Math 330 Section 3 - Fall 2017 - Homework 16

Published: Thursday, November 16, 2017
Last submission: Friday, December 1, 2017

Running total: 58 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
all of ch. 1 - ch.6, ch. 7 (skip after thm.7.17), ch. 8 - 13.
B/G Appendix A (Continuity and Uniform Continuity)
MF lecture notes:
ch.1; ch. 2 except optional ch.2.2.1 (Rings \& Algebras of Sets),
ch. $4-7$,
ch.8, except: Skip the proofs of prop.8.13, 8.14, 8.15, cor.8.2, thm.8.2;
ch. 9 except optional ch.9.2.3, ch. 10 except optional ch.10.1.6, ch.11.1 and 11.2,
ch.13.1 up to and including example 13.5,
ch. 16 (Addenda to B / G): the chapters corresponding to what has been assigned from B/G.
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)
Other:

- Stewart Calculus 7ed - ch.1.7: "The Precise Definition of a Limit". If you have a newer or older edition then you may have to search through the table of contents and/or consult the index.
- Paul Dawkins: Linear Algebra (lecture notes): Vector Spaces - Subspaces p.193: def.1, thm 1 Span, p.202: def 1, def 2, thm 1 - Linear independence, p.210: def. 1 - Basis \& dimension, p.220: def.1, thm 2, def 2, thm 3.

New reading assignments:

Reading assignment 1 - due Monday, November 20:

a. Read carefully MF ch. 11.3 and 11.4. This is very tough reading and you need to understand the material in MF ch.10.1 and ch.10.2.

Reading assignment 2 - due: Wednesday, November 22:

a. Read carefully the remainder of MF ch. 11 This assignment will be repeated for Monday, November 27.

Written assignment 1: MF Exercise 10.2. Prove thm.10.1.
Let $(V,\|\cdot\|)$ be a normed vectors space. Then the function

$$
\begin{equation*}
d_{\|\cdot\|}(\cdot, \cdot): V \times V \rightarrow \mathbb{R}_{\geqq 0} ; \quad(x, y) \mapsto d_{\|\cdot\|}(x, y):=\|y-x\| \tag{0.1}
\end{equation*}
$$

defines a metric space $\left(V, d_{\|\cdot\|}\right)$.

Hint: This proof is very easy. Even the triangle inequality for the metric $d(x, y)=\|x-y\|$ follows easily from the triangle inequality for the norm.

Written assignment 2: MF Exercise 10.16. Prove prop.10.15.
Let (X, \mathfrak{U}) be a topological space and $A \subseteq B \subseteq X$. Then $\bar{A} \subseteq \bar{B}$.
Written assignment 3: MF Exercise 10.15. Prove prop.10.17.
Let (X, \mathfrak{U}) be a topological space and $A \subseteq X$. Then $\partial A=\bar{A} \cap \overline{A^{\complement}}$.

