Math 330 - Number Systems - Sample Exam Problems

Last update: February 23, 2018.
The following list of problems is typical for what you might find on my first Math 330 exam. I plan to add to this list in the future and also include sample problems for exam 2 and the final exam.

Problem 0.1. (Induction). Let $x_{1}=1, x_{2}=1+\frac{1}{2}, \ldots, x_{k}=\sum_{j=1}^{k} \frac{1}{j}(k \in \mathbb{N})$.
Prove by induction that $\sum_{k=1}^{n} x_{k}=(n+1) x_{n}-n(n \in \mathbb{N})$.

Problem 0.2. (Induction). Prove by induction that $\sum_{j=1}^{n} j(j!)=(n+1)!-1(n \in \mathbb{N})$.

Solution to \#0.2:

Base case $n=1$: LS = $1 \cdot(1!)=\cdot 1=1=2-1=(2!)-1=R S$.
Induction assumption $(\star): \sum_{j=1}^{n} j(j!)=(n+1)!-1$.
Need to show $(\star \star): \sum_{j=1}^{n+1} j(j!)=(n+2)!-1$.

$$
\begin{aligned}
\mathrm{LS} & =\sum_{j=1}^{n} j(j!)+(n+1)(n+1)!\stackrel{(\star)}{=}(n+1)!-1+(n+1)(n+1)! \\
& =(1)(n+1)!+(n+1)(n+1)!-1=(n+2)(n+1)!-1=\mathrm{RS} .
\end{aligned}
$$

Problem 0.3. (Strong Induction). Let $x_{0}=1, x_{1}=2, x_{2}=3, \ldots, x_{n}=x_{n-1}+x_{n-2}+x_{n-3}(n \in \mathbb{N}, n \geqq 3)$. Prove by strong induction that $x_{n} \leqq 3^{n}$ for all $n \in \mathbb{Z}_{\geqq 0}$.

Problem 0.4. (Strong Induction).

Let $x_{0}=2, x_{1}=4, x_{n+1}=3 x_{n}-2 x_{n-1}$ for $n \in \mathbb{N}$. Prove by strong induction that $x_{n}=2^{n+1}$ for every integer $n \geq 0$. Hint: Is one number enough for the base case?

Solution to \#0.4:

Base cases: $n=0,1$: $x_{0}=2=2^{0+1}$. Further, $x_{1}=4=2^{1+1}$. This proves the base cases.
Induction assumption (\star) : Let $n \in \mathbb{N}$. Assume that $x_{j}=2^{j+1}$ for all $0 \leq j \leq n$.
Need to show $(\star \star)$: $x_{n+1}=2^{n+2}$.

$$
\begin{aligned}
\mathrm{LS}= & x_{n+1}=3 x_{n}-2 x_{n-1} \quad \text { (the recursive definition) } \\
& =3\left(2^{n+1}\right)-2\left(2^{n}\right) \quad((\star) \text { was applied both to } j=n \text { and } j=n-1) \\
& =6 \cdot 2^{n}-2 \cdot 2^{n}=4 \cdot 2^{n}=2^{n+2}=\mathrm{RS} .
\end{aligned}
$$

Problem 0.5. (Strong Induction).

Let $x_{0}=1, x_{1}=3, x_{n+1}=2 x_{n}+3 x_{n-1}$ for $n \in \mathbb{N}$. Prove by strong induction that $x_{n}=3^{n}$ for every integer $n \geq 0$. Hint: Is one number enough for the base case?

Solution to \#0.5:

Base cases: $n=0,1$: $x_{0}=1=3^{0}$. Further, $x_{1}=3=3^{1}$. This proves the base cases.
Induction assumption (\star) : Let $n \in \mathbb{N}$. Assume that $x_{j}=3^{j}$ for all $0 \leq j \leq n$.
Need to show $(\star \star)$: $x_{n+1}=3^{n+1} .$.

$$
\begin{aligned}
\mathrm{LS}= & x_{n+1}=2 x_{n}+3 x_{n-1} \quad \text { (the recursive definition) } \\
& =2\left(3^{n}\right)+3\left(3^{n-1}\right) \quad((\star) \text { was applied both to } j=n \text { and } j=n-1) \\
& =2 \cdot 3^{n}+1 \cdot 3^{n}=3 \cdot 3^{n}=3^{n+1}=\mathrm{RS} .
\end{aligned}
$$

Problem 0.6. (Recursion). Let $x_{1}=3, x_{n+1}=x_{n}+2 n+3\left(n \in \mathbb{N}\right.$. Prove by induction that $x_{n}=n(n+2)(n \in \mathbb{N})$.

