Math 330 - Number Systems - Sample Exam Problems

Last update: July 28, 2017.
The following list of problems is typical for what you might find on my first Math 330 exam. I plan to add to this list in the future and also include sample problems for exam 2 and the final exam.

Problem 0.1. (Induction). Let $x_{1}=1, x_{2}=1+\frac{1}{2}, \ldots, x_{k}=\sum_{j=1}^{k} \frac{1}{j}(k \in \mathbb{N})$.
Prove by induction that $\sum_{k=1}^{n} x_{k}=(n+1) x_{n}-n(n \in \mathbb{N})$.

Problem 0.2. (Induction). Prove by induction that $\sum_{j=1}^{n} j(j!)=(n+1)!-1(n \in \mathbb{N})$.

Problem 0.3. (Strong Induction). Let $x_{0}=1, x_{1}=2, x_{2}=3, \ldots, x_{n}=x_{n-1}+x_{n-2}+x_{n-3}(n \in \mathbb{N}, n \geqq 3)$.
Prove by strong induction that $x_{n} \leqq 3^{n}$ for all $n \in \mathbb{Z}_{\geqq 0}$.

Problem 0.4. (Strong Induction).

Let $x_{0}=2, x_{1}=4, x_{n+1}=3 x_{n}-2 x_{n-1}$ for $n \in \mathbb{N}$. Prove by strong induction that $x_{n}=2^{n+1}$ for every integer $n \geq 0$. Hint: Is one number enough for the base case?

Problem 0.5. (Strong Induction).

Let $x_{0}=1, x_{1}=3, x_{n+1}=2 x_{n}+3 x_{n-1}$ for $n \in \mathbb{N}$. Prove by strong induction that $x_{n}=3^{n}$ for every integer $n \geq 0$. Hint: Is one number enough for the base case?

Problem 0.6. (Recursion). Let $x_{1}=3, x_{n+1}=x_{n}+2 n+3\left(n \in \mathbb{N}\right.$. Prove by induction that $x_{n}=n(n+2)(n \in \mathbb{N})$.

Problem 0.7. (Logic). Given a function $f: X \rightarrow Y$, negate the following statements:
a. There exists $x \in X$ and $y \in Y$ such that $f(x)=y$,
b. For all $x \in X$ there exists $y \in Y$ such that $f(x)=y$,
c. $\exists x \in X$ such that $\forall y \in Y$ such that $f(x) \neq y$.
d. $\forall x_{1}, x_{2} \in X$: if $x_{1} \neq x_{2}$ then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

Problem 0.8. (Functions). Given is a function $f: A \longrightarrow B(A, B \neq \emptyset)$. Give the definitions of each of the following:
a. f is injective.
b. f is surjective.
c. f is bijective.
d. f has a left-inverse g.
e. f has a right-inverse h.

For \mathbf{d} and \mathbf{e}, give the "arrow diagram" which show domain and codomain for each function involved. In both cases it will like the one to the left. Each symbol S denotes a (possibly different) set and each symbol φ denotes a (possibly different) function.

Problem 0.9. (Set functions). Given is an arbitrary collection of sets $\left(A_{j}\right)_{j \in J}$. Determine for each assertion below whether it is true or false. If it is true, prove it. If it is false, give a counterexample.
a. $f\left(\bigcup_{j \in J} A_{j}\right) \subseteq \bigcup_{j \in J} f\left(A_{j}\right)$;
b. $\bigcup_{j \in J} f\left(A_{j}\right) \subseteq f\left(\bigcup_{j \in J} A_{j}\right)$;
c. $f\left(\bigcap_{j \in J} A_{j}\right) \subseteq \bigcap_{j \in J} f\left(A_{j}\right)$;
d. $\bigcap_{j \in J} f\left(A_{j}\right) \subseteq f\left(\bigcap_{j \in J} A_{j}\right)$;

You may use the fact that the direct image is increasing with its argument: $A \subseteq B \Rightarrow f(A) \subseteq f(B)$.

Problem 0.10. (Equivalence relations and partial order relations).

a. Let $a, b \in \mathbb{Z}$. State as precisely as possible the definition of $a \mid b$.
b. Is the relation $a \mid b$ reflexive? symmetric? antisymmetric? transitive? If true, prove it. If false, give a counterexample.

Problem 0.11. (Functions and equivalence relations).

Let $f: X \rightarrow Y(X, Y \neq \emptyset)$. Prove that $a \sim b \Leftrightarrow f(a)=f(b)$ is an equivalence relation on X.

Problem 0.12. (Continuity). Let $a, b, c, d \in \mathbb{R}$ such that $a<b$ and $c<d$. Let $f:] a, b[\rightarrow] c, d[$ be bijective and strictly monotone, i.e., strictly increasing or decreasing. Prove that both f and f^{-1} are continuous.

Hint: Use $\varepsilon-\delta$ continuity.

Problem 0.13. Let x_{n}, \hat{x}_{n} be two convergent sequences such that $x_{n} \leqq \hat{x}_{n}$ for all $n \geqq N_{1}$. Let $\alpha=\lim x_{n}$, $\beta=\lim \hat{x}_{n}$. Then $\alpha \leqq \beta$.

