Math 330 Section 5 - Spring 2018 - Homework 14

Published: Thursday, April 12, 2018
Last submission: Friday, April 27, 2018

Running total: 51 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:

- all of ch. 1 - ch. 7 (ch.7: skip all after thm.7.17),
- ch. $8-13$

MF lecture notes:

- ch. 1 - ch.3, ch. 5 - ch. 8 (skip ch.6.3),
- ch. 9 (see hwk 10 for exceptions to ch.9.4), ch.10, ch.11.1.1-11.1.2
- ch. 17 (Addenda to B / G): the chapters corresponding to what has been assigned so far from B / G.

B/K lecture notes (optional):

- ch.1.1 (Introduction to sets)
- ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions

Other:
Stewart Calculus 7ed - ch.1.7: "The Precise Definition of a Limit". If you have a newer or older edition then you may have to search through the table of contents and/or consult the index.

New reading assignments:

Reading assignment 1 - due Monday, April 16:

Carefully read MF ch.11.1.3-11.1.9.

Reading assignment 2 - due: Wednesday, April 18:

a. Carefully read MF ch.11.1.10
b. Carefully read MF ch.11.2.1-11.2.3

Reading assignment 3 - due Friday, April 20:

a. Carefully read MF ch.11.2.4-11.2.5
b. Carefully read MF ch.11.3.1

Supplementary instructions for reading MF ch.11.1, and ch.11.2:

a. MF ch.11.1: Draw as many pictures as possible to get a feeling for the abstract concepts. Use the metric spaces $\left(\mathbb{R}^{2},\left.d\right|_{\|\cdot\|_{2}}\right)$ and $\left(\mathscr{B}(X, \mathbb{R}),\left.d\right|_{\|\cdot\|_{\infty}}\right)$ for this. Do these drawings in particular for

- open sets and neighborhoods (ch.11.1.3)
- convergence, expressed with nhoods (the end of def.11.11 in ch.11.1.4)
- metric and topological subspaces (ch.11.1.7): draw an irregular shaped subset $A \subseteq \mathbb{R}^{2}$ in two pieces $A=A_{1} \biguplus A_{2}$ which do not overlap. Draw some points $x_{j} \in A$ with ε-nhoods (circles with radius ε about x_{j}) so that some circles are entirely in A, one with $x_{j} \in A_{1}$ which reaches into A^{\complement} but not into A_{2}, and one with $x_{j} \in A_{2}$ which reaches both into A^{\complement} and A_{1}. What does $N_{\varepsilon}^{A}\left(x_{j}\right)$ look like?
- Contact points, closed sets and closures (ch.11.1.9): Draw subsets $B \subseteq \mathbb{R}^{2}$ with parts of their boundary (periphery) drawn solid to indicate that points there belong to B and other parts drawn dashed to indicate that those boundary points belong to the complement. What is \bar{B} ?
Draw points "completetely inside" B, others "completetely outside" B, and others on the solid and dashed parts of the boundary. Which ones can you approximate from within B by sequences? Which ones can you surround by circles that entirely stay within B, i.e., which ones are interior points of B ? Which ones can you surround by circles that entirely stay outside the closure of B, i.e., which ones are entirely within \bar{B}^{\complement} ? Use those pictures to visualize the definitions in this chapter and thm 11.6 and thm.11.7.
- Now repeat that exercise with an additional set A which is meant to be a metric subspace of \mathbb{R}^{2}.
b. MF ch.11.2: Draw as many pictures as possible to get a feeling for continuity, especially if you did not take multivariable calculus and are not used to dealing with continuous/differentiable functions of more than one variable. Here is a picture.

Figure 1: $\varepsilon-\delta$ continuity

Written assignments on next page!

Written assignment 1 (worth 3 points, one each for $\mathbf{a}, \mathbf{b}, \mathbf{c}$).

Prove MF prop.10.13: Let $X \neq \emptyset$. Then

$$
\|\cdot\|_{\infty}: \mathscr{B}(X, \mathbb{R}) \rightarrow \mathbb{R}_{+}, \quad h \mapsto\|h\|_{\infty}=\sup \{|h(x)|: x \in X\}
$$

is a norm on $\mathscr{B}(X, \mathbb{R})$ in the sense of def.10.15, i.e., it satisfies a. positive definiteness, \mathbf{b}. absolute homogeneity, c. the triangle inequality (for norms).

Written assignment 2 (one point only) Do MF exercise 10.7:
Prove that the p-norm (see def.10.16) is a norm on \mathbb{R}^{n} for the special case $p=1$:

$$
\|\vec{x}\|_{1}=\sum_{j=1}^{n}\left|x_{j}\right|
$$

Hints: for problem 2:
a. to prove positive definiteness and absolute homogeneity, you must show what happens for a frozen $x_{0} \in X$ as a stepping stone.
b. For the triangle inequality, go on a treasure hunt in MF ch.9.1.

