Math 330 Section 5 - Spring 2018 - Homework 11

Published: Thursday, March 15, 2018 Running total: 43 points
Last submission: Monday, April 9, 2018
Update Feb 16, 2018
The last submission is due after spring break, on Monday, April 9.

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:

- all of ch. 1 - ch. 7 (ch.7: skip all after thm.7.17),
- ch.8, ch.9, ch. 10.3 - ch. 10.5 (ch. 10.1 and 10.2 are assigned this week)

MF lecture notes:

- ch. 1 - ch.3, ch. 5 - ch. 7 (skip ch.6.3),
- ch.9.1-9.5 (see hwk 10 for exceptions to ch.9.4).
- ch. 17 (Addenda to B / G): the chapters corresponding to what has been assigned so far from B/G.

B/K lecture notes (optional):

- ch.1.1 (Introduction to sets)
- ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions

Other:
Stewart Calculus 7ed - ch.1.7: "The Precise Definition of a Limit". If you have a newer or older edition then you may have to search through the table of contents and/or consult the index.

New reading assignments:

Reading assignment 1 - due Monday, March 19:

a. Read carefully B/G ch.10.1. and ch.10.2 (should have been assigned last week). Be sure to read the MF ch. 17 addenda to B / G ch.10!
b. Read carefully B/G ch.11.1.

Reading assignment 2 - due Wednesday, March 21:

a. Read carefully the remainder of B / G ch.11.
b. Read carefully B/G ch. 12.1 on infinite series. Compare to MF ch.9.3.

Reading assignment 3 - due Friday, March 23:

a. Read carefully the remainder of B / G ch. 12 .
b. Read carefully the corresponding parts of MF ch.17.12 (LOTS of proofs and simplifications!)

Written assignment 1: One point each for \mathbf{a}, \mathbf{b}, and \mathbf{c}.
Let $a, b, c, d \in \mathbb{R}$ such that $a<b$ and $c<d$. Let $f:] a, b[\rightarrow] c, d[$ be bijective and strictly increasing.
a. Prove that f is continuous.
b. Prove that f^{-1} also is strictly increasing.
c. Now use \mathbf{a} and \mathbf{b} to prove that f^{-1} is continuous.

Hint: Use MF thm.9.1: f is (sequence) continuous iff f is " $\varepsilon-\delta$ continuous" to prove a.

