Math 330 Section 5 - Spring 2018 - Homework 10

Published: Friday, March 9, 2018

Running total: 40 points

Last submission: Friday, March 23, 2018
Update March 13, 2018
Rewrote \#2 so that you only need to know about convergence.

Update March 15, 2018

Typo in \#2: "Let $x_{n}:=(-1)^{n}\left(n+\frac{1}{n}\right)$ " should read "Let $x_{n}:=(-1)^{n}\left(1+\frac{1}{n}\right)$ " (as was done in lecture).
Update March 20, 2018
Improved hints for \#2

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:

- all of ch.1, ch. 2 except the material on $\operatorname{gcd}(m, n)$, all of ch. 3 - ch. 7 (ch.7: skip all after thm.7.17), ch.8, ch.9.1, 9.2

MF lecture notes:

- ch. 1 - ch.3, ch.5, ch. 6 (skip ch.6.3), ch.7, ch.9.1-9.3
- ch. 17 (Addenda to B / G): the chapters corresponding to what has been assigned so far from B/G.

B/K lecture notes (optional):

- ch.1.1 (Introduction to sets)
- ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions

Other:
Stewart Calculus 7ed - ch.1.7: "The Precise Definition of a Limit". If you have a newer or older edition then you may have to search through the table of contents and/or consult the index.

New reading assignments:

Reading assignment 1 - due Monday, March 12:

a. Read carefully B/G ch.10.3. and ch.10.4 Ch.10.4 on limits is very long, but there is a lot of overlap with MF ch.9.2. Be sure to see the connections between those chapters.

Reading assignment 2 - due Wednesday, March 18:

a. Read carefully MF ch.9.4. Skip the proofs of prop.9.16-9.18. Thm.9.2: Only read the second proof (the one that does not make use of prop.9.16-9.18).

Reading assignment 3 - due Friday, March 20:

a. Read carefully the end of B/G ch.10.
b. Read carefully MF ch.9.5. This chapter is brief, but very abstract!
c. MF ch. 9.6 will be put on hold until we have talked about the uncountability of \mathbb{R}.

Written assignment 1:

Prove B/G prop.10.10(iv): $x, y \in \mathbb{R} \Rightarrow|x-y| \geq||x|-|y||$.
Hint \#1: To show this use the following proposition (very similar to B/G prop.10.8(v)).
Proposition. (B/G prop.10.8(v)) Let $a, b \in \mathbb{R}$ such that both \#1) $-a \leqq b$ and \#2) $a \leqq b$. Then $|a| \leqq b$.
Proof of the above proposition:
Case 1) $a \geqq 0$: It follows from \#2 that $|a|=a \leqq b$ which is what we had to show.
Case 2) $a<0$: It follows from \#1 that $|a|=-a \leqq b$ which is what we had to show.
Hint \#2: first use the triangle inequality on $|x|=|(x-y)+y|$ and then on $|y|=|(y-x)+x|$. See what you get for $a:=|x|-|y|$ and $b:=|x-y|$.

Written assignment 2:

Let $x_{n}:=(-1)^{n}\left(1+\frac{1}{n}\right)$ for $n \in \mathbb{N}$. Let $T_{n}:=\left\{x_{j}: j \geqq n\right\}$ be the "tail sets" of that sequence. (see def.9.14) Let $\alpha_{n}:=\inf \left(T_{n}\right)$ and $\beta_{n}:=\sup \left(T_{n}\right)$ Prove that $\lim _{n \rightarrow \infty} \alpha_{n}=-1$ and $\lim _{n \rightarrow \infty} \beta_{n}=1$. You may use anything from MF ch.9.1 and 9.2.

Hint: Compute α_{n} and β_{n} for $n=1,2,3,4,5,6$ to see the pattern: Look separately at odd and even indices to prove that both $\left|\beta_{n}-1\right|$ and $\left|\alpha_{n}+1\right|$ are either $\frac{1}{n}$ or $\frac{1}{n+1}$. What follows for the convergence behavior of α_{n} and β_{n} ?

