Math 330 Section 5 - Spring 2018 - Homework 16

Published: Thursday, April 26, 2018
Last submission: Monday, May 7, 2018

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:

- all of ch. 1 - ch. 7 (ch.7: skip all after thm.7.17),
- ch. $8-13$

MF lecture notes:

- ch. 1 - ch. 3, ch. 5 - ch. 8 (skip ch.6.3),
- ch. 9 (see hwk 10 for exceptions to ch.9.4), ch. 10 - ch. 12
- ch. 17 (Addenda to B / G): the chapters corresponding to what has been assigned so far from B / G.

B/K lecture notes (optional):

- ch.1.1 (Introduction to sets)
- ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions

Other:
Stewart Calculus 7ed - ch.1.7: "The Precise Definition of a Limit". If you have a newer or older edition then you may have to search through the table of contents and/or consult the index.

New reading assignments:

Reading assignment 1 - due Wednesday, May 2:

a. Reread the items in MF ch. 11 and 12 that gave you the most trouble.

Reading assignment 2 - due: Friday, May 4:

a. Carefully read MF ch.13.1 and 13.2.

This was the last reading assignment for the semester.

Written assignments are on page 2.

Written assignment 1:

Let $f(x)=x^{2}$. Prove by use of " $\varepsilon-\delta$ continuity" that f is continous at $x_{0}=1$.

Hints:

a. What does $d\left(x, x_{0}\right)<\delta$ and $d\left(f(x), f\left(x_{0}\right)<\varepsilon\right.$ translate to?
b. $\quad x^{2}-1=(x+1)(x-1)$.
c. Only small neighborhoods matter: Given $\varepsilon>0$ try to find δ that works for $0<\varepsilon<1$. Restrict your search to $\delta<1$. What kind of bounds do you get for $\left|x^{2}-1\right|,|x+1|,|x-1|$? if $0<\delta<1$?
d. Put all the above together. Show that you obtain $\left|f(x)-f\left(x_{0}\right)\right| \leq 3 \delta$?. How then do you choose δ when you consider ε as given?
e. All of the above was done under the assumption that $\delta<1$ Satisfy it by replacing δ with
$\delta^{\prime}:=\min (\delta, \ldots)$
Written assignment 2: Prove part d of MF prop.11.20 (Closure of a set as a hull operator):
Let A be a subset of a topological space (X, \mathfrak{U}). Then $\overline{A \cup B}=\bar{A} \cup \bar{B}$.
Hint: Remember how to prove an equation $L=R$ between two sets L and R : Show that each one is a subset of the other.

