Math 330 Section 5 - Spring 2018 - Homework 06

Published: Thursday, February 1, 2018
Running total: 29 points
Last submission: Friday, February 14, 2018 NO RESUBMISSIONS

New reading assignments: None: They came with homework 5.

The written assignments are graded only once, and partial credit is given. The entire set is worth 6 points.

Written assignment 1:

Injectivity and Surjectivity

- Let $f: \mathbb{R} \longrightarrow\left[0, \infty\left[; \quad x \mapsto x^{2}\right.\right.$.
- Let $g:\left[0, \infty\left[\longrightarrow\left[0, \infty\left[; \quad x \mapsto x^{2}\right.\right.\right.\right.$.

In other words, g is same function as f as far as assigning function values is concerned, but its domain was downsized to $[0, \infty[$.

Answer the following with true or false.
a. f is surjective
b. $\quad f$ is injective
c. g is surjective
d. g is injective

If your answer is false then give a specific counterexample.

Written assignment 2:

Find $f: X \longrightarrow Y$ and $A \subseteq X$ such that $f\left(A^{\complement}\right) \neq f(A)^{\complement}$. Hint: use $f(x)=x^{2}$ and choose Y as a one element only set (which does not leave you a whole lot of choices for X). See MF example 5.17 on approx. p. 90 .

Written assignment 3:

Let $f:]-10.10\left[\longrightarrow \mathbb{R} ; \quad x \mapsto x^{2}\right.$.
a. what is the range of f ?
b. Is f injective?
c. Is f surjective?
d. $f(\{1\} \cup[4,6]=$?
e. $f([2,5]) \cap f([4,7])=$?
f. $f^{-1}([4,25]) \cap f^{-1}([16,49])=$?

Written assignment 4:

You will learn later in this course that
injective \circ injective $=$ injective,
surjective \circ surjective $=$ surjective.
The following illustrates that the reverse is not necessarily true.
Find functions $f:\{a\} \longrightarrow\left\{b_{1}, b_{2}\right\}$ and $g:\left\{b_{1}, b_{2}\right\} \longrightarrow\{a\}$ such that $h:=g \circ f:\{a\}$ is bijective but such that it is not true that both f, g are injective and it is also not true that both f, g are surjective.

Hint: There are not a whole lot of possibilities. Draw possible candidates for f and g in arrow notation as on p.118. You should easily be able to figure out some examples. Again, think simple and look at MF example 5.17 on approx. p. 90 .

