Math 330 Section 3 - Fall 2017 - Homework 11

Published: Thursday, October 12, 2017
Running total: 45 points
Last submission: Friday, October 27, 2017
Note: This is the Fall break assignment (no lecture on Mon, 10/16).

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
all of ch. 1 - ch.6, ch. 7 (skip after thm.7.17), ch. 8 - 10

MF lecture notes:
ch.1; ch. 2 except optional ch.2.2.1 (Rings \& Algebras of Sets),
ch. $4-6$, ch. 8.1 and 8.2
ch.8.1-8.4, except: Skip the proofs of prop.8.13, 8.14, 8.15, cor.8.2, thm.8.2; skip rem.8.6
ch. 13.1 up to and including example 13.5,
ch. 16 (Addenda to B / G): the chapters corresponding to what has been assigned from B / G.
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)
Other:
Stewart Calculus 7ed - ch.1.7: "The Precise Definition of a Limit". If you have a newer or older edition then you may have to search through the table of contents and/or consult the index.

Reading assignment 1 - due Monday, October 16: (Fall break)

a. Read carefully MF ch.7.1 until before prop.7.1 ($11 / 2$ pages) That's just enough so you can understand rem. 8.6 which is part of the next assignment ...
b. Read carefully the end of MF ch. 8 (that's ch.8.5).
c. Read carefully B/G ch.11.1 (Rational Numbers).

Reading assignment 2 - due: Wednesday, October 18:

a. Read carefully B/G ch.11.2 (Irrational Numbers).
b. Read B/G ch. 11.3 (Quadratic Equations). Skip all proofs!

Reading assignment 3 - due Friday, October 20:

a. Read carefully B/G ch. 12 (Decimal Expansions) through prop.12.7.

Written assignment 1:

Prove MF doc excercise 8.7: Let $x_{n}:=(-1)^{n}$ for $n \in \mathbb{N}$. Prove that $\liminf _{n} x_{n}=-1$ and $\limsup _{n} x_{n}=1$ by working with the tailsets of that sequence. Do not use anything after definition 8.14!
Hint: What is α_{n} and β_{n} ?

Written assignment 2:

Prove B/G prop.10.10(iv): $x, y \in \mathbb{R} \Rightarrow|x-y| \geq||x|-|y||$.
Hint \#1: To show this use the following proposition (very similar to B/G prop.10.8(v)).
Proposition. (B/G prop.10.8(v)) Let $a, b \in \mathbb{R}$ such that both \#1) $-a \leqq b$ and \#2) $a \leqq b$. Then $|a| \leqq b$.
Proof of proposition:
Case 1) $a \geqq 0$: It follows from \#2 that $|a|=a \leqq b$ which is what we had to show.
Case 2) $a<0$: It follows from \#1 that $|a|=-a \leqq b$ which is what we had to show.
Hint \#2: first use the triangle inequality on $|x|=|(x-y)+y|$ and then on $|y|=|(y-x)+x|$. See what you get for $a:=|x|-|y|$ and $b:=|x-y|$.

