Math 330 Section 5 - Spring 2018 - Homework 04

Published: Thursday, January 11, 2018
Last submission: Friday, February 9, 2018

Running total: 20 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:

- all of ch.1, ch. 2 except the material on $\operatorname{gcd}(m, n)$, all of $c h .3$

MF lecture notes:

- ch. 1 - ch. 3
- ch. 17 (Addenda to B / G): the chapters corresponding to what has been assigned so far from B/G.

B / K lecture notes:

- ch.1.1 (Introduction to sets) (optional)
- ch.1.1 (Introduction to sets) (optional) ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions

New reading assignments:

Reading assignment 1 - due Monday, January 29:

a. Carefully read B/G ch.4.1-4.4.

Reading assignment 2 - due: Wednesday, January 31:

a. Carefully read the remainder of B / G ch.4.
b. Review MF ch. 2.3 (functions and cartesian products). Most of it is known from MF ch.2.
c. Carefully read B/G ch.5. Most of it is known from MF ch.2.

Reading assignment 3 - due Friday, September 8:

a. Carefully read MF ch.5.1-5.3.

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.

Written assignment 1: Prove B/G Prop. 4.6(iii) using induction: Given the definition of "Power" between props 4.5 and 4.6 , prove that if $b \in \mathbb{Z}$ and $m, k \in \mathbb{Z}_{\geq 0}$ then

$$
\left(b^{m}\right)^{k}=b^{m k}
$$

You may use everything up to and including Prop.4.6(ii). Note that the proof of Prop.4.6(ii) provides an excellent template for your own proofs using induction.

Written assignment 2: Prove B/G Prop. 4.7(i) using induction: Let $k \in \mathbb{N}$. Then $5^{2 k}-1$ is divisible by 24 .
You may use everything up to but not including Prop.4.7.
Written assignment 3: Prove B / G Prop. 4.16(i) by induction on c : Let $\left(x_{j}\right)_{j \in \mathbb{N}}$ be a sequence in \mathbb{Z} and let $a, b, c \in \mathbb{Z}$ such that $a \leq b<c$. Then

$$
\sum_{j=a}^{c} x_{j}=\sum_{j=a}^{b} x_{j}+\sum_{j=b+1}^{c} x_{j}
$$

For this proof use the generalized definition of " Σ " given in MF ch.17.4.1 instead of the one given in B/G p.34, 35!

Hints: Think carefully about the base case: If $a=5$, how would you choose b and c ? If $a=28$, how would you choose b and c ? For general a, how would you choose b and c ?

