Math 330 Section 2 - Fall 2018 - Homework 07

Published: Thursday, September 13, 2018 Last submission: Friday, September 28, 2018 Running total: 33 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.

B/G (Beck/Geoghegan) Textbook: Preface, ch.1 – ch.5, ch.6.1 – ch.6.2

MF lecture notes: ch.1 – ch.3, ch.5, ch.6.1, 6.2, 6.4 – 6.7 (skip ch.6.3)

B/K lecture notes (optional):

ch.1.1 (Introduction to sets)

ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions

New reading assignments:

Reading assignment 1 - due Monday, September 17:

- **a.** Read carefully B/G ch.6.3 and MF ch.6.8 (Integers modulo *n*).
- **b.** Review the end of B/G ch.2 (the set *S*), then read carefully the remainder of B/G ch.6 and MF ch.6.9 and 6.10.

Reading assignment 2 - due: Wednesday, September 19:

- **a.** Read carefully MF ch.6.11. It covers the important parts of the beginning of B/G ch.7 through B/G prop.7.8.
- **b.** Read carefully B/G ch.7.1 (Base–Ten Representation of Integers) prop.7.9 prop.7.12. Read carefully MF ch.19.7.2 (The Addition Algorithm for Two Nonnegative Numbers (Base 10)).

Note that at this point we are finished with B/G ch.1–ch.7 and with MF ch.1–ch.6 (we skipped the entire chapter 4 on logic).

Reading assignment 3 - due Friday, September 21:

- **a.** Read carefully MF ch.7.1 (The Size of a Set) but SKIP the proof of prop.7.3.
- b. Read carefully MF ch.7.2 (The Subsets of ℕ and Their Size).

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.

#1 and #2 are about proving MF thm.6.7 (Division Algorithm for Integers – same as B/G thm.6.13): Let $n \in \mathbb{N}$ and $m \in \mathbb{Z}$. There exists a unique combination of two integers q ("quotient") and r ("remainder") such that

$$m = n \cdot q + r$$
 and $0 \le r < n$.

Do not use induction for assignments 1 and 2. It would only make your task more difficult!

Written assignment 1:

Prove uniqueness of the "decomposition" m = qn + r such that $0 \le r < n$: If you have a second such decomposition $m = \tilde{q}n + \tilde{r}$ then show that this implies $q = \tilde{q}$ and $r = \tilde{r}$. Start by assuming that $r \ne \tilde{r}$ which means that one of them is smaller than the other and take it from there.

Written assignment 2:

Much harder than #1: Prove the existence of q and r.

Hints for #2: Review the extended Well-Ordering principle MF thm.6.5. Its use will give the easiest way to prove this assignment: Apply thm.6.5 to the set $A := A(m, n) := \{x \in \mathbb{Z}_{\geq 0} : x = m - kn \text{ for some } k \in \mathbb{Z}\}.$

Hint for both #1 and #2: MF prop. 3.51 and cor.3.5 at the end of ch.3 will come in handy in connection with $0 \leq r < n$. They assert for the ordered integral domain $(\mathbb{Z}, +, \cdot, \mathbb{N})$ the following. If $m, n \in \mathbb{Z}_{\geq 0}$ then

(3.41)	$ n-m \leq \max(m,n), \text{ i.e.,}$
(3.42)	$-\max(x,y) \leq x-y \leq \max(x,y),$
(3.43)	-n < y - x < n.

Written assignment 3:

Use anything up-to and including MF thm.7.1 and anything in B/G ch.13 to p

Use strong induction to prove MF prop.6.32 on p.143: Any integer ≥ 2 has a prime factorization.