Math 330 Section 3 - Fall 2017 - Homework 08

Published: Thursday, September 21, 2017
Running total: 37 points
Last submission: Friday, October 6, 2017
Update Sept 28: Yet more hints for written assignments 1 and 2: Added equations (16.10) and (16.12).

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
all of ch.1, ch. 2 except the material on $\operatorname{gcd}(m, n)$,
all of ch.3-6, ch. 7 (skip after thm.7.17), ch.9.1
MF lecture notes:
ch.1; ch. 2 except optional ch.2.2.1 (Rings \& Algebras of Sets),
ch. 4 - 6
ch. 13.1 up to and including example 13.5
ch. 16 (Addenda to B / G): the chapters corresponding to what has been assigned from B / G.
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

New reading assignments:

Reading assignment 1 - due Monday, September 25:

a. Read carefully the very end of B / G ch.2: the material on $\operatorname{gcd}(m, n)$. This is needed for B / G ch.6.4 (Prime Numbers).
b. Read carefully B/G ch.8.1-8.2. Much of it is just a repetition of the rules of arithmetic and ordering that already were discussed in ch. 1 and 2 for integers, but beware of the differences (like division)!
c. Read the corresponding parts of MF ch.16.

Reading assignment 2 - due: Wednesday, September 27:

a. Read carefully the remainder of B / G ch.8.
b. Finish B/G ch.9.
c. Read the corresponding parts of MF ch.16.

Reading assignment 3 - due Friday, September 29:

a. Read carefully MF ch.8.1 (Minima, Maxima, Infima and Suprema).
b. Read carefully B/G ch.10.1-10.3.
c. Read the corresponding parts of MF ch.16.

Written assignments:

Do not use induction for any of those assignments. It would only make your task more difficult!

$\# 1$ and \#2 are about proving B/G thm.6.13 (Division algorithm for integers): Let $n \in \mathbb{N}$ and $m \in \mathbb{Z}$. There exists a unique combination of two integers q ("quotient") and r ("remainder") such that

$$
m=n \cdot q+r \quad \text { and } 0 \leq r<n .
$$

Written assignment 1:

Prove uniqueness of the "decomposition" $m=q n+r$: If you have a second such decomposition $m=\tilde{q} n+\tilde{r}$ then show that this implies $q=\tilde{q}$ and $r=\tilde{r}$. Start by assuming that $r \neq \tilde{r}$ which means that one of them is smaller than the other and take it from there.

Written assignment 2 :

Much harder than \#1: Prove the existence of q and r.
Hints for \#2: Review the Well-Ordering principle from B/G ch.2. Its use will give the easiest way to prove this theorem. Remember we extended the well-ordering principle as follows in MF thm. 16.1 (Generalization of the Well-Ordering Principle): Let $A \subseteq \mathbb{Z}$ have lower bounds (which is especially true if $A \subseteq \mathbb{N}$ or $A \subseteq \mathbb{Z}_{\geq 0}$). If $A \neq \emptyset$ then A has a minimum.

Apply the above to the set $A:=A(m, n):=\left\{x \in \mathbb{Z}_{\geq 0}: x=m-k n\right.$ for some $\left.k \in \mathbb{Z}\right\}$.
Hint for both \#1 and \#2: MF prop. 16.8 and cor.16.3 from ch.16.6.2 (The Division Algorithm) will come in handy in connection with $0 \leqq r<n$: If $m, n \in \mathbb{Z}_{\geq 0}$ then

$$
\begin{align*}
& |n-m| \leqq \max (m, n), \text { i.e., } \tag{16.10}\\
& -\max (x, y) \leqq x-y \leqq \max (x, y), \tag{16.11}\\
& -n<y-x<n . \tag{16.12}
\end{align*}
$$

Written assignment 3 :

Prove prop.6.16, p. 59 of \mathbf{B} / \mathbf{G} : Let $m \in \mathbb{Z}$. Then either m is even or $m+1$ is even.
Hint: Apply the division algorithm with $n=2$. One of the preceding propositions in B / G ch. 6 will make things really easy.

