ch.6.1.
b. Optional but highly recommended: Read B/K lecture notes ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions

Reading assignment 3 - due Friday, September 15:

a. Read carefully the remainder of MF doc ch.6.
b. Read carefully B/G ch. 6.1 (Equivalence Relations).

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.

Written assignment 1: (You'll get one point each for \mathbf{a} and \mathbf{b})
Given are four sets A, B, C, D. prove that
a. $(A \times B) \cap(C \times D) \subseteq(A \cap C) \times(B \cap D)$,
b. $(A \times B) \cap(C \times D) \supseteq(A \cap C) \times(B \cap D)$.

Written assignment 2: (You'll get one point each for \mathbf{a} and \mathbf{b})
Prove equation (5.8) of MF prop 5.1 (p.92) for the case $a<b$: Let $a, b \in \mathbb{R}$ such that $a<b$. For $n \in \mathbb{N}$ let $A_{n}:=[a+1 / n, b-1 / n]$. Then
a. $\quad] a, b\left[\subseteq \bigcup_{n \in \mathbb{N}} A_{n}\right.$,
b. $\quad] a, b\left[\supseteq \bigcup_{n \in \mathbb{N}} A_{n}\right.$.
(Hint \#1) Be sure you read the remarks that precede prop.5.1.
(Hint \#2) Read and understand case $3(a<b)$ of the proof for equation (5.7) of MF prop 5.1 before you attempt to do this homework.

To give an acceptable proof, both \mathbf{a} and \mathbf{b} will require you to state at the appropriate place that $\bigcup_{n \in \mathbb{N}} A_{n}=\left\{x: x \in A_{n}\right.$ for __ What goes here? __ $\}$