Solution to \#0.6:

Base case $n=1$: $\mathrm{LS}=3=1(1+2)=1=\mathrm{RS}$.
Induction assumption $(\star): x_{n}=n(n+2)$.
Need to show $(\star \star)$: $x_{n+1}=(n+1)(n+3)$

$$
\mathrm{LS}=x_{n+1} \stackrel{\text { def. }}{=} x_{n}+2 n+3 \stackrel{(\star)}{=} n(n+2)+2 n+3=n^{2}+4 n+3=(n+1)(n+3)=\mathrm{RS}
$$

Problem 0.7. (Logic). Given a function $f: X \rightarrow Y$, negate the following statements:
a. There exists $x \in X$ and $y \in Y$ such that $f(x)=y$,
b. For all $x \in X$ there exists $y \in Y$ such that $f(x)=y$,
c. $\exists x \in X$ such that $\forall y \in Y$ such that $f(x) \neq y$.
d. $\forall x_{1}, x_{2} \in X$: if $x_{1} \neq x_{2}$ then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

Solution to \#0.7:

a. $\forall x \in X, \forall y \in Y: f(x) \neq y$,
b. $\quad \exists x \in X$ such that $\forall y \in Y: f(x) \neq y$,
c. $\forall x \in X \exists y \in Y$ such that $f(x)=y$,
d. $\exists x_{1}, x_{2} \in X$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$.

Problem 0.8. (Functions). Given is a function $f: A \longrightarrow B(A, B \neq \emptyset)$. Give the definitions of each of the following:
a. f is injective.
b. f is surjective.
c. f is bijective.
d. f has a left-inverse g.
e. f has a right-inverse h.

For \mathbf{d} and \mathbf{e}, give the "arrow diagram" which show domain and codomain for each function involved. In both cases it will like the one to the left. Each symbol S denotes a (possibly different) set and each symbol φ denotes a (possibly different) function.

Solution to \#0.8:

Solution to problems a,b,c:

Injective means one-one: If $a_{1}, a_{2} \in A$ and $f\left(a_{1}\right)=f\left(a_{2}\right)$ then $a_{1}=a_{2}$.
Surjective means onto: If $b \in B$ then there is $a \in A$ such that $f(a)=b$.
Bijective means both injective and surjective.
Solution to problem d: If this diagram commutes:

i.e., $g \circ f=1_{A}$, then we call g a left inverse of f "to the left of the reference object f ".

Solution to problem e: If this diagram commutes:

i.e., $f \circ h=1_{B}$, then we call h a right inverse of f "to the right of the reference object f "

Problem 0.9. (Set functions). Given is an arbitrary collection of sets $\left(A_{j}\right)_{j \in J}$. Determine for each assertion below whether it is true or false. If it is true, prove it. If it is false, give a counterexample.
a. $f\left(\bigcup_{j \in J} A_{j}\right) \subseteq \bigcup_{j \in J} f\left(A_{j}\right)$;
b. $\bigcup_{j \in J} f\left(A_{j}\right) \subseteq f\left(\bigcup_{j \in J} A_{j}\right)$;
c. $f\left(\bigcap_{j \in J} A_{j}\right) \subseteq \bigcap_{j \in J} f\left(A_{j}\right)$;
d. $\bigcap_{j \in J} f\left(A_{j}\right) \subseteq f\left(\bigcap_{j \in J} A_{j}\right)$;

You may use the fact that the direct image is increasing with its argument: $A \subseteq B \Rightarrow f(A) \subseteq f(B)$.

Problem 0.10. (Equivalence relations and partial order relations).
a. Let $a, b \in \mathbb{Z}$. State as precisely as possible the definition of $a \mid b$.
b. Is the relation $a \mid b$ reflexive? symmetric? antisymmetric? transitive? If true, prove it. If false, give a counterexample.

Problem 0.11. (Functions and equivalence relations).
Let $f: X \rightarrow Y(X, Y \neq \emptyset)$. Prove that $a \sim b \Leftrightarrow f(a)=f(b)$ is an equivalence relation on X.

Problem 0.12. (Continuity). Let $a, b, c, d \in \mathbb{R}$ such that $a<b$ and $c<d$. Let $f:] a, b[\rightarrow] c, d[$ be bijective and strictly monotone, i.e., strictly increasing or decreasing. Prove that both f and f^{-1} are continuous.

Hint: Use $\varepsilon-\delta$ continuity.

