Math 330 Section 5 - Spring 2018 - Homework 13

Published: Saturday, April 7, 2018
Last submission: Friday, April 20, 2018

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:

- all of ch. 1 - ch. 7 (ch.7: skip all after thm.7.17),
- ch. $8-13$

MF lecture notes:

- ch. 1 - ch. 3, ch. 5 - ch. 8 (skip ch.6.3),
- ch.9.1-9.5 (see hwk 10 for exceptions to ch.9.4), ch.10.1, ch.10.2.1
- ch. 17 (Addenda to B / G): the chapters corresponding to what has been assigned so far from B / G.

B/K lecture notes (optional):

- ch.1.1 (Introduction to sets)
- ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions

Other:
Stewart Calculus 7ed - ch.1.7: "The Precise Definition of a Limit". If you have a newer or older edition then you may have to search through the table of contents and/or consult the index.

New reading assignments:

Reading assignment 1 - due Monday, April 9:

a. Finish MF ch.9: Carefully read ch.9.6
b. Read MF ch.10.2.2 (Normed Vector Spaces). This finishes ch. 10 because ch.10.2.3 is optional.

Reading assignment 2 - due: Wednesday, April 11:

a. Prepare for exam.2. All of B/G ch. 13 and MF ch.8.1 until before ch.8.1.1 is in scope, but ch.8.1.1 (Cardinality as a Partial Ordering) is not.

Reading assignment 3 - due Friday, April 13:

a. Carefully read MF ch.11.1.1-11.1.2. It is to a large degree a collection of examples of distance functions, but you will be lost if you do not study this, preferably drawing lots of pictures.

Written assignment 1 :

/ / Use anything up-to and including MF thm. 7.2 and anything in B/G ch. 13 to prove MF cor.7.3:
Let the set X not be countable and let $A \subseteq X$ be countable. Then its complement A^{\complement} is not countable.

Written assignment 2:

Let X be a set which contains at least 2 elements. Prove that $X^{\mathbb{N}}=\left\{\left(x_{n}\right)_{n \in \mathbb{N}}: x_{j} \in X \forall j \in \mathbb{N}\right\}$ (the set of all sequences with values in X) is uncountable. Do this by emulating the proof of B / G thm.13.22 or MF thm.8.5 (The real numbers are uncountable). Do not use other results about uncountable sets!

Hints:

a. Prove this indirectly by assuming that the elements of $X^{\mathbb{N}}$ can be written as a sequence $\left(\vec{x}_{i}\right)_{i \in \mathbb{N}}$, and construct an element $\vec{x} \in X^{\mathbb{N}}$ which is different from each \vec{x}_{i}.
b. A big obstacle to solving this problem is using the wrong notation. If you stick to the following, this should make life easier: Do as above and use an arrow superscript as I did above to distinguish $\vec{x} \in X^{\mathbb{N}}$ from $x \in X$. You need TWO indices to denote the j-th member x_{j}^{i} of the i-th member \vec{x}_{i} of the sequence $\left(\vec{x}_{i}\right)_{i \in \mathbb{N}}$. If your handwriting is very neat, you can also write $x_{i, j}$ or $x_{i j}$ instead of x_{j}^{i}, but be sure to make it easy for me to distinguish symbols which are subscripts from those that are not!

