Math 330 Section 3 - Fall 2017 - Homework 17

Published: Friday, November 24, 2017
Last submission: Friday, December 8, 2017

Running total: 60 points

Update Dec 4, 2017
Every student will get a point for assignment 2 because I had messed it up, talking about continuity rather than convergence!

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
all of ch. 1 - ch.6, ch. 7 (skip after thm.7.17), ch. $8-13$.
B/G Appendix A (Continuity and Uniform Continuity)
MF lecture notes:
ch.1; ch. 2 except optional ch.2.2.1 (Rings \& Algebras of Sets), ch.4-7,
ch.8, except: Skip the proofs of prop.8.13, 8.14, 8.15, cor.8.2, thm.8.2;
ch. 9 except optional ch.9.2.3, ch. 10 except optional ch.10.1.6, ch.11.1-11.4,
ch. 13.1 up to and including example 13.5,
ch. 16 (Addenda to B / G): the chapters corresponding to what has been assigned from B / G.
B / K lecture notes:
ch.1.1 (Introduction to sets) (optional)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions (optional)

Other:

- Stewart Calculus 7ed - ch.1.7: "The Precise Definition of a Limit". If you have a newer or older edition then you may have to search through the table of contents and/or consult the index.
- Paul Dawkins: Linear Algebra (lecture notes): Vector Spaces - Subspaces p.193: def.1, thm 1 Span, p.202: def 1, def 2, thm 1 - Linear independence, p.210: def. 1 - Basis \& dimension, p.220: def.1, thm 2, def 2, thm 3.

New reading assignments:

Reading assignment 1 - due Monday, November 27:

a. Read carefully MF ch. 11.5 and 11.6 (the remainder of ch.11).

Reading assignment 2 - due: Wednesday, November 29:

a. Read carefully MF ch.12.1-12.3.

Reading assignment 3 - due Friday, December 1:

a. Read carefully MF ch.12.4-12.5.1. Read ch.12.5.1 even though it is optional!

Written assignment 1 :

Let $f(x)=x^{2}$. Prove by use of " $\varepsilon-\delta$ continuity" that f is continous at $x_{0}=1$.

Hints:

a. What does $d\left(x, x_{0}\right)<\delta$ and $d\left(f(x), f\left(x_{0}\right)<\varepsilon\right.$ translate to?
b. $\quad x^{2}-1=(x+1)(x-1)$.
c. Only small neighborhoods matter: Given $\varepsilon>0$ try to find δ that works for $0<\varepsilon<1$. Restrict your search to $\delta<1$. What kind of bounds do you get for $\left|x^{2}-1\right|,|x+1|,|x-1|$? if $0<\delta<1$?
d. Put all the above together. Show that you obtain $\left|f(x)-f\left(x_{0}\right)\right| \leq 3 \delta$?. How then do you choose δ when you consider عasgiven?

Written assignment 2:

MF Exercise 10.23: Prove MF prop. 10.7 (Opposite of convergence):
A sequence $\left(x_{k}\right)_{k}$ with values in (X, d) does not have $L \in X$ as its limit if and only if there exists some $\varepsilon>0$ and $n_{1}<n_{2}<n_{3}<\cdots \in \mathbb{N}$ such that $d\left(x_{n_{j}}, L\right) \geq \varepsilon$ for all j.

