Math 330 Section 2 - Spring 2017 - Homework 06

Published: Thursday, September 7, 2017
Running total: 28 points
Last submission: Wednesday, September 20, 2017 NO RESUBMISSIONS
This homework is published concurrently with homework 5. It is worth a total of 6 points.

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
all of ch.1, ch. 2 except the material on $\operatorname{gcd}(m, n)$, all of ch. 3 - 5

MF lecture notes:
ch.1; ch. 2 except optional ch.2.2.1 (Rings \& Algebras of Sets),
ch. 4 (Functions and relations) of the MF document up to and including ch.4.2.5 (Operations on Real Functions)
ch. 13.1 up to and including example 13.5
ch. 16 (Addenda to B / G): the chapters corresponding to what has been assigned from B/G.
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)

New reading assignments: None: They came with homework 5.

Written assignment 1:

Injectivity and Surjectivity

- Let $f: \mathbb{R} \longrightarrow\left[0, \infty\left[; \quad x \mapsto x^{2}\right.\right.$.
- Let $g:\left[0, \infty\left[\longrightarrow\left[0, \infty\left[; \quad x \mapsto x^{2}\right.\right.\right.\right.$.

In other words, g is same function as f as far as assigning function values is concerned, but its domain was downsized to $[0, \infty[$.

Answer the following with true or false.
a. f is surjective
b. f is injective
c. g is surjective
d. g is injective

If your answer is false then give a specific counterexample.

Written assignment 2:

Find $f: X \longrightarrow Y$ and $A \subseteq X$ such that $f\left(A^{\complement}\right) \neq f(A)^{\text {С }}$. Hint: use $f(x)=x^{2}$ and choose Y as a one element only set (which does not leave you a whole lot of choices for X). See example 4.17 on p.76.

Written assignment 3:

You will learn later in this course that
injective \circ injective $=$ injective,
surjective \circ surjective $=$ surjective.

The following illustrates that the reverse is not necessarily true.
Find functions $f:\{a\} \longrightarrow\left\{b_{1}, b_{2}\right\}$ and $g:\left\{b_{1}, b_{2}\right\} \longrightarrow\{a\}$ such that $h:=g \circ f:\{a\}$ is bijective but such that it is not true that both f, g are injective and it is also not true that both f, g are surjective.

Hint: There are not a whole lot of possibilities. Draw possible candidates for f and g in arrow notation as on p.118. You should easily be able to figure out some examples. Again, think simple and look at example 4.17 on p. 76 .

