Math 330 Section 2 - Fall 2018 - Homework 16

Published: Thursday, November 15, 2018
Running total: 56 points
Last submission: Friday, November 30, 2018

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
Preface, ch. 1 - ch.6, ch.7.1 (only prop.7.9 - prop.7.12), ch. 8 - ch.10,
ch. 11 until before cor.11.23, ch. 12 - ch.13., Appendix A
MF lecture notes:
ch. 1 - ch.3, ch. 5 - ch.12.2.2, ch.13.1, ch.13.2, ch.13.3.1, ch.13.3.2 through example 13.12
(skip ch.6.3 and ch.8.3).
ch.19.7.2 (The Addition Algorithm for Two Nonnegative Numbers (Base 10))
Any "Addenda" subchapters: those will be added to without notice.
B / K lecture notes (optional):
ch.1.1 (Introduction to sets)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions

Other:

- Stewart Calculus 8ed - ch.1.7: "The Precise Definition of a Limit". If you have a newer or older edition then you may have to search through the table of contents and/or consult the index.
- Paul Dawkins' linear algebra lecture notes: As indicated at the bottom of the course materials page

New reading assignments:

Reading assignment 1 - due Friday, November 23:

- Read carefully the remainder of MF ch.13. SKIP the proof of thm.13.19 (Riemann's Rearrangement Theorem).

Supplementary (belated) instructions for reading MF ch.13.1, and ch.13.2:

When you read or reread any topics in those chapters then the following is good advice:
a. MF ch.13.1: Draw as many pictures as possible to get a feeling for the abstract concepts. Use the metric spaces $\left(\mathbb{R}^{2},\left.d\right|_{\|\cdot\|_{2}}\right)$ and $\left(\mathscr{B}(X, \mathbb{R}),\left.d\right|_{\|\cdot\|_{\infty}}\right)$ for this. Do these drawings in particular for

- open sets and neighborhoods (ch.13.1.3)
- convergence, expressed with nhoods (the end of def.13.11 in ch.13.1.4)
- metric and topological subspaces (ch.13.1.7): draw an irregular shaped subset $A \subseteq \mathbb{R}^{2}$ in two pieces $A=A_{1} \biguplus A_{2}$ which do not overlap. Draw some points $x_{j} \in A$ with ε-nhoods (circles with radius ε about x_{j}) so that some circles are entirely in A, one with $x_{j} \in A_{1}$ which reaches into A^{\complement} but not into A_{2}, and one with $x_{j} \in A_{2}$ which reaches both into A^{\complement} and A_{1}. What is $N_{\varepsilon}^{A}\left(x_{j}\right)$?
- Contact points, closed sets and closures (ch.13.1.9): Draw subsets $B \subseteq \mathbb{R}^{2}$ with parts of their boundary (periphery) drawn solid to indicate that points there belong to B and other parts drawn dashed to indicate that those boundary points belong to the complement. What is \bar{B} ?
Draw points "completetely inside" B, others "completetely outside" B, and others on the solid and dashed parts of the boundary. Which ones can you approximate from within B by sequences? Which ones can you surround by circles that entirely stay within B, i.e., which ones are interior points of B ? Which ones can you surround by circles that entirely stay outside the closure of B, i.e., which ones are entirely within \bar{B}^{\complement} ? Use those pictures to visualize the definitions in this chapter and the 13.6 and thm.13.7.
- Now repeat that exercise with an additional set A which is meant to be a metric subspace of \mathbb{R}^{2}.
b. MF ch.13.2: Draw as many pictures as possible to get a feeling for continuity, especially if you did not take multivariable calculus and are not used to dealing with continuous/differentiable functions of more than one variable. Here is a picture.

Figure 1: $\varepsilon-\delta$ continuity

Written assignment 1:

Let $f(x)=x^{2}$. Prove by use of " $\varepsilon-\delta$ continuity" that f is continous at $x_{0}=1$. You MUST work with def. 13.33 , NOT with sequence continuity, and you cannot use any "advanced" knowledge such as the product of continuous functions being continuous, etc.

Hints:

a. What does $d\left(x, x_{0}\right)<\delta$ and $d\left(f(x), f\left(x_{0}\right)<\varepsilon\right.$ translate to?
b. $\quad x^{2}-1=(x+1)(x-1)$.
c. Only small neighborhoods matter: Given $\varepsilon>0$ try to find δ that works for $0<\varepsilon<1$. Restrict your search to $\delta<1$. What kind of bounds do you get for $\left|x^{2}-1\right|,|x+1|,|x-1|$? if $0<\delta<1$?
d. Put all the above together. Show that you obtain $\left|f(x)-f\left(x_{0}\right)\right| \leq 3 \delta$?. How then do you choose δ when you consider ε as given?
e. All of the above was done under the assumption that $\delta<1$ Satisfy it by replacing δ with $\delta^{\prime}:=$ $\min (\delta, 1)$

Written assignment 2: Prove part d of MF prop. 13.26 (Closure of a set as a hull operator):
Let A be a subset of a topological space (X, \mathfrak{U}). Then $\overline{A \cup B}=\bar{A} \cup \bar{B}$.
Hint: Remember how to prove an equation $L=R$ between two sets L and R : Show that each one is a subset of the other.

