Math 330 Section 2 - Fall 2018 - Homework 08

Published: Friday, September 21, 2018
Last submission: Friday, October 5, 2018

Running total: 35 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
Preface, ch. 1 - ch.6, B/G ch.7.1 (only prop.7.9 - prop.7.12)

MF lecture notes:
ch.1 - ch.3, ch.5, ch.6.1, 6.2, 6.4 - 6.11 (skip ch.6.3) ch.7.1, 7.2
ch.19.7.2 (The Addition Algorithm for Two Nonnegative Numbers (Base 10))
B/K lecture notes (optional):
ch.1.1 (Introduction to sets)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions

New reading assignments:

Reading assignment 1 - due Monday, September 24:

a. Read carefully MF ch.6.12 (Binomial Coefficients - NEWLY ADDED to ver 2018-09-20) and compare to the material in B/G ch.4.4.
b. Read carefully the addenda to MF ch.6. Note that material in any of the addenda chapters may have its references changed in later editions!
c. Read carefully the remainder of MF ch.7.

Reading assignment 2 - due: Wednesday, September 26:

a. Read carefully B/G ch.9.1. The material should be familiar from MF ch.5.
b. Read carefully MF ch.8., but skip the optional chapter 8.3.

Reading assignment 3 - due Friday, September 28:

a. Read carefully MF ch.9.1.

General note on written assignments: Unless expressly stated otherwise, to prove a proposition or theorem you are allowed to make use of everything in the book up to but NOT including the specific item you are asked to prove.

Written assignment 1: Prove MF excercise 6.8 (B/G prop.6.30):
Let $k, m, n \in \mathbb{Z}$. Then $\operatorname{gcd}(k m, k n)=|k| \cdot \operatorname{gcd}(m, n)$. Be sure to read the hints given in exercise 6.8! They have been enhanced in version 2018-10-01 of the MF doc. You must reference what you use from ch.6, but you may use, e.g., facts like $|a b|=|a| \cdot|b|$ without having to refer to them.

Written assignment 2: Prove part c of MF lemma 7.5:
Given the assumptions in that proposition, it follows from $A_{n} \neq \emptyset$ that $a_{n}=\min \left(A_{n}\right) \geqq n$.

