Math 330 Section 7 - Spring 2019 - Homework 03

Published: Thursday, January 24, 2019 Running total: 16 points Last submission: Wednesday, February 6, 2018 NO RESUBMISSIONS

(two days before the last submission date for hwk 2!)

Status - Reading Assignments:

Here is the status of the reading assignments you were asked to complete so far (incl. hwk 2):

B/G (Beck/Geoghegan) Textbook:

Preface and ch.1 - ch.2

MF lecture notes:

ch.1 - ch.3

B/K lecture notes (optional but very useful for hwk 3):

ch.1.1 (Introduction to sets)

ch.1.2 (Introduction to Functions) but skip ch.1.2.4: Floor and Ceiling Functions

New reading assignments: NONE

Helpful hints:

- **a.** No matter what A stands for, it is never true that $A = \{A\}$. Not even if $A = \emptyset$ (the empty set): $\{A\} = \{\emptyset\}$ is a set which contains an element (exactly one): The empty set! Because $\{\emptyset\}$ is not empty it follows that $\{\emptyset\} \neq \emptyset$. By the way: It is true that $\emptyset \subseteq \{\emptyset\}$!
- **b.** No matter what A stands for, it is never true that $A \in A$. Again, not even if $A = \emptyset$ (the empty set): The empty set contains nothing at all; in particular, it does not contain any set; in particular, it does not contain the set that has no elements, i.e., the empty set. Thus $\emptyset \notin \emptyset$.
- **c. CAREFUL HERE**: It is possible to have both $a \in U$ and $\{a\} \in U$. Matter of fact, the first assignment of this homework contains such an example.

Written assignments 1-5 Partial credit will be given. You can earn as many as 10 points!

Note the following:

A. In the MF doc refer to example 5.4 for the preliminary definition of the size of a set S: If S is finite then |S| is the number of elements of S, otherwise $|S| = \infty$.

B. Refer to MF doc def.2.17 (Preliminary definition: cartesian product) for the definition of $X \times Y$.

Written assignment 1:

Let $S = \{3, 5, \{3, 5\}, \{5\}\}\$. True or false?

$$\begin{array}{lll} \textbf{a.} \; \{5\} \subseteq S & \textbf{c.} \; \{ \; \{5\} \; \} \subseteq S & \textbf{e.} \; \{3\} \subseteq S & \textbf{g.} \; 3 \subseteq S \\ \textbf{b.} \; \{5\} \in S & \textbf{d.} \; \{ \; \{5\} \; \} \in S & \textbf{f.} \; \{3\} \in S & \textbf{h.} \; 3 \in S \end{array}$$

Written assignment 2:

Find the cardinality of each of the following sets:

$$\begin{array}{lll} \textbf{a.} \ A = \ \{x, \ \{x\}, y, \ \{x\}, \ \{x, y\} \ \} & \textbf{c.} \ C = \ \{j, k, j, k, j\} & \textbf{e.} \ E = \ \{e^x : x \in \mathbb{R}\} \\ \textbf{b.} \ B = \ \{a, \ \{a\}, \ \{b\} \ \} & \textbf{d.} \ D = \ \{4q^2 : q \in \mathbb{Z}\} & \textbf{f.} \ F = \ \{(-1)^m : m \in \mathbb{Z}\} \end{array}$$

Written assignment 3:

Let $X = \{x, y, \{x\}, \{x, y\}\}$ and $Y = \{x, \{y\}\}$. True or false?

a.
$$x \in X \cap Y$$
 c. $x \in X \cup Y$ **e.** $x \in X \setminus Y$ **g.** $x \in X\Delta Y$ **b.** $\{y\} \in X \cap Y$ **d.** $\{y\} \in X \cup Y$ **f.** $\{y\} \in X \setminus Y$ **h.** $\{y\} \in X\Delta Y$

Written assignment 4:

Let $X = \{x, y\}$ and let $Y = \{1, 2, 3\}$.

a. What is
$$X \times Y$$
? **c.** What is $\operatorname{card}(X \times Y)$? **e.** Is $(x,3) \in X \times Y$? **g.** Is $3 \cdot x \in X \times Y$? **b.** What is $Y \times X$? **d.** What is $\operatorname{card}(Y \times X)$? **f.** Is $(x,3) \in Y \times X$? **h.** Is $2 \cdot y \in Y \times X$?

Written assignment 5:

Let
$$X = \{8\}$$
.

a. What is
$$2^X$$
?

b. What is
$$2^{(2^X)}$$
?