Math 330 - Number Systems - Sample Exam Problems

Last update: February 23, 2018.

The following list of problems is typical for what you might find on my first Math 330 exam. I plan to add to this list in the future and also include sample problems for exam 2 and the final exam.

Problem 0.1. (Induction). Let $x_1 = 1, x_2 = 1 + \frac{1}{2}, \dots, x_k = \sum_{j=1}^k \frac{1}{j}$ $(k \in \mathbb{N})$. Prove by induction that $\sum_{k=1}^n x_k = (n+1)x_n - n$ $(n \in \mathbb{N})$.

Problem 0.2. (Induction). Prove by induction that $\sum_{j=1}^{n} j(j!) = (n+1)! - 1 \ (n \in \mathbb{N}).$

Solution to #0.2:

Base case n = 1: LS = $1 \cdot (1!) = \cdot 1 = 1 = 2 - 1 = (2!) - 1 = RS$.

Induction assumption (*): $\sum_{j=1}^{n} j(j!) = (n+1)! - 1.$

Need to show $(\star\star): \sum_{j=1}^{n+1} j(j!) = (n+2)! - 1.$

$$LS = \sum_{j=1}^{n} j(j!) + (n+1)(n+1)! \stackrel{(\star)}{=} (n+1)! - 1 + (n+1)(n+1)!$$
$$= (1)(n+1)! + (n+1)(n+1)! - 1 = (n+2)(n+1)! - 1 = RS. \blacksquare$$

Problem 0.3. (Strong Induction). Let $x_0 = 1$, $x_1 = 2$, $x_2 = 3$, ..., $x_n = x_{n-1} + x_{n-2} + x_{n-3}$ $(n \in \mathbb{N}, n \ge 3)$. Prove by strong induction that $x_n \le 3^n$ for all $n \in \mathbb{Z}_{\ge 0}$.

Problem 0.4. (Strong Induction).

Let $x_0 = 2$, $x_1 = 4$, $x_{n+1} = 3x_n - 2x_{n-1}$ for $n \in \mathbb{N}$. Prove by strong induction that $x_n = 2^{n+1}$ for every integer $n \ge 0$. Hint: Is one number enough for the base case?

Solution to **#0.4**:

Base cases: n = 0, 1: $x_0 = 2 = 2^{0+1}$. Further, $x_1 = 4 = 2^{1+1}$. This proves the base cases.

Induction assumption (*): Let $n \in \mathbb{N}$. Assume that $x_j = 2^{j+1}$ for all $0 \le j \le n$.

Need to show $(\star\star)$: $x_{n+1} = 2^{n+2}$.

LS =
$$x_{n+1}$$
 = $3x_n - 2x_{n-1}$ (the recursive definition)
= $3(2^{n+1}) - 2(2^n)$ ((*) was applied both to $j = n$ and $j = n - 1$)
= $6 \cdot 2^n - 2 \cdot 2^n = 4 \cdot 2^n = 2^{n+2} = \text{RS}$. ■

Problem 0.5. (Strong Induction).

Let $x_0 = 1$, $x_1 = 3$, $x_{n+1} = 2x_n + 3x_{n-1}$ for $n \in \mathbb{N}$. Prove by strong induction that $x_n = 3^n$ for every integer $n \ge 0$. Hint: Is one number enough for the base case?

Solution to **#0.5**:

Base cases: n = 0, 1: $x_0 = 1 = 3^0$. Further, $x_1 = 3 = 3^1$. This proves the base cases.

Induction assumption (*): Let $n \in \mathbb{N}$. Assume that $x_j = 3^j$ for all $0 \le j \le n$.

Need to show $(\star\star)$: $x_{n+1} = 3^{n+1}$..

LS =
$$x_{n+1}$$
 = $2x_n + 3x_{n-1}$ (the recursive definition)
= $2(3^n) + 3(3^{n-1})$ ((*) was applied both to $j = n$ and $j = n - 1$)
= $2 \cdot 3^n + 1 \cdot 3^n = 3 \cdot 3^n = 3^{n+1} = \text{RS}$. ■

Problem 0.6. (Recursion). Let $x_1 = 3$, $x_{n+1} = x_n + 2n + 3$ $(n \in \mathbb{N}$. Prove by induction that $x_n = n(n+2)$ $(n \in \mathbb{N})$.

