Math 330 Section 3 - Fall 2017 - Homework 12

Published: Thursday, October 19, 2017
Last submission: Friday, November 3, 2017

Running total: 47 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
all of ch. 1 - ch.6, ch. 7 (skip after thm.7.17), ch. 8 - 11, ch. 12 through prop.12.7.

MF lecture notes:
ch.1; ch. 2 except optional ch.2.2.1 (Rings \& Algebras of Sets), ch. $4-6$, ch.7.1 until before prop.7.1,
ch.8, except: Skip the proofs of prop.8.13, 8.14, 8.15, cor.8.2, thm.8.2; skip rem.8.6
ch. 13.1 up to and including example 13.5,
ch. 16 (Addenda to B / G): the chapters corresponding to what has been assigned from B / G.
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)
Other:
Stewart Calculus 7ed - ch.1.7: "The Precise Definition of a Limit". If you have a newer or older edition then you may have to search through the table of contents and/or consult the index.

New reading assignments:

Reading assignment 1 - due Monday, October 23:

a. Read carefully the end of B/G ch.12.
b. Continue carefully reading MF ch. 7 through cor. 7.5 (\mathbb{Z} is countable).

Reading assignment 2 - due: Wednesday, October 18:

a. Continue carefully reading the remainder of MF ch.7.

Reading assignment 3 - due Friday, October 20:

a. Carefully reread MF ch. 8.5 (Sequences that Enumerate Parts of Q). Skip nothing!
b. Read carefully B/G ch.13.1. Lots of overlap with MF ch.7!

Written assignment 1:

Prove B/G Thm.11.12, p.110: If $r \in \mathbb{N}$ is not a perfect square, then \sqrt{r} is irrational.
Hint: Study the proof of prop. 11.10 carefully and you'll see that you can use it with small alterations.

Written assignment 2 :

Use everything up-to and including B/G prop.11.10 PLUS all of B/G prop.11.20 and B/G prop.11.21 to prove the following: Let $m, n \in \mathbb{Z} \backslash\{0\}$. Then $(m / n) \sqrt{2}$ is irrational.

