Math 330 Section 5 - Spring 2018 - Homework 07

Published: Thursday, February 8, 2018

Running total: 34 points

Last submission: Friday, February 23, 2018
Update Feb 16, 2018
The last submission for problems 3 and 4 about the Division Algorithm is due on Wednesday, February 28.

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:

- all of ch.1, ch. 2 except the material on $\operatorname{gcd}(m, n)$, all of ch. 3 - ch.5, ch.6.1 .

MF lecture notes:

- ch. 1 - ch.3, ch.5, ch. 6 (skip ch.6.3), ch. 7
- ch. 17 (Addenda to B / G): the chapters corresponding to what has been assigned so far from B/G.

B/K lecture notes (optional):

- ch.1.1 (Introduction to sets)
- ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions

New reading assignments:

$$
\text { It is particularly important that you consult the parts of MF ch. } 17 \text { which cover this week's B/G }
$$ reading assigments!

Reading assignment 1 - due Monday, February 12:

a. Carefully read B/G ch.9.1 (Injections and Surjections). You have encountered almost all of that material already in MF ch.5.
b. Carefully read B/G ch.6.2 and 6.3.

Reading assignment 2 - due: Wednesday, February 14:

a. Carefully read the remainder of B / G ch.6.
b. Carefully read B/G ch. 7 until the formulation of thm.7.17 about the base 10 representation of the sum of two integers. Skip the proof and all that follows in ch.7.

Reading assignment 3 - due Friday, February 16:

a. Read B/G ch.8: Carefully read the items printed in normal (big) size and skip through the material in ch.8.1 and 8.2 which is printed in small size.
b. Convince yourself that B / G ax.8.1-8.4 imply that \mathbb{R} is a commutative ring with unit (MF ch.3) and that the addition of prop. 8.7 (which needs ax.8.5) implies that \mathbb{R} actually is an integral domain.

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.

Written assignment 1: Prove the " \subseteq part" of formula b of De Morgan's Law:
Let there be a universal set Ω.
Then for any indexed family $\left(A_{\alpha}\right)_{\alpha \in I}$ of sets: $\quad\left(\bigcap_{\alpha} A_{\alpha}\right)^{\complement} \subseteq \bigcup_{\alpha} A_{\alpha}^{\complement}$.
Written assignment 2: (One point each for \mathbf{a} and \mathbf{b})
Let X, Y be two nonempty sets and let $f: X \longrightarrow Y$. For $a, b \in X$ we write $a \sim b$ iff $f(a)=f(b)$.
a: Prove MF prop.7.5 (Indirect image and fibers of f : \sim is indeed an equivalence relation for X.
b: Write $[x]_{f}$ for the equivalence class of $x \in X$ with respect to " \sim ". Express $[x]_{f}$ in terms of the function $f:[x]_{f}=\left\{x^{\prime} \in X: f\left(x^{\prime}\right) \ldots .\right.$. ??........ $\}$. (I do not want to see " $[x]_{f}=\left\{x^{\prime} \in X: x^{\prime} \sim x\right\}^{\prime \prime}$.)

Do not use induction for any of the following assignments. It would only make your task more
difficult!
\#3 and \#4 are about proving B/G thm.6.13 (Division algorithm for integers): Let $n \in \mathbb{N}$ and $m \in \mathbb{Z}$. There exists a unique combination of two integers q ("quotient") and r ("remainder") such that

$$
m=n \cdot q+r \text { and } 0 \leq r<n .
$$

Written assignment 3:

Prove uniqueness of the "decomposition" $m=q n+r$: If you have a second such decomposition $m=\tilde{q} n+\tilde{r}$ then show that this implies $q=\tilde{q}$ and $r=\tilde{r}$. Start by assuming that $r \neq \tilde{r}$ which means that one of them is smaller than the other and take it from there.

Written assignment 4:

Much harder than \#3: Prove the existence of q and r.
Hints for \#4: Review the Well-Ordering principle from B/G ch.2. Its use will give the easiest way to prove this theorem. Remember we extended the well-ordering principle as follows in MF thm.17.1 (Generalization of the Well-Ordering Principle): Let $A \subseteq \mathbb{Z}$ have lower bounds (which is especially true if $A \subseteq \mathbb{N}$ or $A \subseteq \mathbb{Z}_{\geq 0}$). If $A \neq \emptyset$ then A has a minimum.

Apply the above to the set $A:=A(m, n):=\left\{x \in \mathbb{Z}_{\geq 0}: x=m-k n\right.$ for some $\left.k \in \mathbb{Z}\right\}$.
Hint for both \#3 and \#4: MF prop.17.8 and cor.17.3 from ch.17.6.2 (The Division Algorithm) will come in handy in connection with $0 \leqq r<n$: If $m, n \in \mathbb{Z}_{\geq 0}$ then

$$
\begin{align*}
& |n-m| \leqq \max (m, n) \text {, i.e., } \tag{17.11}\\
& -\max (x, y) \leqq x-y \leqq \max (x, y) \tag{17.12}\\
& -n<y-x<n . \tag{17.13}
\end{align*}
$$

