Math 330 Section 5 - Spring 2018 - Homework 07

Published: Thursday, February 8, 2018 Last submission: Friday, February 23, 2018 Running total: 34 points

Update Feb 16, 2018

The last submission for problems 3 and 4 about the Division Algorithm is due on Wednesday, February 28.

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.

B/G (Beck/Geoghegan) Textbook:

• all of ch.1, ch.2 except the material on gcd(m, n), all of ch.3 – ch.5, ch.6.1.

MF lecture notes:

- ch.1 ch.3, ch.5, ch.6 (skip ch.6.3), ch.7
- ch.17 (Addenda to B/G): the chapters corresponding to what has been assigned so far from B/G.

B/K lecture notes (optional):

- ch.1.1 (Introduction to sets)
- ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions

New reading assignments:

It is particularly **important** that you consult the parts of MF ch.17 which cover this week's B/G reading assignments!

Reading assignment 1 - due Monday, February 12:

- **a.** Carefully read B/G ch.9.1 (Injections and Surjections). You have encountered almost all of that material already in MF ch.5.
- **b.** Carefully read B/G ch.6.2 and 6.3.

Reading assignment 2 - due: Wednesday, February 14:

- **a.** Carefully read the remainder of B/G ch.6.
- **b.** Carefully read B/G ch.7 until the formulation of thm.7.17 about the base 10 representation of the sum of two integers. Skip the proof and all that follows in ch.7.

Reading assignment 3 - due Friday, February 16:

- **a.** Read B/G ch.8: Carefully read the items printed in normal (big) size and skip through the material in ch.8.1 and 8.2 which is printed in small size.
- **b.** Convince yourself that B/G ax.8.1 8.4 imply that \mathbb{R} is a commutative ring with unit (MF ch.3) and that the addition of prop.8.7 (which needs ax.8.5) implies that \mathbb{R} actually is an integral domain.

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.

Written assignment 1: Prove the " \subseteq part" of formula b of De Morgan's Law:

Let there be a universal set Ω .

Then for any indexed family $(A_{\alpha})_{\alpha \in I}$ of sets:

$$\left(\bigcap_{\alpha} A_{\alpha}\right)^{\mathsf{L}} \subseteq \bigcup_{\alpha} A$$

Written assignment 2: (One point each for a and b)

Let *X*, *Y* be two nonempty sets and let $f : X \longrightarrow Y$. For $a, b \in X$ we write $a \sim b$ iff f(a) = f(b).

- **a:** Prove MF prop.7.5 (Indirect image and fibers of f): \sim is indeed an equivalence relation for *X*.
- **b:** Write $[x]_f$ for the equivalence class of $x \in X$ with respect to "~". Express $[x]_f$ in terms of the function $f: [x]_f = \{x' \in X : f(x').....\}$. (I do not want to see " $[x]_f = \{x' \in X : x' \sim x\}$ ".)

Do not use induction for any of the following assignments. It would only make your task more difficult!

#3 and #4 are about proving B/G thm.6.13 (Division algorithm for integers): Let $n \in \mathbb{N}$ and $m \in \mathbb{Z}$. There exists a unique combination of two integers q ("quotient") and r ("remainder") such that

$$m = n \cdot q + r$$
 and $0 \le r < n$.

Written assignment 3:

Prove uniqueness of the "decomposition" m = qn + r: If you have a second such decomposition $m = \tilde{q}n + \tilde{r}$ then show that this implies $q = \tilde{q}$ and $r = \tilde{r}$. Start by assuming that $r \neq \tilde{r}$ which means that one of them is smaller than the other and take it from there.

Written assignment 4:

Much harder than #3: Prove the existence of q and r.

Hints for #4: Review the Well-Ordering principle from B/G ch.2. Its use will give the easiest way to prove this theorem. Remember we extended the well-ordering principle as follows in MF thm.17.1 (Generalization of the Well-Ordering Principle): Let $A \subseteq \mathbb{Z}$ have lower bounds (which is especially true if $A \subseteq \mathbb{N}$ or $A \subseteq \mathbb{Z}_{\geq 0}$). If $A \neq \emptyset$ then A has a minimum.

Apply the above to the set $A := A(m, n) := \{x \in \mathbb{Z}_{>0} : x = m - kn \text{ for some } k \in \mathbb{Z}\}.$

Hint for both #3 and #4: MF prop.17.8 and cor.17.3 from ch.17.6.2 (The Division Algorithm) will come in handy in connection with $0 \leq r < n$: If $m, n \in \mathbb{Z}_{>0}$ then

- (17.11) $|n-m| \leq \max(m,n), \text{ i.e.,}$
- (17.12) $-\max(x,y) \leq x-y \leq \max(x,y),$
- (17.13) -n < y x < n.