Math 330 Section 2 - Fall 2018 - Homework 07

Published: Thursday, September 13, 2018
Last submission: Friday, September 28, 2018

Running total: 33 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
Preface, ch. 1 - ch.5, ch.6.1 - ch.6.2

MF lecture notes:
ch. 1 - ch.3, ch.5, ch.6.1, 6.2, 6.4 - 6.7 (skip ch.6.3)

B/K lecture notes (optional):
ch.1.1 (Introduction to sets)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions

New reading assignments:

Reading assignment 1 - due Monday, September 17:

a. Read carefully B/G ch. 6.3 and MF ch. 6.8 (Integers modulo n).
b. Review the end of B/G ch. 2 (the set S), then read carefully the remainder of B/G ch. 6 and MF ch.6.9 and 6.10.

Reading assignment 2 - due: Wednesday, September 19:

a. Read carefully MF ch.6.11. It covers the important parts of the beginning of B / G ch. 7 through B/G prop.7.8.
b. Read carefully B/G ch.7.1 (Base-Ten Representation of Integers) prop.7.9 - prop.7.12. Read carefully MF ch.19.7.2 (The Addition Algorithm for Two Nonnegative Numbers (Base 10)).

Note that at this point we are finished with B/G ch.1-ch. 7 and with MF ch.1-ch. 6 (we skipped the entire chapter 4 on logic).

Reading assignment 3 - due Friday, September 21:

a. Read carefully MF ch.7.1 (The Size of a Set) but SKIP the proof of prop.7.3.
b. Read carefully MF ch.7.2 (The Subsets of \mathbb{N} and Their Size).

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.
\#1 and \#2 are about proving MF thm.6.7 (Division Algorithm for Integers - same as B/G thm.6.13): Let $n \in \mathbb{N}$ and $m \in \mathbb{Z}$. There exists a unique combination of two integers q ("quotient") and r ("remainder") such that

$$
m=n \cdot q+r \quad \text { and } 0 \leq r<n
$$

Do not use induction for assignments 1 and 2. It would only make your task more difficult!

Written assignment 1 :

Prove uniqueness of the "decomposition" $m=q n+r$ such tbat $0 \leq r<n$: If you have a second such decomposition $m=\tilde{q} n+\tilde{r}$ then show that this implies $q=\tilde{q}$ and $r=\tilde{r}$. Start by assuming that $r \neq \tilde{r}$ which means that one of them is smaller than the other and take it from there.

Written assignment 2:

Much harder than \#1: Prove the existence of q and r.
Hints for \#2: Review the extended Well-Ordering principle MF thm.6.5. Its use will give the easiest way to prove this assignment: Apply thm.6.5 to the set $A:=A(m, n):=\left\{x \in \mathbb{Z}_{\geq 0}: x=m-k n\right.$ for some $\left.k \in \mathbb{Z}\right\}$.

Hint for both \#1 and \#2: MF prop. 3.51 and cor.3.5 at the end of ch. 3 will come in handy in connection with $0 \leqq r<n$. They assert for the ordered integral domain $(\mathbb{Z},+, \cdot, \mathbb{N})$ the following. If $m, n \in \mathbb{Z}_{\geq 0}$ then

$$
\begin{align*}
& |n-m| \leqq \max (m, n), \text { i.e., } \tag{3.41}\\
& -\max (x, y) \leqq x-y \leqq \max (x, y) \tag{3.42}\\
& -n<y-x<n \tag{3.43}
\end{align*}
$$

Written assignment 3:

Use anything up-to and including MF thm.7.1 and anything in B/G ch. 13 to p
Use strong induction to prove MF prop. 6.32 on p.143: Any integer $\geqq 2$ has a prime factorization.