Solution to #0.6:

Base case n = 1: LS = 3 = 1(1 + 2) = 1 = RS.

Induction assumption (*): $x_n = n(n+2)$.

Need to show (**): $x_{n+1} = (n+1)(n+3)$

LS = $x_{n+1} \stackrel{\text{def.}}{=} x_n + 2n + 3 \stackrel{(\star)}{=} n(n+2) + 2n + 3 = n^2 + 4n + 3 = (n+1)(n+3) = \text{RS.}$

Problem 0.7. (Logic). Given a function $f : X \to Y$, negate the following statements:

- **a.** There exists $x \in X$ and $y \in Y$ such that f(x) = y,
- **b.** For all $x \in X$ there exists $y \in Y$ such that f(x) = y,
- **c.** $\exists x \in X$ such that $\forall y \in Y$ such that $f(x) \neq y$.
- **d.** $\forall x_1, x_2 \in X : \text{if } x_1 \neq x_2 \text{ then } f(x_1) \neq f(x_2).$

Solution to **#0.7**:

- **a.** $\forall x \in X, \forall y \in Y : f(x) \neq y$,
- **b.** $\exists x \in X \text{ such that } \forall y \in Y : f(x) \neq y$,
- **c.** $\forall x \in X \exists y \in Y \text{ such that } f(x) = y$,
- **d.** $\exists x_1, x_2 \in X \text{ such that } f(x_1) = f(x_2).$

Problem 0.8. (Functions). Given is a function $f : A \longrightarrow B$ $(A, B \neq \emptyset)$. Give the definitions of each of the following:

a. *f* is injective.b. *f* is surjective.c. *f* is bijective.

d. *f* has a left-inverse *g*.**e.** *f* has a right-inverse *h*.

For **d** and **e**, give the "arrow diagram" which show domain and codomain for each function involved. In both cases it will like the one to the left. Each symbol **S** denotes a (possibly different) set and each symbol φ denotes a (possibly different) function.

Solution to #0.8:

Solution to problems a,b,c:

Injective means one-one: If $a_1, a_2 \in A$ and $f(a_1) = f(a_2)$ then $a_1 = a_2$. Surjective means onto: If $b \in B$ then there is $a \in A$ such that f(a) = b. Bijective means both injective and surjective.

Solution to problem d: If this diagram commutes:

i.e., $g \circ f = 1_A$, then we call g a **left inverse** of f "to the left of the reference object f".

Solution to problem e: If this diagram commutes:

i.e., $f \circ h = 1_B$, then we call *h* a **right inverse** of *f* "to the right of the reference object *f*"

Problem 0.9. (Set functions). Given is an arbitrary collection of sets $(A_j)_{j \in J}$. Determine for each assertion below whether it is true or false. If it is true, prove it. If it is false, give a counterexample.

a. $f(\bigcup_{i \in I} A_j) \subseteq \bigcup_{i \in I} f(A_j);$	b. $\bigcup_{i \in J} f(A_j) \subseteq f(\bigcup_{i \in J} A_j);$
$\mathbf{c.} \ f(\bigcap_{j\in J} A_j) \ \subseteq \ \bigcap_{j\in J} f(A_j);$	$\mathbf{d.} \ \bigcap_{j \in J}^{j \in J} f(A_j) \ \subseteq \ f(\bigcap_{j \in J} A_j);$

You may use the fact that the direct image is increasing with its argument: $A \subseteq B \Rightarrow f(A) \subseteq f(B)$.

Problem 0.10. (Equivalence relations and partial order relations).

- **a.** Let $a, b \in \mathbb{Z}$. State as precisely as possible the definition of $a \mid b$.
- **b.** Is the relation *a*|*b* **reflexive**? **symmetric**? **antisymmetric**? **transitive**? If true, prove it. If false, give a counterexample.

Problem 0.11. (Functions and equivalence relations).

Let $f: X \to Y(X, Y \neq \emptyset)$. Prove that $a \sim b \Leftrightarrow f(a) = f(b)$ is an equivalence relation on X.

Problem 0.12. (Continuity). Let $a, b, c, d \in \mathbb{R}$ such that a < b and c < d. Let $f :]a, b[\rightarrow]c, d[$ be bijective and strictly monotone, i.e., strictly increasing or decreasing. Prove that both f and f^{-1} are continuous.

Hint: Use ε - δ continuity.