Math 330 Section 2 - Fall 2018 - Homework 17

Published: Thursday, November 22, 2018
Last submission: Friday, December 7, 2018

Running total: 58 points

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete by this date.
B/G (Beck/Geoghegan) Textbook:
Preface, ch. 1 - ch.6, ch. 7.1 (only prop.7.9 - prop.7.12), ch. 8 - ch.10,
ch. 11 until before cor.11.23, ch. 12 - ch.13., Appendix A
MF lecture notes:
ch. 1 - ch.3, ch. 5 - ch.12.2.2, ch. 13
(skip ch.6.3 and ch.8.3).
ch.19.7.2 (The Addition Algorithm for Two Nonnegative Numbers (Base 10))
Any "Addenda" subchapters: those will be added to without notice.
B/K lecture notes (optional):
ch.1.1 (Introduction to sets)
ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions

Other:

- Stewart Calculus 8ed - ch.1.7: "The Precise Definition of a Limit". If you have a newer or older edition then you may have to search through the table of contents and/or consult the index.
- Paul Dawkins' linear algebra lecture notes: As indicated at the bottom of the course materials page

New reading assignments:

Reading assignment 1 - due Monday, November 26:

- Read carefully MF ch. 14.1 - 14.4. SKIP the proof of prop.14.2.

Reading assignment 2 - due: Wednesday, November 28:

- Read carefully MF ch.14.5.

Reading assignment 3 - due Friday, November 30:

- Read carefully MF ch.14.6.

Be sure to follow the supplementary instructions given in hwk 16!

Written assignment 1:

Let $X:=\mathbb{R}$ equipped with the standard Euclidean metric $d\left(x, x^{\prime}\right)=\left|x-x^{\prime}\right|$.
Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be the following sequence of functions:

$$
f_{n}(x):= \begin{cases}0 & \text { if }|x|>\frac{1}{n}, \\ n x+1 & \text { if } \frac{-1}{n} \leqq x \leqq 0, \\ -n x+1 & \text { if } 0 \leqq x \leqq \frac{1}{n},\end{cases}
$$

i.e., the point $\left(x, f_{n}(x)\right)$ is on the straight line between $\left(-\frac{1}{n}, 0\right)$ and $(0,1)$ for $\frac{-1}{n} \leqq x \leqq 0$, it is on the straight line between $(0,1)$ and $\left(\frac{1}{n}, 0\right)$ for $0 \leqq x \leqq \frac{-1}{n}$, and it is on the x-axis for all other x. Draw a picture! Let $f(x):=0$ for $x \neq 0$ and $f(0):=1$.
a. Prove that f_{n} converges pointwise to f on \mathbb{R}.
b. Prove that f_{n} does not converge uniformly to f on \mathbb{R}.

You may use without proof that each of the functions f_{n} is continuous on \mathbb{R}.
Written assignment 2: Given is a metric space (X, d) and two functions $f, g: X \rightarrow \mathbb{R}$ which are continuous at $x_{0} \in X$. Assume that $g\left(x_{0}\right) \neq 0$. Prove that the quotient $x \rightarrow \frac{f(x)}{g(x)}$ is continuous at x_{0}.
Hint: Study the proofs of prop. 13.34 (Rules of arithmetic for continuous real-valued functions).

