Math 330 Section 3 - Fall 2017 - Homework 09

Published: Thursday, September 28, 2017

Running total: 40 points

Last submission: Friday, October 13, 2017

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
all of ch. 1 - ch.6, ch. 7 (skip after thm.7.17), ch. 8 - 9, ch.10.1-10.3

MF lecture notes:
ch.1; ch. 2 except optional ch.2.2.1 (Rings \& Algebras of Sets),
ch. $4-6$, ch.8.1 (Minima, Maxima, Infima and Suprema),
ch.13.1 up to and including example 13.5,
ch. 16 (Addenda to B / G): the chapters corresponding to what has been assigned from B/G.
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

New reading assignments:

Reading assignment 1 - due Monday, September 25:

a. Read Stewart Calculus 7ed - ch.1.7: "The Precise Definition of a Limit". If you have a newer or older edition then you may have to search through the table of contents and/or consult the index.
b. Read carefully B/G ch.10.4 (Limits).

Reading assignment 2 - due: Wednesday, September 27:

a. Exam prep!

Reading assignment 3 - due Friday, September 29:

a. Read carefully MF ch.8. 2 (Convergence and Continuity in \mathbb{R}).
b. Read carefully the end of B / G ch.10.

Written assignment 1:

Prove B/G Prop.7.1 using induction: If $n \in \mathbb{N}$ then $n<10^{n}$. You may use the fact that 10 (defined as $9+1$) satisfies $0<1<2<10$. Justify your inequalities referring to B/G prop. 2.7(i) - 2.7(iv).

Written assignment 2 (One point each for parts a and b.)
Define $\nu: \mathbb{Z}_{\geqq 0} \longrightarrow \mathbb{Z}_{\geqq 0}$ as follows: $\nu(0):=0$. For $n \in \mathbb{N}$ proceed as follows: Let

$$
A:=A(n):=\left\{t \in \mathbb{N}: n<10^{t}\right\} ; \quad \text { define } \nu(n):=\min (A) .
$$

B/G prop.7.3 states that, for all $n \in \mathbb{N}, \nu(n)=k \Longleftrightarrow 10^{k-1} \leqq n<10^{k}$.

2a. Prove " \Rightarrow " of B/G prop.7.3.
2b. Prove " \Leftarrow " of B/G prop.7.3.
The math for assignment 2 is easy but you may find it hard to write down a proof that meets my demands for precision.

Hints for \#2 and \#3: 1) I gave the set a name (A) on purpose: this allows you to express with minimal effort fragments such as " $x \in A$ ", " $x \notin A$ ", "because $\nu(m)=\min (A)$ ", \ldots
2) You may use without proof the "no gaps property" of A : if $x, y \in \mathbb{N}$ and $x \in A$ and $y>x$ then $y \in A$. (would you be able to figure out why?)

