Math 330 - Number Systems - Sample Exam Problems

Last update: July 28, 2017.

The following list of problems is typical for what you might find on my first Math 330 exam. I plan to add to this list in the future and also include sample problems for exam 2 and the final exam.

Problem 0.1. (Induction). Let $x_1=1, x_2=1+\frac{1}{2}, \ldots, x_k=\sum_{j=1}^k \frac{1}{j}$ $(k\in\mathbb{N})$. Prove by induction that $\sum_{k=1}^n x_k=(n+1)x_n-n$ $(n\in\mathbb{N})$.

Problem 0.2. (**Induction**). Prove by induction that $\sum_{j=1}^{n} j(j!) = (n+1)! - 1$ $(n \in \mathbb{N})$.

Problem 0.3. (Strong Induction). Let $x_0 = 1$, $x_1 = 2$, $x_2 = 3$, ..., $x_n = x_{n-1} + x_{n-2} + x_{n-3}$ $(n \in \mathbb{N}, n \ge 3)$. Prove by strong induction that $x_n \le 3^n$ for all $n \in \mathbb{Z}_{\ge 0}$.

Problem 0.4. (Strong Induction).

Let $x_0 = 2$, $x_1 = 4$, $x_{n+1} = 3x_n - 2x_{n-1}$ for $n \in \mathbb{N}$. Prove by strong induction that $x_n = 2^{n+1}$ for every integer $n \ge 0$. Hint: Is one number enough for the base case?

Problem 0.5. (Strong Induction).

Let $x_0 = 1$, $x_1 = 3$, $x_{n+1} = 2x_n + 3x_{n-1}$ for $n \in \mathbb{N}$. Prove by strong induction that $x_n = 3^n$ for every integer $n \ge 0$. Hint: Is one number enough for the base case?

Problem 0.6. (**Recursion**). Let $x_1 = 3$, $x_{n+1} = x_n + 2n + 3$ ($n \in \mathbb{N}$. Prove by induction that $x_n = n(n+2)$ ($n \in \mathbb{N}$).

Problem 0.7. (**Logic**). Given a function $f: X \to Y$, negate the following statements:

- **a.** There exists $x \in X$ and $y \in Y$ such that f(x) = y,
- **b.** For all $x \in X$ there exists $y \in Y$ such that f(x) = y,
- **c.** $\exists x \in X \text{ such that } \forall y \in Y \text{ such that } f(x) \neq y.$
- **d.** $\forall x_1, x_2 \in X : \text{if } x_1 \neq x_2 \text{ then } f(x_1) \neq f(x_2).$

Problem 0.8. (**Functions**). Given is a function $f:A \longrightarrow B$ $(A,B \neq \emptyset)$. Give the definitions of each of the following:

- **a.** *f* is injective.
- **b.** *f* is surjective.
- **c.** *f* is bijective.
- **d.** f has a left-inverse g.
- **e.** *f* has a right-inverse *h*.

For **d** and **e**, give the "arrow diagram" which show domain and codomain for each function involved. In both cases it will like the one to the left. Each symbol ${\bf S}$ denotes a (possibly different) set and each symbol φ denotes a (possibly different) function.

Problem 0.9. (Set functions). Given is an arbitrary collection of sets $(A_j)_{j \in J}$. Determine for each assertion below whether it is true or false. If it is true, prove it. If it is false, give a counterexample.

$$\mathbf{a.} \ f(\bigcup_{j \in J} A_j) \subseteq \bigcup_{j \in J} f(A_j); \qquad \qquad \mathbf{b.} \ \bigcup_{j \in J} f(A_j) \subseteq f(\bigcup_{j \in J} A_j);$$

$$\mathbf{c.} \ f(\bigcap_{j \in J} A_j) \subseteq \bigcap_{j \in J} f(A_j); \qquad \qquad \mathbf{d.} \ \bigcap_{j \in J} f(A_j) \subseteq f(\bigcap_{j \in J} A_j);$$

b.
$$\bigcup_{j\in J} f(A_j) \subseteq f(\bigcup_{j\in J} A_j);$$

c.
$$f(\bigcap_{j\in I} A_j) \subseteq \bigcap_{j\in I} f(A_j);$$

d.
$$\bigcap_{j \in J} f(A_j) \subseteq f(\bigcap_{j \in J} A_j)$$

You may use the fact that the direct image is increasing with its argument: $A \subseteq B \implies f(A) \subseteq f(B)$.

Problem 0.10. (Equivalence relations and partial order relations).

- Let $a, b \in \mathbb{Z}$. State as precisely as possible the definition of $a \mid b$.
- Is the relation a|b reflexive? symmetric? antisymmetric? transitive? If true, prove it. If false, give a counterexample.

Problem 0.11. (Functions and equivalence relations).

Let $f: X \to Y(X, Y \neq \emptyset)$. Prove that $a \sim b \Leftrightarrow f(a) = f(b)$ is an equivalence relation on X.

Problem 0.12. (Continuity). Let $a, b, c, d \in \mathbb{R}$ such that a < b and c < d. Let $f:]a, b[\rightarrow]c, d[$ be bijective and strictly monotone, i.e., strictly increasing or decreasing. Prove that both f and f^{-1} are continuous.

Hint: Use ε – δ continuity.

Problem 0.13. Let x_n , \hat{x}_n be two convergent sequences such that $x_n \leq \hat{x}_n$ for all $n \geq N_1$. Let $\alpha = \lim x_n$, $\beta = \lim \hat{x}_n$. Then $\alpha \leq \beta$.