Math 330 Section 3 - Fall 2017 - Homework 07

Published: Thursday, September 14, 2017

Running total: 34 points

Last submission: Friday, September 29, 2017
Update Sept 19: Requirement for written assignments 2 and 3: You are not allowed to use MF prop 6.5.

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
all of ch.1, ch. 2 except the material on $\operatorname{gcd}(m, n)$, all of ch. $3-5$, ch.6.1.

MF lecture notes:
ch.1; ch. 2 except optional ch.2.2.1 (Rings \& Algebras of Sets),
ch. 4 - 6
ch. 13.1 up to and including example 13.5
ch. 16 (Addenda to B / G): the chapters corresponding to what has been assigned from B / G.
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

New reading assignments:

Reading assignment 1 - due Monday, September 18:

a. Read carefully B/G ch.9.1 (Injections and Surjections). You have encountered almost all of that material in MF ch. 4 .
b. Read carefully B/G ch.6.2 (The Division Algorithm).
c. Read the corresponding parts of MF ch.16.

Reading assignment 2 - due: Wednesday, September 20:

a. Read carefully the remainder of B / G ch. 6 .
b. Read the corresponding parts of MF ch.16.

Reading assignment 3 - due Friday, September 22:

a. Read carefully B/G ch.7.1 and ch.7.2 up to and including thm.7.17, but skip the proof of that theorem. We will not talk in lecture about the remainder of B / G ch.7.
b. Read the corresponding parts of MF ch.16.

Written assignment 1: (One point each for \mathbf{a} and \mathbf{b}) Prove formula b of De Morgan's Law:
Let there be a universal set Ω.
Then for any indexed family $\left(A_{\alpha}\right)_{\alpha \in I}$ of sets:

$$
\left(\bigcap_{\alpha} A_{\alpha}\right)^{\complement}=\bigcup_{\alpha} A_{\alpha}^{\complement}
$$

a: Prove " \subseteq ". b: Prove " \supseteq ".

You are not allowed to use MF prop 6.5 (Indirect image and fibers of f) which states, among other things, that

$$
x_{1} \sim x_{2} \Leftrightarrow f\left(x_{1}\right)=f\left(x_{2}\right)
$$

defines an equivalence relation. You are encouraged to review the material in MF doc ch.4-6 and B / G ch. 6.1 on equivalence relations before attacking those problems.

Written assignment 2: (One point each for \mathbf{a} and \mathbf{b})
Let $L: \mathbb{R}^{2} \longrightarrow\left[0, \infty\left[\right.\right.$ be the function which assigns to a vector $\vec{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ its "length" $L(\vec{x}):=\sqrt{x_{1}^{2}+x_{2}^{2}}$.

For two such vectors $\vec{x}=\left(x_{1}, x_{2}\right)$ and $\vec{y}=\left(y_{1}, y_{2}\right)$ we write $\vec{x} \sim \vec{y}$ iff $L(\vec{x})=L(\vec{y})$.
a: Prove that \sim is indeed an equivalence relation for \mathbb{R}^{2}.
b: Three of the following 4 points belong to the same equivalence class: $(0,2),(1,1),(2,0),(\sqrt{2}, \sqrt{2})$ Which ones?.

Written assignment 3: (One point each for \mathbf{a} and \mathbf{b})
Let X, Y be two nonempty sets and let $f: X \longrightarrow Y$. For $a, b \in X$ we write $a \sim b$ iff $f(a)=f(b)$.
a: Prove that \sim is indeed an equivalence relation for X.
b: Write $[x]_{f}$ for the equivalence class of $x \in X$ with respect to " \sim ". Express $[x]_{f}$ in terms of the function $f:[x]_{f}=\left\{x^{\prime} \in X: f\left(x^{\prime}\right) \ldots . . ? ? \ldots \ldots.\right\}$. (I do not want to see " $[x]_{f}=\left\{x^{\prime} \in X: x^{\prime} \sim x\right\}^{\prime \prime}$.)

